1.- Citées dans l'exposé d'évaluation (Paris, octobre 2015)
[ADMOS 2015a] C. Dobrzynski, Curved meshing for high Reynolds flows solved using high order framework, ADMOS 2015. pdf
[ADMOS 2015b] G. Brethes, A. Loseille, F. Alauzet, and A.
Dervieux. Convergent error-controlled mesh adaptation. In ADMOS 2015,
Nantes,2015. pdf
[ADMOS 2015c] L. Billon, Y. Mesri and E. Hachem, Adaptive
Finite Element Simulation of Multi-Physics Turbulent Flow with
Applications in Aerodynamics, in ADMOS 2015, Nantes, 2015. pdf
[AIAA 2015a] Adrien Loseille, Alain Dervieux and Frederic
Alauzet, Anisotropic Norm-Oriented Mesh Adaptation for Compressible
Flows, 53rd AIAA Aerospace Science Meeting, Orlando, 2015. pdf
[AIAA 2015b] N. Barral, F. Alauzet, A. Loseille, Metric-Based Anisotropic Mesh Adaptation for
Three-Dimensional Time-Dependent Problems, 53rd AIAA Aerospace Science Meeting, Orlando, 2015. pdf
[COUPLED-2015][T3-D5/D6] E. Gauci, F. Alauzet, A. Loseille,
A. Dervieux, Towards goal-oriented mesh adaptation for fluid-structure
interaction, VI International Conference on Computational Methods for
Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2015, B.
Schrefler, E. Onate and M. Papadrakakis(Eds), May 18-20, Venice, Italy. pdf
[IJNMF 2014][T4-D3] R. Abgrall, C. Dobrzynski, and A.
Froehly. A method for computing curved meshes via the linear elasticity
analogy, application to fluid dynamics problems. Int. J. for Numer.
Meth. Fluids, 76(4):246~ 266, 2014. pdf
[IJNMF 2015] Brèthes, G., Allain, O., and Dervieux, A.,
2015, ~A Mesh-Adaptive Metric-Based Full-Multigrid for the Poisson
problem~, Int. J. Numer. Meth. Fluids, ,79-1, 30~53, 2015 (Lemma and
INRIA). pdf
[IMR23 2014][T4-D4 2015] Adrien Loseille, Metric-orthogonal anisotropic mesh generation pdf
[JCP 2015] F. Alauzet, A. Loseille, G. Olivier, Time-Accurate Multi-Scale Anisotropic Mesh Adaptation
for Unsteady Flows in CFD. pdf
[PANACM 2015] G. Brethes, A. Loseille, F. Alauzet, and A.
Dervieux. Convergent error-controlled mesh adaptation. In PANACM2015,
Buenos Aires,2015. pdf
[SIAM SEAS 2015] C. Dobrzynski, Curved mesh generation for
fluid dynamics problem. SIAM-SEAS 2015, Birmingham, Alabama, mars 15. pdf
[T3-D3-4-2015] A. Carabias, A. Loseille, A. Dervieux, Norm-oriented mesh-adaption analysis
for a third-order accurate Euler model. pdf
[T4-D6] D. Guegan, O. Allain, Interface meshing for unsteady simulations. pdf
[T5-D2 2015] E. Itam, B. Koobus, Multirate time advancing for high Reynolds LES. pdf
[T5-D3-BIS ] G. Brethes, T. Coupez, A. Dervieux, Continuous/tensorial synthesis for mesh adaptation. pdf
2.- Autres
[1] D. Marcum and F. Alauzet, Aligned Metric-based Anisotropic
Solution Adaptive Mesh Generation, Procedia Engineering, Volume 82,
2014, Pages 428-444.
pdf
[2] C. Moussaed , E. Itam , S. Wornom , B. Koobus , M.V. Salvetti , A.
Dervieux, Dynamic and hybrid VMS models for the simulation of bluff-body
flows, ECFD 2014 - Barcelona, sept. 2014 (UM2-Lemma-Inria)
[3] E. Itam , S. Wornom , B. Koobus , A. Dervieux, Application of a
hybrid variational multiscale model to massivelly separated flows, 3AF -
8 avril 2015, Toulouse (UM2-Lemma-Inria)
[4] E. Itam, S. Wornom, B. Koobus, B. Sainte-Rose, A. Dervieux,
Simulation of multiple blunt-body flows with a hybrid variational
multiscale model, Conference on Modelling Fluid Flow (CMFF~15) The 16th
International Conference on Fluid Flow Technologies, Budapest, Hungary,
September 1-4, 2015 pdf (UM2-Lemma-Inria)
[5] A. Loseille, Metric-orthogonal Anisotropic Mesh Generation, Procedia Engineering,
Volume 82, 2014, Pages 403-415 pdf
[6] N. Barral, Edward Luke and Frederic Alauzet, Two Mesh
Deformation Methods Coupled with a Changing-connectivity Moving Mesh
Method for CFD Applications, Procedia Engineering, Volume 82, 2014,
Pages 213-227.
pdf
[7] N. Barral and F. Alauzet, Large displacement body-fitted FSI
simulations using a mesh-connectivity-change moving mesh strategy, AIAA
Aviation 2014, Atlanta, GA, USA, June 2014. preprint
[8] N. Barral,F. Alauzet and A. Loseille, Metric-Based Anisotropic Mesh
Adaptation for Three-Dimensional Time-Dependent Problems Involving
Moving Geometries, AIAA SciTech 2015, Kissimee, FL, USA, January 2015. preprint
[9] G. Brethes Algorithmes Full-Multigrid adaptatifs bases sur des metriques Riemanniennes, Congres SMAI 27-30
mai 2013, Seignosse,
slides-pdf
[10] G. Brethes, Main issues in anisotropic
mesh adaptive FMG, ECCOMAS, Barcelona, slides-pdf
[11] G. Brethes, Adaptive multigrid methods, ECCOMAS, Bordeaux. slides-pdf
[12] L. Billon, Y. Mesri and E. Hachem, Parallel anisotropic 3D mesh
adaptation for unsteady turbulent Flows, in PANACM 2015 , Buenos Aires,
2015.
[13] E. Hachem, L. Billon, J. Sari, F. Cauneau and Y. Mesri, Parallel
anisotropic 3D mesh adaptation for unsteady turbulent flows, , AERO2015,
50th edition of the 3AF International Conference on Applied
Aerodynamics, Toulouse, March 30, 31, April 1, 2015
[14] L. Billon, Y. Mesri, E. Hachem, Mesh adaptation for unsteady
interfaces with deformation, stretching and curvature, Poster, Séminaire
de Mécanique des fluides CEA/GAMNI, Paris 5&6 Fevrier 2015
[15] E. Hachem, L. Billon, J. Sari, T. Coupez, Variational multiscale
large eddy simulation and anisotropic mesh adaptation for transient and
turbulent flows, AERO2014, 49th International Symposium of Applied
Aerodynamics Lille, March 24-26, 2014
[16] E. Hachem, L. Billon and T. Coupez, Variational multiscale large
eddy simulation and anisotropic mesh adaptation for transient and
turbulent flows, 11th world congress on computational mechanics (WCCM
2014), Barcelona, Spain, July 20-25, 2014
[17] N. Barral, F. Alauzet and A. Loseille, Metric-Based
Anisotropic Mesh Adaptation for Three-Dimensional Time-Dependent
Problems Involving Moving Geometries, 53rd AIAA Aerospace Science
Meeting, Orlando, 2015.
[18] V. Menier, A. Loseille and F. Alauzet, Multigrid
Strategies Coupled with Anisotropic Mesh Adaptation, 53rd AIAA Aerospace
Science Meeting, Orlando, 2015. pdf
[19] Tournage d'un film de 10 mn sur l'adaptation de maillage en mécanique, associant Lemma et INRIA. (Grand fichier) play .
[20] C. Dobrzynski, SIAM SEAS 2015, USA
[21] C. Dobrzynski, ADMOS 2015, Nantes, France
16.
[22] A. Loseille, A. Dervieux, F. Alauzet, Anisotropic Norm-Oriented Mesh Adaptation for A Compressible Inviscid Flow, AIAA SciTech, Kissimmee, Florida, United States, 25 janvier 2015, AIAA paper, 2015--2037 pdf
[23] L. Billon, Y. Mesri, E. Hachem, Adaptive meshing method for
turbulent flow simulations, ECCOMAS Congress, Crete Island, Greece,
5 - 10 JUNE 2016 pdf
[24] T. Toulorge, Y. Mesri, E. Hachem, High fidelity adaptive meshing for immersed methods, ECCOMAS Congress, Crete Island, Greece, 5 - 10 JUNE 2016
[25] Y. Mesri, L. Billon, E. Hachem, On the efficiency of parallel incompressible Navier-Stokes solvers in the framework of anisotropic adaptive finite elements, 12th World Congress on Computational Mechanics, 24-29 July 2016 Seoul, Korea
[26] E. Itam, S. Wornom, B. Koobus, and A. Dervieux, "A volume-agglomeration multirate time advancing approach", European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Crete Island, Greece, 5-10 juin, 2016. pdf
[27] E. Gauci, F. Alauzet, and A. Dervieux,
Goal-oriented mesh adaptation for moving mesh FSI problems,
ECCOMAS Congress 2016,
VII European Congress on Computational Methods in Applied Sciences and Engineering
M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5~10 June 2016.
[28] L. Billon, Y. Mesri, E. Hachem, "Anisotropic boundary layer mesh generation for immersed
complex geometries", Engineering With Computers, 28 July 2016. pdf
[29] E. Itam, S. Wornom, B. Koobus, and A. Dervieux, "Hybrid simulation of high-Reynolds number
flows relying on a variational multiscale model", paper in 6th Symposium on Hybrid RANS-LES Methods, Strasbourg, France,
26-28 September 2016.
pdf
[30] F. Alauzet, V. Menier and A. Loseille, Unique cavity-based operator and hierarchical domain partitioning for fast parallel generation of anisotropic meshes, Comput. Aided Des., Accepted, 2016,
pdf .
[31] F. Alauzet and A. Loseille, A decade of progress on anisotropic mesh adaptation for Computational Fluid Dynamics, Comput. Aided Des., Vol. 72, pp. 13-39, 2016,
pdf .
[32] G. Brethes, A. Dervieux, Anisotropic Norm-Oriented Mesh
Adaptation for a Poisson problem, Journal of Computational Physics 322
(2016) 804-826,
pdf .
[33] G. Brethes, A. Dervieux, A tensorial-based mesh adaptation for a
Poisson problem, European Journal of Computational Mechanics
Volume 26, 2017 - Issue 3, 245-281.
pdf .
[34] N. Barral, G. Olivier, F. Alauzet,
Time-accurate anisotropic mesh adaptation for
three-dimensional time-dependent problems with
body-fitted moving geometries, Journal of Computational Physics,
Elsevier, 2017, 331, pp.157-187. <10.1016/j.jcp.2016.11.029>
pdf .
[35] F. Alauzet, A. Loseille, G. Olivier. Multi-Scale Anisotropic Mesh Adaptation for Time-Dependent Problems.
[Research Report] RR-8929, INRIA Saclay - Ile-de-France. 2016, pp.42
pdf .
[36] F. Alauzet. A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes.
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2016, 299, pp.26. <10.1016/j.cma.2015.10.012>
pdf .
[37] F. Alauzet, B. Fabrèges, M. A. Fernández, M. Landajuela. Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures.
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2016, 301, pp.300-335. <10.1016/j.cma.2015.12.015>
pdf .
[38] L. Nouveau, H. Beaugendre, C. Dobrzynski, R. Abgrall, and M. Ricchiuto.
An adaptive, residual based, splitting approach for the penalized
Navier Stokes equations.
Comput. Methods Appli. Mech. Engrg, 303:208-230, 2016. pdf .
[39] R. Abgrall, H. Beaugendre, C. Dobrzynski, Q. Viville.
Construction of a p-adaptive continuous Residual Distribution scheme for hyperbolic problems.
J.Sci.Comput. 1-37,1232-1268. 2017. pdf .
[40] B. Re, C. Dobrzynski, A. Guardone.
An interpolation-free ALE scheme for unsteady inviscid flow computations over three-dimensional adaptive grids.
J. Comput. Phys. 340:26-54, 2017 pdf .
[41] R. Abgrall, H. Beaugendre, C. Dobrzynski. An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques. Journal of Computational Physics, Elsevier, 2014, 257, pp.83-101. pdf .
[42] A. Loseille. Metric-orthogonal Anisotropic Mesh GenerationProcedia Engineering
Volume 82, 2014, Pages 403-415. pdf .
[43] F. Alauzet and D. Marcum. Metric-Aligned and Metric-Orthogonal Strategies in AFLR, 23rd AIAA Computational Fluid Dynamics Conference, AIAA AVIATION Forum, (AIAA 2017-3108). pdf .
[44] A. Carabias, A. Belme, H. Loseille, and A. Dervieux, Anisotropic goal-oriented error analysis for a third-order accurate CENO Euler discretization, International Journal for Numerical Methods in Fluids, http://dx.doi.org/10.1002/fld.4423, 2017.
pdf
[45] A. Belme, F. Alauzet, A. Dervieux, An a priori anisotropic Goal-Oriented Estimate
for Viscous Compressible Flow and Application to Mesh Adaptation (soumis).
pdf
[46] G. Jannoun, E. Hachem, J. Veysset, J-F. Zaragoci, and T. Coupez. Fully space-time metric based anisotropic
mesh adaptation for unsteady problems, VI International Conference on Adaptive Modeling and Simulation
ADMOS 2013, J. P. Moitinho de Almeida, P. D~~ez, C. Tiago and N. Parés (Eds)
pdf
[47] O. Coulaud and A. Loseille. Very High Order Anisotropic Metric-Based Mesh Adaptation in 3D.
25th International Meshing Roundtable. Procedia Engineering 163 ( 2016 ) 353 ~ 365
pdf
[48] C. Dobrzynski, G. El Jannoun. High order mesh untangling for complex curved geometries. RR-9120, INRIA Bordeaux, 2017.
pdf
[49] R. Abgrall, H. Alcin, H. Beaugendre, C. Dobrzynski, L. Nouveau. Residual Schemes Applied to an Embedded Method Expressed on Unstructured Adapted Grids. Acta Aerodynamica Sinica, 2016, 34 (2), pp.214-223. ~http: //html.rhhz.net/KQDLXXB/2016-02-214.htm~. ~10.7638/kqdlxxb-2016.0010~ pdf
[50] E. Gauci, A. Belme, A. Carabias, A. Loseille, F. Alauzet, A. Dervieux. A priori error-based mesh adaptation in CFD (SCPDE17, Hong Kong, 2017, submitted for publication)~ pdf
[51] E. Itam, S. Wornom, B. Koobus, and A. Dervieux. A Volume-agglomeration multirate time advancing for high
Reynolds number flow simulation~ pdf