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Abstract

In this report a central-ENO approximation for the unsteady 2D Euler equations is considered. The

scheme is third-order accurate on irregular unstructured meshes. First, the paper concentrates on a

method for a goal-oriented mesh adaption. For this purpose, an a priori implicit error analysis for

this CENO scheme is proposed. It allows to get an estimate depending on the reconstruction error.

In contrast to linear reconstruction error, specifying a stretching direction minimising a third order

reconstruction error is not an immediate task. Then an optimum problem for the mesh metric is

obtained and analytically solved. Second, a new analysis, the norm-oriented analysis is applied to

the same context and new optimality conditions are produced.
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1. Introduction

High order approximations in Computational Mechanics are an attracting mean for obtaining

computations with smaller approximation errors, or, more importantly nowadays, for obtaining com-

putations with less computer time, thanks to the use of coarser meshes.

However high order approximations do not reduce mesh fineness constraints related to the size

and number of details in the different solution fields (from monotony changes to stiff variations).

Disobeying these constraints leads to low order errors and possibly to oscillations.

A well known cure to that latter limitation is the application of mesh adaptive strategies. In the

case of isotropic mesh adaption, the h, p methods which control together mesh local size and scheme

local accuracy have shown an impressive efficiency in adressing mechanical problems involving many

details and scales.

When the fields under study involve structures of lower dimension, like discontinuity curves in
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2D, an anisotropic mesh adaption may be necessary.

Hessian-based error estimates combined with a metric for representing the mesh showed efficiency

for second order finite-element-type approximations (see [7] for a recent example). This association

is rather naturally derived since the optimal metric is a scalar factor times the Hessian of the variable

chosen as sensor, that is the main bilinear term of its P1-interpolation error.

Then the extension to third order accuracy appears as the next step. Looking for P2-interpolation

error of sensor leads to consider the trilinear third-order term of its Taylor series. It is possible to

imagine mesh adaptation controlled directly by these third order derivatives. See for example [? ].

In the present paper we shall less ambitiously propose to convert the trilinear information in to a

bilinear one, a pseudo-Hessian-based error model.

Mesh adaptation based on interpolation error take into account very incompletely approximation

error. A more accurate problematic is to address the reduction of the error committed on a scalar

output. Initially restricted to interpolation errors, anisotropic error estimates are now available for

goal-oriented formulations, see [12],[2],[15]. In particular, a priori estimates have become an efficient

tool for addressing mesh adaptation issues for steady Euler flows [20], then for unsteady Euler

flows [6], and more recently for steady and unsteady Navier-Stokes ones [5]. In these papers, the

error analysis follows the so-called a priori implicit error method, dealing with a discrete invertible

system for the deviation between discrete solution and a projection of the continuous one. Such a

priori estimates were obtained for a second-order mixed-element-volume approximation close to the

usual P1 finite element. Promises given by theory were kept by numerical demonstrators, showing

second-order convergence for shocked flows. The theory also predicts higher-order convergence for the

higher-order interpolation of singular flows. A necessary condition is the application of an anisotropic

strategy, involving an anisotropic error estimate.

Goal-oriented analysis allows to reduce the error on a scalar output. But in many applications,

the user needs to control the overall approximation error, for example reducing the L2 error of

approximation. This ca be addressed by an extension of the goal-oriented approach, the norm-

oriented one [8, 19]. The main idea is to build a so-called corrector for representing this approximation

error.

In this paper we consider a central-ENO approximation for the Euler equations. The scheme is

third-order accurate on irregular unstructured meshes.

We first present a mesh adaption method based on an interpolation error. In [9], Weiming Cao
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proposes a first approximation of this error with stretching directions. In the present paper, we

propose to replace the application of third derivative to a mesh size by the power 3/2 of a pseudo-

Hessian times mesh size. Then an optimal mesh-metric is derived analytically. For solving the

resulting mesh optimality system, we discretise it and apply a fixed point for steady flows. The new

method is applied to a scramjet flow.

Then we address a goal-oriented problematic. An approximation error analysis need be performed.

The implicit error method introduced for a second-order approximation in [16] is extended to the

third-order CENO. The resulting a priori error analysis is a kind of dual of the a posteriori analysis

of Barth and Larson [4]. The error is expressed in terms of the application of third derivative to

a mesh size. Again a pseudo-Hessian operator is introduced. Then an optimisation problem for

the mesh metric is obtained and analytically solved. The extension to a norm-oriented analysis

is then presented by introducing a Defect-Correction based corrector which play the role of the

approximation error.

2. Numerical approximation of a function

2.1. Quadratic-interpolation error in 1D

We are forst interested by evaluating the quadratic-interpolation error on a mesh M of inter-

val [0, 1] parameterized by a continuous mesh size m(x). On each interval ]xi−1, xi[ with xi−1 =

1
N

∫ i−1

0
m−1(x)dx and u− ΠMu erreur d’interpolation Pk:∫ 1

0

|u− ΠMu|dx ≈
∫ 1

0

|eM(x)|dx =

∫ 1

0

(mk+1|δ−k−1Dk+1
h uδ|)dx.

où uδ = (u(iδ)))i∈Z) et Dhuδ = (u((i + 1)δ) − u(iδ))i∈Z). δ est plus petit que la taille de maille

minimale minm.

Le quotient différentiel δ−k−1Dk+1
h uδ: proche de ∂2u

∂x2
là où u est régulier, borné dans L1/k (indép.

de δ) là où u est discontinu.

Maillage optimal pour un nombre donné de nœuds

min
M

∫ 1

0

|eM(x)|ds ;

∫
m(x)−1 dx = N . (1)

⇒ mopt(x) = C(N)|(δ−k−1Dk+1
h uδ(x))|

−1
k+1 .
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m−2
opt,2D(x) = C(N)−2|D

2
huδ(x)

δ2
| ; m−2

opt,3D(x) = C(N)−2|D
3
huδ(x)

δ3
| 23

De plus l’erreur correspondante dans L1 s’écrit:

(∫ 1

0

|eMopt(x)|ds
)

=
1

Nk+1

(∫
|δ−k−1Dk+1

h uδ|1/k+1

) k2+k+1
k+1

<
K

Nk+1

précision à l’ordre k + 1 en dépit de la discontinuité.

2.2. Quadratic-interpolation error

Let f be a smooth mapping from Rn to Rp.

2.3. Taylor series

The Taylor theorem for f writes:

f(x + δx) = f(x) +
k=m∑
k=1

1

i!
Dkf(x)(δx)k +Rk+1 with ||Rk+1|| = O(||δx||k+1).

Here the Fréchet derivative Dkf(x) of f at point x is a tensor or multi-linear application or an

element of L(Rk;Rp). Due to the Leibnitz formula, Dkf(x) is a symmetric tensor in the sense that:

Dkf(x) · (ξ1, ξ2, ..., ξk) = Dkf(x) · (ξσ1 , ξσ2 , ..., ξσk)

for any permutation σ : 7→ σi of the set {1, 2, ..., k}. In case the vector ξi = ξ for all 1 ≤ i ≤ k, we

simply write:

Dkf(x) · (ξ, ξ, ..., ξ) = Dkf(x) · (ξ)k.

For example, for n = 2, p = 1

D2f(x)(δx)2 =
∂2f

∂x2
1

δx2
1 + 2

∂2f

∂x1∂x2

δx1δx2 +
∂2f

∂x2
2

δx2
2

D3f(x)(δx)3 =
∂3f

∂x3
1

δx3
1 + 3

∂3f

∂x2
1∂x2

δx2
1δx2 + 3

∂3f

∂x1∂x2
2

δx1δx
2
2 +

∂3f

∂x3
2

δx3
2.

The norm of Dkf(x) is defined as

||Dkf(x)|| = sup{|Dkf(x) · (ξ1, ξ2, ..., ξk)|; ||ξi|| ≤ 1, 1 ≤ i ≤ k}

For p = 1 the estimate on Rk+1 can be refined by using the expression of the general term:

Rk+1 � |
1

k!
Dk+1f(x)(δx)(k+1)|

where � means that the inequality is true at the limiting case of |δx| infinitely small.
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2.4. Lagrange interpolation

Given an integer k ≥ 1, denoting Pk the space of polynomials of degree ≤ k defined over Rn, we

define N = N(k) = dimPk. A set Σ = {ai}Ni=1 of N distinct points ai of Rn form a k−unisolvent set

if , given any real numbers αi, 1 ≤ i ≤ N , there exists one and only one polynomial p ∈ Pk such

that

p(ai) = αi, 1 ≤ i ≤ N.

Three notions introduced in [11] will be useful in our modelization of anisotropy.

Given such a set Σ = {ai}Ni=1, we denote by K(Σ) the closed convex hull of Σ. To K(Σ) are

associated two geometrical parameters:

h = h(Σ) = diameter of K(Σ), ), (2)

ρ = ρ(Σ) = sup{ diameter of the spheres contained in K(Σ)} (3)

If Σ is any unisolvent set with k ≤ 1 its interior is nonempty and ρ(Σ) is strictly positive. Let

Σ = {ai}Ni=1 and Σ̂ = {âi}Ni=1 be two sets of points in Rn. We say they are equivalent if and only if

there exists an invertible element B ∈ L(Rn) such that:

ai = Bâi + b, 1 ≤ i ≤ N.

If Σ = {ai}Ni=1 is unisolvent so is Σ̂ = {âi}Ni=1.

In [11], it is shown that for two such equivalent k−unisolvent sets, we have:

||B|| ≤ h

ρ̂
and ||B−1|| ≤ ĥ

ρ
.

We shall be more interested by the case of a symmetric matrix B:

B = R

 β1 0

0 β2

 tR. (4)

It is then possible to measure the impact of transformation B as the effect of the involved stretching

(β1, β2) on the shape coefficients (h, ρ):

h ≤ max(β1, β2)ĥ ; ρ ≤ min(β1, β2)ρ̂.
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Given a function u defined on a k−unisolvent set Σ, the polynomial ũ is the interpolating poly-

nomial of u if it is the unique polynomial of degree ≤ k satisfying:

ũ(ai) = u(ai), 1 ≤ i ≤ N.

An error estimate for Lagrange interpolation has been established in [11]:

Theorem 1: Let k be a fixed integer ≥ 1, and let Σ = {ai}Ni=1 a k−unisolvent set of points in Rn.

Let K ⊂ Rn be a Σ−admissible set, u ∈ Ck+1(K). Then, for any point x ∈ K and any integer m

with 0 ≤ m ≤ k, one has:

Dmũ(x) = Dmu(x) +
1

(k + 1)!

N∑
i=1

{Dk+1u(ηi(x) · (ai − x)k+1}Dmpi(x)

where the pi’s are the unique polynomials of degree ≤ k such that

pi(aj) = δij, 1 ≤ i, j ≤ N,

and ηi(x) = θix + (1− θi)ai.

Theorem 2: Let Σ = {ai}Ni=1 be a k−unisolvent set of points of Rn, and h and ρ defined as in

(2)(3). Let u ∈ Ck+1(K) be given with

Mk+1 = sup||Dk+1u(x)||;x ∈ K <∞.

If u is the unique interpolating polynomial of degree ≤ kof u, we have for any integre m with 0 ≤

m ≤ k,

sup||Dmu(x)−Dmū(x)||;x ∈ K ≤ CMk+1
hk+1

ρm
≤ C ′Mk+1

max(β1, β2)k

min(β1, β2)m
,

for some constants

C = C(n, k,m, Σ̂) , C ′ = C ′(n, k,m, Σ̂)

which are the same for all equivalent k−unisolvent sets and which can be computed one for all for a

fixed Σ̂.

2.5. k-Exact reconstruction

The assumption now is that the polynomial is obtained by any k−exact reconstruction. This

case has been also addressed in [11]. The symbol W k+1,p(Ω) holds for the Sobolez space equipped

with the usual norm ||.||m,p,Ω.

||u||m,p,Ω =

(
m∑
l=0

||Dlu||pp,Ω

) 1
p

; |u|m,p,Ω = ||Dmu||p,Ω ; ||Dmu||p,Ω =
(
||Dlu(x)||p

)1/p
.
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The Lagrange interpolation is one way, among many others, for approximating a function by a

polynomial. Two important properties of it is the linearity and the k−exactness. These are precisely

the main assumptions of a second theorem from [11]:

Theorem 3: Let Ω be a bounded open subset of Rn with a continuous boundary. Let p, 1 ≤

p ≤ ∞, k ≥ 0 an integer, m a second integer such that 0 ≤ m ≤ k + 1. Let Π a mapping of

L(W k+1,p(Ω);Wm,p(Ω)) satisfying the k−exactness property:

Πu = u ∀ u ∈ Pk.

Then for any u ∈ W k+1,p(Ω) and for h small enough, we have:

||u− Πu||m,p,Ω ≤ C|u|k+1,p,Ω
hk+1

ρm
≤ C ′|u|k+1,p,Ω

max(β1, β2)k

min(β1, β2)m
,

for some constants

C = C(n, k, p, Ω̂, Π̂) ; C ′ = C ′(n, k, p, Ω̂, Π̂)

which are the same for all equivalent domains Ω and which can be computed once for all in a domain

Ω̂ equivalent to Ω.

2.6. Quadratic reconstruction error on a continuous mesh

For a quadratic reconstruction, we shall use as model for the reconstruction error the following

term:

ER(u) = sup
δx

sup
x
|D3u(x)(δx)3|

3. Numerical approximation for PDE

3.1. Model

The 2D Euler equations in a geometrical domain Ω of boundary Γ can be written:

Find u ∈ V such that

∫
Ω

v∇ · F(u) d Ω =

∫
Γ

vFΓ(u) d Γ ∀ v ∈ V . (5)

Here u = (u1, u2, u3, u4) holds for the conserved unknowns (density, moments components, energy)

and F for the usual Euler fluxes. As right-hand side we have an integral of the various boundary

fluxes FΓ for various boundary conditions, which we do not need to detail here. Defining

B(u, v) =

∫
Ω

v∇ · F(u) d Ω −
∫

Γ

vFΓ(u) d Γ,

this writes:

Find u ∈ V such that B(u, v) = 0 ∀ v ∈ V . (6)
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Figure 1: Dual cell and two reconstruction molecules

3.2. CENO formulation

We choose a reconstruction-based finite-volume method, getting inspired by the unlimited version

of the reconstruction technique of Barth [3] and of Central-ENO (CENO) methods developed by

Groth and co-workers, [14]. Concerning the location of nodes with respect to mesh elements, we

prefer to minimize the number of unknowns with respect to a given mesh and therefore we keep

the vertex-centered location already successfully used for second-order anisotropic (Hessian-based or

Goal-oriented) mesh adaptation. The considered numerical approximation is described in details in

[13]. Its main features are: (a) vertex centered, (b) dual median cells around the vertex, (c) a single

mean square conservative quadratic reconstruction for each dual cell (d) Roe Riemann solver for

fluxes integration, (e) explicit multi-stage time-stepping.

The computational domain is divided in triangles and in a dual tesselation in cells, each cell Ci

being built around a vertex i, with limits following sections of triangle medians.

We define the discrete space V0 of functions that are constant on any dual cell Ci.

Let us define a reconstruction operator R0
2 which reconstructs a function of V0 in each cell Ci

under the form of a second-order polynomial:

R0
2u0|Ci = Pi(X).

Given the means (u0,i, i = 1, ...) of u0 on cells i of centroid Gi, find the ci,α, |α| ≤ k such that

Pi,i = u0,i

∑
j∈N(i)

(Pi,j − u0,j)
2 = Min

with

Pi(x) = u0,i +
∑
|α|≤k

ci,α[(X −Gi)
α − (X −Gi)α]

and where Pi,j stands for the mean of Pi(X) on cell j.
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For the Euler model (6), the CENO scheme writes:

Find u0 ∈ V0 such that B(R0
2u0, v0) = 0 ∀ v0 ∈ V0 (7)

We observe that this produces a finite volume formulation:

∀Ci,
∫
Ci

∇ · F(R0
2u0) d Ω −

∫
∂Ci∩Γ

FΓ(R0
2u0) d Γ = 0.

or:

∀Ci,
∫
∂Ci

F(R0
2u0) · n d Γ−

∫
∂Ci∩Γ

FΓ(R0
2u0) d Γ = 0. (8)

The knowledge of the reconstruction does not completely define the CENO approximation. In-

deed, the reconstruction performed in each cell produces a global field which is generally discontinuous

at cell interfaces. In order to fix an integration value at the interface, we can consider an arithmetic

mean of the fluxes values for the two reconstruction values:

F(R0
2u0)quadrature|∂Ci∩∂Cj · n =

1

2

(
F(R0

2u0)|∂Ci + F(R0
2u0)|∂Cj

)
· n (9)

where (R0
2u0)|∂Ci holds for the value at cell boundary of the reconstructed R0

2u0|Ci on cell Ci. The

above mean is applied on Gauss integration points (two per interface segment). This formulation

produces a central-differenced numerical approximation which is third order accurate, but it cannot

be used as it is in nonlinear applications, due to a lack of stability.

3.3. Vertex-centered low dissipation CENO2

Scheme (8) is usually combined with an approximate Riemann solver used instead of (9). This

latter option produces a rather dissipative third-order accurate scheme. Now, we are here interested

only by rather mild non-linear effects. Scheme (8)(9) is instead stabilized as in [1], i.e completed

by two extra terms: the first term compensates partially the main dispersive error. The second one

introduces a sixth order dissipation. We refer to [1] for details and for numerical experiments showing

the interest of this new CENO2 variant. This modification does not change the main error term in

the approximation and will not influence our error analysis.

4. Error analysis

Let be j(u) = (g, u) the scalar output which we want to accurately compute, where u is the

solution of the continuous system (6). We concentrate the reduction by mesh adaption of the following
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error:

δj = (g,R0
2π0u−R0

2u0)

where g is function of L2(Ω) and u0 the discrete solution of (8). The projection π0: is defined by:

π0 : (V )→ (V0),

v 7→ π0v

∀ Ci, dual cell, π0v|Ci =

∫
Ci

vdx.

The adjoint state u∗0 ∈ V0 is the solution of:

∂B

∂u
(R0

2u0)(R0
2v0, u

∗
0) = (g,R0

2v0), ∀ v0 ∈ V0. (10)

Then we can write, successively:

(g,R0
2π0u−R0

2u0) = ∂B
∂u

(R0
2u0)(R0

2π0u−R0
2u0, u

∗
0) (adjoint eq.)(10)

≈ B(R0
2π0u, u

∗
0)−B(R0

2u0, u
∗
0)

and then

(g,R0
2π0u−R0

2u0)

≈ B(R0
2π0u, u

∗
0) (disc.state eq.)(7)(9)

≈ B(R0
2π0u, u

∗
0)−B(u, u∗0) (cont.state eq.)(6)

≈ ∂B
∂u

(u)(R0
2π0u− u, u∗0)

In this study, we do not consider the adaptation of boundary mesh therefore, as in [20], we discard

the boundary terms. Then the case of Euler equations is written:

∂B

∂u
(u)(R0

2π0u− u, u∗0) =
∑
i

∫
Ci

u∗0∇ · F ′(u)(R0
2π0u− u)dx−

∫
∂Ci∩Γ

u∗0F ′Γ(u)(R0
2π0u− u) d Γ

≈
∑
i

∫
Ci

u∗0∇ · F ′(u)(R0
2π0u− u)dx

where the sum applies for all dual cell Ci of the mesh. Noting that u0 is constant over each cell Ci,

we can transform the above with an integration by parts (again terms on ∂Ω are skipped):

∂B

∂u
(u)(R0

2π0u− u, u∗0) ≈ −
∑
i

∫
∂Ci

u∗0F ′(R0
2π0u− u) · n dσ.

Observing that two integrals are computed on each interface Cij separating two neighboring cells:

∂B

∂u
(u)(R0

2π0u− u, u∗0) ≈ −
∑
Cij

∫
∂Ci∩∂Cj

[(
u∗0F ′(R0

2π0u− u)
)
Ci
−
(
u∗0F ′(R0

2π0u− u)
)
Cj

]
· n dσ.
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Even for u∗0 ≈ π0u
∗, with u∗ smooth, the discontinuity at interface of u∗0 is of order 1. By construction

of the higher order reconstruction, the discontinuity at interface of R0
2π0u− u is of higher order and

can be neglected. Then:

(
u∗0F ′(R0

2π0u− u)
)
Ci
−
(
u∗0F ′(R0

2π0u− u)
)
Cj
≈

1

2

[
(u∗0)Ci − (u∗0)Cj

] [(
F ′(R0

2π0u− u)
)
Ci

+
(
F ′(R0

2π0u− u)
)
Cj

]
We assume in this work that R0

2π0u− u can be replaced by a smooth function of the local third

derivatives and local mesh size:

R0
2π0uq − uq ≈ sup

δx
sup
x
|D3u(x)(δx)3|, ∀ q = 1, 4,

and for each flux component (r = 1, 2)

F ′r(R0
2π0u− u) ≈

∑
q

||F ′qr||(D3u(x)(δx)3).

On the other side, the jump term u∗0|Ci − u∗0|Cj is a first derivative of u∗ times the distance between

the centroids of the two cells, or equivalently (at first-order) the vertices i and j. The integration of

this term over the section of interface ∂Ci ∩ ∂Cj is essentially the (double of the) area of the four

triangles delimited by i, j and the centroids of triangles havin ij as common side. The set of all

these triangles is a tessellation of the computational domain. Then:

|δj| ≈ |∂B
∂u

(u)(R0
2π0u− u, u∗0)| ≈ 2

∑
q

∫
Ω

Kq(u, u
∗)|D3u(δx)3)| dΩ

with

Kq(u, u
∗) =

∑
r

|(F ′rq(u))∗||
∂u∗q
∂xr
|.

The error is expressed in terms of the δx, measuring local mesh size. We consider now a way to find

the mesh which minimizes this error.

Metric parametrization

The parametrization of the mesh is a Riemannian metric defined in each point x = (x, y) of the

computational domain by a symmetric matrix,

M(x) = d R(x)Λ(x)Rt(x).
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The rotation matrix R = (eξ, eη), built with the normalised eigenvectors eξ = (exξ , e
y
ξ) and eη =

(exη , e
y
η) ofM, parametrizes the two orthogonal stretching directions of the metric. Denoting mξ and

mη the two directional local mesh sizes in the characteristic/stretching directions of M, the mesh

density is d = (mξmη)
−1. Matrix Λ is a 2 × 2 diagonal one with eigenvalues λ1 =

mξ
mη

and λ2 = mη
mξ

and of determinant equal to unity, which helps defining uniquely the mesh density d from matrixM.

It is also useful to identify the mesh sizes (δx, δy) in Cartesian directions:

δxM = (δxM, δyM) , δxM = exξmξ + exηmη , δyM = eyξmξ + eyηmη .

In the continuous mesh methods (see for example [17, 18], the error in linear interpolation was

modelled by (we discard the constant):

|uq(x)− πM1 uq(x)| ≈ |∂
2uq
∂τ 2

q

|(δτq)2 + |∂
2uq
∂n2

q

|(δnq)2 = δxM|Huq |δxM

= trace(M− 1
2 |Huq |M− 1

2 ) (11)

where Huq is the Hessian of uq, and orthonormal directions τq = (τ qx , τ
q
y ) and nq = (nqx, n

q
y) are

eigenvectors of this Hessian.

In [21] the authors propose a general statement for an interpolation of arbitrary degree generalizing

(11). Here, we directly define the error model for a quadratic reconstruction as follows (for q = 1, 4):

|uq(x)− π2uq(x)| ≈
(
trace(M− 1

2 |H̃uq |M− 1
2 )
) 3

2
.

where the pseudo-Hessian H̃uq has to be derived numerically from the third derivative as explained

in the numerical application section. After the a priori analysis, we have to minimise the following

error:

E =
∑
q=1,4

∫
Kq(u, u

∗)
(
trace(M− 1

2 |H̃uq |M− 1
2 )
) 3

2
dxdy .

�
∫ (

trace(M− 1
2 |S|M− 1

2 )
) 3

2
dxdy.

with

S =
∑
q=1,4

Kq(u, u
∗)

2
3 |H̃uq |. (12)

Matrix S(x) is a sum of symmetric positive definite matrices and so is it:

S(x) = RS(x)ΛS(x)Rt
S(x).

12



Optimal metric. We know identify the optimal metric, Mopt = Mopt(N), among those having a

prescribed total node number N , which minimizes the above error. We proceed as for the second-

order metric analysis, e.g. [20].

We observe that:∫ (
trace(M− 1

2 |S|M− 1
2 )
) 3

2
dxdy =

∫ (
trace(d−1

M(RMΛMRT
M)−

1
2 |S|(RMΛMRT

M)−
1
2 )
) 3

2
dxdy

Mesh stretching direction. We first prescribe, at each point x of the computational domain, the

adapted metric eigenvectors i.e. the representation of the direction of stretching of mesh, RMopt as

aligned with the above error model, that is

RMopt = RS .

Mesh stretching strength. Then, minimising the error at each point x of the computational domain

for a prescribed density dM, we derive that the best ratio of eigenvalues forM, i.e. the representation

of mesh stretching or anisotropy should uniformise the two component of error, which means that

the product

(RMoptΛMoptRT
Mopt

)−
1
2 |S|(RMoptΛMoptRT

Mopt
)−

1
2

is made proportional to identity. It implies that:

eMopt =
(λ1S)−

1
2

(λ2S)−
1
2

; ΛMopt = diag[e−1
Mopt

, eMopt ]

in which we have respected det(ΛMopt) = 1.

With these definitions of RMopt and ΛMopt , we get:

(RMoptΛMoptRT
Mopt

)−
1
2 |S|(RMoptΛMoptRT

Mopt
)−

1
2 =

(
λ

1
2
1S
λ

1
2
2S

0

0 λ
1
2
1S
λ

1
2
2S

)
.

Inside this restricted family of metrics, it remains to define the optimal metric density. Let us

consider the set of metrics with a total number of vertices prescribed to N :∫
Ω

d dxdy = N. (13)

We now have to minimise the L1 norm of the error

E(d) =

∫
Ω

d−
3
2 Γ(S) dxdy

Γ(S) =

trace( λ
1
2
1S
λ

1
2
2S

0

0 λ
1
2
1S
λ

1
2
2S

) 3
2

= (2λ
1
2
1S
λ

1
2
2S

)
3
2 (14)

13



with respect to d for a given number of nodes N . This means that:

E ′(d) · δd = 0 ∀ δd with

∫
Ω

δd dxdy = 0

which implies that the derivative of integrand in E is constant:

Γ(S)d−
5
2 = constant

and produces an optimal density

dopt =
N

C opt
(Γ(S))

2
5 =

N

C opt
(2λ

1
2
1S
λ

1
2
2S

)
3
5

with

Copt =

∫
Ω

(2λ
1
2
1S
λ

1
2
2S

)
3
5 dxdy.

This completes the definition of the optimal metric:

Mopt = doptRt
opt

 e−1
opt 0

0 eopt

Ropt. (15)

Numerical experiments are presented in [10].

5. Norm-oriented analysis

5.1. Corrector

We consider an abstract linear PDE denoted Au = f and a third-order accurate discretization of

it, Ahuh = fh. Let us assume the problem is smooth and that the approximation is in its asymptotic

mesh convergence phase for the mesh Ωh under study, of size h. Then this will be also true for a

strictly two-times finer embedding mesh Ωh/2. We would have:

uh = A−1
h fh , uh/2 = A−1

h/2fh/2

⇒ u− uh/2 ≈
1

8
(u− uh) (16)

where uh and uh/2 are respectively the solutions on Ωh and Ωh/2. We have also Πhu − Πhuh/2 ≈
1
8
(Πhu−uh). This motivates the definition of a finer-grid Defect-Correction (DC) corrector as follows:

Ahū
′
DC =

8

7
Rh/2→h(Ah/2Ph→h/2uh − fh/2) (17)

where the residual transfer Rh/2→h accumulates on coarse grid vertices the values at fine vertices

in neighboring coarse elements multiplied with barycentric weights, and Ph→h/2 linearly interpolates

14



coarse values on fine mesh. In the case of local singularities, statement (16) is not true for uniform

meshes, but we have some hints that it holds almost everywhere for a sequence of adapted meshes,

according to [20]. The DC corrector ū′DC approximates Πhu − uh instead of u − uh and can be

corrected as the previous one:

u′DC = ū′DC − (πhuh − uh). (18)

This field will play a key role in the norm-oriented mesh adaptation introduced in the sequel.

This method can be extended to Euler flow adaptation. Let us denote Ψ(W ) = 0 the steady

Euler equations where W = {ρ, ρu, ρE} is the set of conservation variables. Let Ψh(Wh) = 0 be

its discretization by a vertex-centered second-order upwind scheme. A linear DC evaluation of the

corrector writes:

∂Ψh

∂W
W̄ ′
DC =

8

7
Rh/2→hΨh/2(Ph→h/2Wh),

W ′
DC = W̄ ′

DC − (πhWh −Wh). (19)

Then
∂Ψh

∂W
g′DC = W ′

DC . (20)

In practice, a nonlinear version of (20) is used.

5.2. Norm-oriented optimal metric

We are now interested by the minimization of δj(M) = ||u− uM||2L2(Ω) with respect to the mesh

M. Introducing u′DC from (18) gives:

δj(M) ≈ (u′DC , u− uM). (21)

Let us define the discrete adjoint state u∗M:

∀ψ ∈ VM, B(ψM, u
∗
M) = (ψM, u

′
DC). (22)

Then, similarly to the goal-oriented case, we have to solve the following optimum problem.

E =
∑
q=1,4

∫
Kq(u, u

∗
M)
(
trace(M− 1

2 |H̃uq |M− 1
2 )
) 3

2
dxdy .

�
∫ (

trace(M− 1
2 |
∑
q=1,4

Kq(u, u
∗
M)

2
3 |H̃uq ||M− 1

2 )

) 3
2

dxdy.
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Exactly as in other norm-oriented analyses, we freeze the dependancy of the adjoint state to

metric M by replacing it by M0, fixed.

min
M

∫ (
trace(M− 1

2 |
∑
q=1,4

Kq(u, u
∗
M0

)
2
3 |H̃uq ||M− 1

2 )

) 3
2

dxdy.

In order to get the final norm-oriented optimum Mopt,norm we shall:

Step 1: first solve the linearised corrector system (18) in order to get u′DC ,

Step 2: then solve the adjoint system:

B(ψ, u∗M) = (ψ, u′DC) (23)

Step 3: DefineM(α+1) as in (15). the three-step process being re-iterated until we get a fixed point

Mopt,norm =M(∞).

6. Conclusion

The proposed analysis is being implemented. Details of implementation and numerical results

will be published in a forthcoming paper.
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