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The paper gives an unified formalism that encompasses the two most common mesh adaptation strategies:
Hessian-based and goal-oriented. The first one is based on the control of the interpolation error of a solution
field. The second one relies on the control of the approximation error of a scalar-output functional. Both
of them have been widely used in aeronautics and derived in an anisotropic context by using a metric-based
approach. If Hessian-based mesh adaptation is completely generic, it does not account for discretization error
of the PDE at hand, contrary to the goal-oriented approach. The scope of this paper is to extend metric-
based mesh adaptation to control a norm of the approximation error. This allows us to control simultaneously
multiple functionals of interest as lift, drag, moment, without the need to solve multiple adjoint states. The
procedure is based on the derivation of a corrector term that is then used as a functional for adjoint based-
mesh adaptation. The estimate is derived within the continuous mesh framework, yielding naturally a fully
anisotropic estimate.

Introduction

Adaptive methods in aeronautics has been used for many different purposes. The first one is generally to improve
the prediction of complex phenomena (sonic-boom, contact discontinuity, blast, vortices, . . . ) while minimizing the
CPU cost. Then, it may be used to guarantee the optimal (second) order of convergence of the numerical scheme,
especially when discontinuities (shocks waves) are present in the flow field. In addition, adaptivity is also concerned
with the assessment of the numerical solution. We distinguish the following class of adaptive methods according to
these purposes.

A first set of methods is based on the minimization of the interpolation error of one or several sensors depending
on the CFD solution.5, 13, 22, 24, 31, 41, 50, 55, 56 Given a numerical solution Wh, a solution of higher regularity Rh(Wh) is
recovered, so that the following interpolation error estimate14, 38 hold:

‖Rh(Wh)−ΠhRh(Wh)‖Lp ≤ N−
2
3

(∫
Ω

det
(
|HRh(Wh)|

) p
2p+3

) 2p+3
3p

where HRh(Wh) is the Hessian of the recovered solution and N an estimate of the desired number of nodes. If
anisotropic mesh prescription is naturally deduced in this context, interpolation-based methods do not take into ac-
count the features of the PDE. However, in some simplified context and assumptions (elliptic PDE, specific recovery
operator), we have:

‖W −Wh‖ ≤
1

1− α
‖Rh(Wh)−ΠhRh(Wh)‖ with α > 1 ,

so that good convergence to the exact solution may be observed.39 Indeed, if Rh(Wh) is a better approximate of W in
the following meaning:

‖W −Wh‖ ≤
1

1− α
‖Rh(Wh)−Wh‖ where 0 ≤ α < 1,
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and if the reconstruction operator Rh has the property:

ΠhRh(Wh) = Wh,

we can then bound the approximation error of the solution by the interpolation error of the reconstructed function
Rh(Wh):

‖W −Wh‖ ≤
1

1− α
‖Rh(Wh)−ΠhRh(Wh)‖ .

Note that from a practical point of view,Rh(Wh) is never recovered, only its first and second derivatives are estimated.
Standard recovery techniques include least-square or green formula, and the ZZ operator.

A second set of methods tends to couple adaptivity with the assessment of the numerical prediction of the flow.
Goal-oriented optimal methods,29, 33, 40, 51, 57 minimize the error committed on the evaluation of a scalar functional. A
usual functional is the observation of the pressure field on an observation surface γ:

|j(W )− jh(Wh)|, with j(W ) =

∫
γ

(
p− p∞
p∞

)2

,

W (respectively Wh) is (respectively numerical) solution of the Euler equation. They do take into account the features
of the PDE, through the use of an adjoint state that gives the sensitivity of W to observed j. In,10, 36 in order to be
able to solve the goal-oriented mesh optimization problem, we introduce an a priori analysis which restricts to the
main asymptotic term of the local error. if a super-convergence,27, 28 of |j(W ) − jh(Wh)| may be observed in some
cases, goal-oriented optimal methods are specialized for a given output, and in particular do not provide a convergent
solution field. Indeed, the convergence of ‖W − Wh‖ is not predicted. In addition, if the observation of multiple
functionals is possible (trough multiple adjoint states), the optimally of the mesh and the convergence properties of
the approximation error may be lost.

In each case, the aforementioned adaptive strategies address specifically one goal. Consequently, it is still a
challenge to find an adaptive framework that encompass all the desired requirements: anisotropic mesh prescription,
asymptotic optimal order of convergence, assessment of the convergence of the numerical solution to the continuous
one, control of multiple functionals of interest, . . . This paper is a contribution with a first attempt to formally predict
all the different requirements. Our approach is based on the design of a norm-oriented optimal method, which takes
into account the PDE features, and produces an approximate solution field which does converge to the exact one.
This is done by estimating a residual term ΠhW −Wh. This term naturally arise when the functional of interest is
the norm ‖ΠhW −Wh‖L2 . The estimate is then used as a functional with the standard goal-oriented approach. To
do so, we derive some correctors that estimate the implicit error. We also discuss the two standard strategies with
a priori and a posteriori estimates. Contrary to the goal-oriented mesh adaptation, the functional may be now any
function of approximation error. Consequently, we can observed functional of interest that the difference between
exact and numerical. In addition, multiple functional of interest can be observed simultaneously. For instance, the
norm-functional can be:

j(W,Wh) = (drag(W )− drag(Wh))2 + (lift(W )− lift(Wh))2.

By linearizing the right of side, we see that the (corrector) estimate for the norm-functional depends only of ΠhW−Wh

and will produce only one right hand side for the goal-oriented estimation.

The paper is organized as follows. In Section I, we then derive formally an error analysis for multi-scale, goal-
oriented and norm-oriented mesh adaptation. In Section II, we recall the main flow features used in the numerical
examples. In Section III, we derive correctors for the case of the Euler equations within a linear and non linear setting.
In Section III, we illustrate the corrector along with the norm oriented approach on 3D examples.
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I. Flow and mesh models

I.A. Flow equations

The compressible Euler equations for mass, momentum and energy conservation reads (with no source terms):

∂ρ

∂t
+∇ · (ρu) = 0 ,

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0,

∂(ρe)

∂t
+∇ · ((ρe+ p)u) = 0,

where ρ denotes the density, u the velocity, e the total energy per mass and p the pressure. This system can be rewritten
under vectorial form:

Wt + F1(W )x + F2(W )y + F3(W )z = 0,

where W is the nondimensionalized conservative variables vector:

W = (ρ, ρu, ρv, ρw, ρE)T

F(W ) = (F1(W ), F2(W ), F3(W )) are the convective (Euler) flux functions:

F1(W ) = (ρu, ρu2 + p, ρuv, ρuw, u(ρE + p))T

F2(W ) = (ρv, ρuv, ρv2 + p, ρvw, v(ρE + p))T

F3(W ) = (ρw, ρuw, ρvw, ρw2 + p, w(ρE + p))T .

A weak formulation of this system writes for W ∈ V =
[
H1(Ω)

]5
as follows:

∀φ ∈ V, (Ψ(W ) , φ) =

∫
Ω

∇φ · F(W ) dΩ +

∫
Γ

φ F̄(W ).n dΓ = 0, (1)

where Γ is the boundary of the computational domain Ω, n the outward normal to Γ and the boundary flux F̂ contains
the boundary conditions.

I.B. Spatial discretization

Equation (1) is discretized by a vertex-centered upwind finite-volume formulation applying to unstructured tetra-
hedrizations. The interested reader is invited to find a detailed presentation in.2 For the sake of the variational analysis,
it is interesting to present is as a stabilization of the Galerkin approximation.

Let H be a tetrahedral mesh of Ω. We denote by Ωh and Γh the linear approximate of Ω and Γ defined by H. Let
us introduce the following approximation space:

Vh =
{
φh ∈ V ∩ C0

∣∣ φh|K is affine ∀K ∈ H
}
.

The interpolation operator of the previous section is chosen as the usual P1 operator:

Πh : V ∩ C0 → Vh ; Πhϕ(xi) = ϕ(xi), ∀ i , vertex.

The weak discrete formulation writes:

∀φh ∈ Vh, (Ψh(Wh) , φh) = 0,

(Ψh(Wh) , φh) =

∫
Ωh

∇φh · Fh(Wh) dΩh +

∫
Γh

φhF̄h(Wh).n dΓh = 0

Fh = ΠhF ; F̄h = ΠhF̄ . (2)

Taking as in (2) the P1-interpolation of the fluxes Fh as a discretisation principle. This produces a finite-element
scheme which is identical to the central-differenced finite-volume scheme built on the so-called median dual cells,
built around vertices by limiting them by plans through mid-edges, face centroids, element centroids. In practice,
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this family of Mixed-Element-Volume schemes cannot be used in a non-dissipative purely centered version. In,17, 47

MUSCL versions are described and analysed. For our analysis, we shall simply consider that the scheme under study
is enriched with artificial stabilisation terms. We write this as follows:

∀φh ∈ Vh,
∫

Ωh

∇φh · Fh(Wh) dΩh +

∫
Γh

φhF̄h(Wh).n dΓh = −
∫

Ωh

φhDh(Wh)dΩh,

It is now useful to introduce the linearised operators A and Ah expressed in terms of Jacobians of F and F̄ computed
at W , resp. Fh and F̄h computed at Wh:

∀W ∈ V , ∀δW ∈ V , A(W )δW ∈ (V )′ and ∀φ ∈ V,

(A(W )δW , φ) =

∫
Ω

∇φ · ∂F
∂W

(W )(δW ) dΩ +

∫
Γ

φ
∂F̄(W )

∂W
(δW ).n dΓ = 0 (3)

∀Wh ∈ Vh , ∀δWh ∈ Vh , Ah(Wh)δWh ∈ (Vh)′ and ∀φh ∈ Vh,

(Ah(Wh)δWh , φh) =

∫
Ωh

∇φh ·
∂Fh
∂W

(Wh)(δWh) dΩh +

∫
Γh

φh
∂F̄h(Wh)

∂W
(δWh).n dΓh = 0 (4)

which both we assume to be invertible. We shall use in the sequel the notations A−1RHS and resp. A−1
h RHSh for

the results of solving the corresponding systems with RHS and resp. RHSh as right-hand sides. According to,47

the diffusion term is of higher order as soon as it is applied to the interpolation of a smooth enough field W on a
sufficiently regular mesh:

|
∫

Ωh

φhDh(Wh)dΩh| ≤ h3K(W )|φh|L2 .

As a result, the dissipation term will be neglected in the estimates of the sequel.

I.C. Continuous mesh framework formalism

We use in the sequel the continuous mesh framework to drive our analysis. In,37 we prove that any mesh can be
represented by a continuous Riemannian metric field M. The link between continuous mesh and discrete mesh is
based on the unit mesh concept.25 Given a Riemannian metric fieldM, a unit-mesh is a mesh having length computed
inM and volume computed inM close to one:

for all edges of e = AB, `M(e) =

∫ 1

0

√
tABM((1− t)A+ tB)ABdt ∈

[
1√
2
,
√

2

]
,

for all elements K, |K|M ≈
√

2

12
.

(5)

From a practical point of view, generating a anisotropic unit meshH with respect toM requires to use any anisotropic
mesh generators, see11, 15, 16, 21, 26, 33, 35, 41, 49, 54 in 3D. Conversely, given a mesh H, the following metric field is a con-
tinuous representative ofH:

MP = exp

(∑
P∈K |K| ln(MK)∑

P∈K |K|

)
,

where P is a vertex of H andMK is the unique metric of element K, and |K| the volume of K. Consequently, if
uh denotes a discrete quantity computed on a given mesh, we use equivalently the notation uM, that represents the
same quantities represented on any unit mesh with respect toM. In the case of the interpolation error, there is a strict
equivalence between continuous and discrete interpolation error.38 The parametrization of a mesh byM instead of
h is advantageous for a priori analysis with anisotropic mesh. Indeed, there exist also quantities of interest as the
density, anisotropic ratios, differentiation that are well defined onM.

II. Three mesh adaptation heuristics

II.A. Hessian-based multi-scale adaptation

Let us consider a mesh parametrised by a metric M, according to the continuous mesh theory. A Hessian-based
adaptation will rely on the choise of a sensor s depending on the state variableW . The P 1 interpolation error ΠMs−s
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can be expressed in terms of second derivatives of s and of metricM:

ΠMs− s ≈ πMs− s

where the expression πMs− s holds for the following continuous approximation of the interpolation error:

πMs− s ≡ trace(M− 1
2H(s)M− 1

2 ), (6)

where H(s) is the Hessian of s. Minimizing ‖ΠMs − s‖L1 for a given number N of vertices provides an optimal
interpolation-based metric:

Mopt
inter(s) = arg min

|M|=N
trace(M− 1

2H(s)M− 1
2 )

Then:

Mopt
inter(s) = K(Hs) with K(Hs) = D(Hs) (det |Hs|)

−1
3 |Hs| and D(Hu) = N

(∫
Ω

(det |Hs|)
1
3

)−1

(7)

whereD(Hs) is a global normalization term set to obtain a continuous mesh with complexityN and (det |Hs|)
−1
3 is a

local normalization field. Note that replacing the optimal metric in the L1 norm shows that second-order convergence
is obtained for smooth contexts.38 We can also extend this approach to non-smooth functions, see.20

Statement (7) defines directly a continuous optimal metric. In practice, solving (7) is done approximatively, i.e. in
a discrete context with a couple (mesh,solution) denoted (Hh,Wh) and iteratively through the following fixed point:
1.- compute state Wh on meshHh,
2.- compute sensor sh = s(Wh) and optimal metricMopt

inter(sh) = K(Hh(sh)),
3.- generate a new meshHh = HMopt

inter(sh) and go to 1, until convergence
in which the continuous Hessian of s is replaced by an approximate HessianHh(sh), evaluated by a patch-recovery

approximation, defined in.45

II.B. Goal-oriented multi-scale adaptation

The goal-oriented analysis relies on the minimization of the error committed on a scalar output functional j which we
simplify as follows:

j(W )− j(Wh) ≈ (
∂j

∂W
(W ),W −Wh) = (g,W −Wh). (8)

We recall in short the results of the analysis in.40 Introducing the adjoint state W ∗ = (A−1)∗g ≡ A−∗g, we have:

(g,Wh −W ) ≤
∫

Ωh

|∇W ∗| |F(W )−ΠhF(W )| dΩh

+

∫
Γh

|W ∗| |(F̄(W )−ΠhF̄(W )).n| dΓh. (9)

The boundary term is neglected.

j(u)− j(uh) ≈ (∇(A−∗g),ΠhF − F). (10)

The above right-hand side transforms in:

(∇(A−∗g),ΠhF − F) ≈ (1, trace(M−1/2∇(A−∗g) · |H(F(W ))|M−1/2)),

whereM is a metric field representing the current mesh. Then

Mopt
goal = arg min

|M|=N
trace(M−1/2 |∇(A−∗g)| · |H(F(W ))|M−1/2))

and |∇(A−∗g)| · |H(F(W ))| is a positive combination of symmetric matrices. Similarly to (7), we get:

Mopt
goal(W ) = K(|∇(A−∗g)| · |H(F(W ))|). (11)

This time, the optimal metric is not explicitly given by (11) since W is the solution of an EDP solved on the
continuous meshMopt

goal. In order to adapt the mesh, we have to discretise and converge the following loop:
1.- compute state Wh on meshHh,
2.- compute adjoint state W ∗h ,
3.- compute optimal metricMopt

goal(Wh),
4.- generate a new meshHh = HMopt

inter(s) and go to 1, until convergence.
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II.C. Norm-oriented adaptation

We are now interested by the minimization with respect to the metricM of a semi-norm of the deviation W −Wh.
This is examplified here by the usual L2 norm:

j(M) = ||W −WM||2L2(Ω). (12)

The stationarity condition writes:

j′(h).δM = (W −WM,
∂

∂M
(W −WM).δM). (13)

Let gopt be a good approximation of the error at optimum:

gopt ≈W −WMopt
(14)

then j′(M).δM is small when (gopt,
∂
∂M (W −WM).δM) is small. Reciprocally, if we find for some ḡ aM such

that:

(ḡ,
∂

∂M
(W −WM).δM) is small, (15)

ḡ = W −WM, (16)

then we have solved (13).
For satisfying (15), we minimise the functional (ḡ,W −WM). It is minimum forM =M with :

M(W ) = K(|∇(A−∗ḡ)| · |H(F(W ))|). (17)

In practice, as for the previous algorithms, we first discretise (17). Then the unknown gopt, together with the other
unknowns is iteratively advanced in the fixed point iteration:
1.- compute state Wh onHh,
2.- compute an approximation giter of W −Wh

3.- compute adjoint state W ∗ = A−∗giter,
4.- compute optimal metricM(Wh),
5.- generate a new meshHh = HM(Wh) and go to 1, until convergence.

The next section describes how to compute the approximation giter toW−Wh, which we naturally call a corrector.

III. Correctors for the Euler equations

In this section, we propose an approximate corrector answering to the criterion (14).

III.A. Finer-grid defect correction corrector for the PDE solution

According to (14) a correctorW ′h approximates the errorW−Wh between the exact PDE solution and its approximate
on a so-called current meshMh. The central question is the computational cost which we are ready to invest for the
evaluation of the corrector. A typical option is to bound the cost of evaluation of the corrector to the cost of evaluation
of Wh itself. For example we accept to obtain W ′h by solving a discrete system on the current mesh. This cost can be
further reduced by using coarser-grid evaluations, which we do not consider here.

Of course we also need that the corrector is accurate enough. The corrector needs be an usuable evaluation of the
approximation error. To fix the ideas, we could specify that the error for the corrected approximation W −Wh −W ′h
be two times smaller thanW −Wh. When the approximation ofW byWh is far from mesh convergence, probably we
have no chance for evaluating the accuracy of a corrector based on meshMh. Let us assume, at the contrary, that the
approximation onMh is in its asymptotic mesh convergence phase. Then this will be also true for a strictly two-times
finer embedding mesh Mh/2, and for our second-order accurate scheme applied to a smooth enough problem, we
would have:

Ψh(Wh) = 0 in V ′h, Ψh/2(Wh/2) = 0 in V ′h/2, ⇒ W −Wh/2 ≈
1

4
(W −Wh). (18)
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which suggests the following corrector:

4

3
(Wh/2 −Wh) ≈W −Wh.

Note that the following also holds:

4

3
(ΠhWh/2 −ΠhWh) ≈ ΠhW −Wh. (19)

The computational cost of Wh/2 is a few times larger than expected. We first linearise the finer-grid equation as
follows:

∂Ψh/2

∂W
(Wh)(Wh/2 −Wh) ≈ Ψh/2(Wh/2)−Ψh/2(Wh)

in which we use that Vh ⊂ Vh/2. The first term of the RHS sum is zero. Let Rh/2→h the transfer from Vh/2 to Vh
by the accumulation to coarse vertices weighted by barycentric coefficients. The fine-coarse linear defect-correction
system writes:

∂Ψh

∂W
(Wh)(W̄ ′h,LDC) ≈ −Rh/2→hΨh/2(Wh).

This is exactly the usual coarse-grid corrector used in linear multi-grid cycles. It has also been used in1 for building
accurate correctors. A nonlinear variant can be defined by avoiding the differentiation of the residual Ψ:

Ψh(Wh + W̄ ′h,DC) ≈ −Rh/2→hΨh/2(Wh).

The defect correctors W̄ ′h,LDC and W̄ ′h,DC are similar to ΠhW − wh and, according to (19) should be multiplied
by 4/3 and enriched by an approximation of the interpolation error.

W ′h,LDC =
4

3
W̄ ′h,LDC − (πhWh −Wh)

W ′h,DC =
4

3
W̄ ′h,DC − (πhWh −Wh)

(20)

where the πhWh −Wh is the previously introduced recovery-based approximate interpolation error.

Fin de la correction

Partie morte: Passer aux essais numériques
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CORRECTOR IN A LINEAR SETTING. In order to apply the previous analysis to the set of Euler equations, we use
the finite-volume/Galerkin equivalence.48 We do not mention boundary conditions that are expressed by boundary
integrals (“BI”). The numerical and continuous solutions of the Euler equations are given by the following equations:∫∫

φ divF(W ) + BI = 0 and
∫∫

φh divFh(Wh) + BIh = 0,

where the discrete fluxes are simply:
Fh(.) = ΠhF(Πh.).

To build the a posteriori estimate, we combine previous equations, the added last term is null:∫∫
φ div(F(W )−F(Wh)) + BI = −

∫∫
φ divF(Wh) +

∫∫
φh divFh(Wh) + BI

By using a Taylor expansion of F , we get:∫∫
φ div

∂F
∂W

δw = −
∫∫

φ divF(Wh) +

∫∫
φh divFh(Wh),

where δw is the implicit error δw = ΠhW −Wh By using the Green formula, we obtain:∫∫
φ div

∂F
∂W

δw = +

∫∫
F(Wh)∇φ−

∫∫
Fh(Wh)∇φh. (21)

In practice we take φh = 0, then we discretise. Note that BI terms remain. In contrast to the elliptic case, the RHS
will not be zero when φ is replaced by φh. To use this estimate, we assume we can recover fromWh a smooth solution
Rh(Wh) enjoying the following properties

1. Rh(Wh) is smooth,

2. Rh(Wh) interpolates Wh in the sense that ΠhRh(Wh) = Wh.

We can build a quadratic representation of Rh(Wh) from Wh. The proposed quadratic scheme uses P2 Lagrange test
functions in triangle K to reconstruct a quadratic representation of the solution on K. This interpolation requires the
solution nodal value at triangle vertices P0, P1 and P2 , and the solution at the triangle mid-edges. We denote by P3,
P4 and P5 the middle of edges ~e2, ~e0 and ~e1, respectively. We denote by (Wi)i=0,2 the nodal value of Wh and ∇Wi

the nodal gradient of Wh. The quadratic scheme is given by:

Rh(Wh)(P ) =

2∑
i=0

ψi(P )Wh(Pi) +

5∑
i=3

ψi(P )Rh(Wh)(Pi),

with: {
ψi(P ) = βi(P ) (2βi(P )− 1) for i = 0, ..., 2 ,

ψi(P ) = 4β[i](P )β[i+1](P ) for i = 3, ..., 5.

The mid-node values (Rh(Wh)(Pi))i=3,5 are recovered from the nodal gradients of vertices P0, P1, P2:

Rh(Wh)(P3) = 1
2 (W1 +W2) + 1

4 (∇W1 +∇W2) · P1P2,

Rh(Wh)(P4) = 1
2 (W0 +W2) + 1

4 (∇W2 +∇W0) · P2P0,

Rh(Wh)(P5) = 1
2 (W0 +W1) + 1

4 (∇W0 +∇W1) · P0P1.

With this scheme, we have Rh(Wh)(Pi) = Wi for the nodal values, and Rh is quadratic, such that properties 1. and
2. hold. Then the last term of (40) is still zero but can be used for building an kind of interpolation error:∫∫

φ div
∂F
∂W

δw ≈ +

∫∫
∇φh (F(Wh)−Fh(Wh)). (22)

To get the a priori estimate, we combine the two states equations, where the added last term is null:∫ ∫
φh div(Fh(Wh)−Fh(W )) + BIh = −

∫ ∫
φhdivFh(W ) +

∫ ∫
φhdivF(W ).
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In a similar way, by using a Taylor expansion and Green formula, we have:∫∫
φ div

∂Fh
∂W

(−δw) = +

∫∫
Fh(W )∇φh −

∫∫
F(W )∇φh. (23)

To derive the corrector equation, we just have to replace W by Wh:∫∫
φ div

∂Fh
∂W

(−δw) = +

∫∫
∇φh (Fh(Wh)−F(W )). (24)

We observe that (41) and (43) are close to each other.
Previous correctors are straightforward to implement when an adjoint solver is already integrated in the flow solver.

However, they have several weaknesses:

• There is no guarantee that the corrected solution Wh + δw will be physical,

• the approximation of the discrete fluxes Fh can be far the real numerical fluxes Φij.

In addition, it is also very complex to apply the numerical fluxes Φij to the recovered solution Rh(Wh). Indeed, as
the nodal values are the same, it is necessary to take into account the gradient variation (during the extrapolation) in
the different flux choices (fourth or sixth order dissipation). Another simpler strategy is used non linear correctors.

CORRECTOR IN A NON LINEAR SETTING. Instead of solving a linear equation to find the corrector, we build an
error equation that consists in adding a source term to reduce a defect. This residual is close to the second member
found in Equations (41) and (43). In the a priori setting, the defect is the residual of numerical flux applied to the
continuous solution. Indeed, optimally, we want

div(Fh(W )) = 0, (a priori) (25)

when W is the exact solution and Fh represents the numerical scheme. Consequently, the corrected solution Wc of
the current discrete solution Wh is found by solving the non linear equation:

div(Fh(Wc)) = −Sh(W ),

where Sh(W ) is the source term computed from the divergence of Fh(W ). In our approach W is replaced by the
smooth recovery Rh(Wh) and we use locally a finer mesh to take into account the nodal values at mid-edges. Sh(W )
is then approximated as:

Sh(W ) ≈ div(Fh/2(Rh(Wh))).

A transfer procedure is used to accumulateFh/2(Rh(Wh)) on the coarser mesh h. In contrast with the linear approach,
the only modification in the flow solver is to take into account a residual source term. The corrected solution is found
(instead of the implicit error) and the corrected solution is guarantee to be physical.

In the a posteriori setting, the defect is the gap between the continuous PDE with respect to the numerical solution.
Indeed, ideally, Wh should verify

div(F(Wh)) = 0, (a posteriori) (26)

meaning that the numerical solution solves exactly the continuous set of Euler equations. In this case, the (exact)
source term is the divergence of F(Wh). The continuous fluxes F are approximated on locally refined grids, so that
the source term becomes the divergence of Fh/2(Wh). The solution on the finer mesh is interpolation from the coarser
mesh and the source term computed on h/2 is accumulated back from the finer to the coarser mesh.

From a practical point of view, the finer grids are never generated as we can solve local problem to compute the
source terms. The flow solver is then used to inverse the error equation directly. The procedure to derive the corrected
solution is then:

Step 1.: Solve the flow problem to get the numerical solution Wh

Step 2.: Compute the source term on finer mesh −Sh(W ) or S(Wh).

Step 3.: From Wh, converge again the solution with the residual source term added.

To perform mesh adaptation, the corrector, i.e. the RHS of the adjoint equation is computed as Wc −Wh.
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IV. Formal error analysis within the continuous mesh framework

The norm oriented approach is based on previous developments on anisotropic (Hessian-based) and goal-oriented
mesh adaptation. In these two cases, the anisotropic mesh prescription (orientations and sizes) is given in a close form.
Each of them are tightly related to interpolation error: on the solution field for Hessian-based methods, and the Euler
fluxes for the goal-oriented approach. We first recall formally the derivation of these estimates in the continuous mesh
framework. These leads to the definition of two kernels (interpolation and goal oriented) providing the optimal mesh.
The norm oriented approach is just a combination of these kernels along with the derivation of a solution corrector. In
this section, we focus on controlling the implicit error Πhu− uh. Controlling the approximation error will consists in
controlling the implicit error (corrector) and interpolation error terms simultaneously as :

u− uh = u−Πhu + Πhu− uh.

Note that the implicit error can be seen as a point-wise error between the exact solution and the numerical one.
Knowing the numerical scheme and PDE at hand is then mandatory. In this section, we consider a linear (formal)
PDE.

IV.A. Continuous mesh framework formalism

We use in the sequel the continuous mesh framework to drive our analysis. In,37 we prove that any mesh can be
represented by a continuous Riemannian metric field M. The link between continuous mesh and discrete mesh is
based on the unit mesh concept.25 Given a Riemannian metric fieldM, a unit-mesh is a mesh having length computed
inM and volume computed inM close to one:

for all edges of e = AB, `M(e) =

∫ 1

0

√
tABM((1− t)A+ tB)ABdt ∈

[
1√
2
,
√

2

]
,

for all elements K, |K|M ≈
√

2

12
.

(27)

From a practical point of view, generating a anisotropic mesh with respect toM requires to use any anisotropic mesh
generators, see11, 15, 16, 21, 26, 33, 35, 41, 49, 54 in 3D. Conversely, given a mesh H, the following metric field is a continuous
representative ofH:

MP = exp

(∑
P∈K |K| ln(MK)∑

P∈K |K|

)
,

where P is a vertex of H andMK is the unique metric of element K, and |K| the volume of K. Consequently, if
uh denotes a discrete quantity computed on a given mesh, we use equivalently the notation uM, that represents the
same quantities represented on any unit mesh with respect toM. In the case of the interpolation error, there is a strict
equivalence between continuous and discrete interpolation error.38 The parametrization of a mesh byM instead of
h is advantageous for a priori analysis with anisotropic mesh. Indeed, there exist also quantities of interest as the
density, anisotropic ratios, differentiation that are well defined onM.

IV.B. Interpolation error

Let us consider a mesh parametrised by a metricM, according to the continuous mesh theory. The P 1 interpolation
error Πhu− u can be expressed in terms of second derivatives of u and of metricM:

Πhu− u ≈ trace(M− 1
2H(u)M− 1

2 ), (28)

where H(u) is the Hessian of u. Minimizing ‖Πhu − u‖L1 for on node provides the optimal interpolation-based
metric:

Mopt
inter(u) = det(|H(u)|) 1

3 |H(u)|,

where |H| is derived from H by taking the absolute values of the eigen-values. We denote by K1(u), the kernel
giving the optimal metric for the interpolation error on u in L1 norm. Note that replacing the optimal metric in the
L2 norm shows that second-order convergence is obtained for smooth contexts.38 We can also extend this approach to
non-smooth functions, see.20
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IV.C. Implicit error analysis

We are interested in computing the function u solution of the PDE:

Au = f

In the PDE discretisation process, we choose a mesh parametrized by h (or M more generally) and replace the
computation of function u by the computation of an array of real numbers uh, called the degrees of freedom of the
discrete solution:

uh ∈ RN ; Ahuh = fh. (29)

Before checking how our discrete solution is close to the continuous one, it is useful to build, by interpolation from
the degrees of freedom solutions of (29), an approximate function uh which should be close to the exact one:

uh = Rhuh.

Or to define an array Thu to be compared with the degrees of freedom uh, for example by choosing Th = R∗h. Two
classes of error analysis exist: either a priori or a posteriori.

In a posteriori analysis, we estimate u− uh in some functional norm by setting:

A(u− uh) = f −Auh ⇒ u− uh = A−1(f −Auh),

where f − Auh is the continuous residual. It is evident that the difficulty in computing A−1(f − Auh) is as large as
for computing the initial problem A−1f . In general, we shall try to replace A−1 by its discretisation A−1

h , loosing the
exactness of the estimate.

In a priori analysis, we write:

Ah(Thu− uh) = AhThu− fh ⇒ Thu− uh = A−1
h (AhThu− fh).

This is computable, knowing u, but the relation between Thu − uh and the error under study u − uh is less evident.
In the case of a finite-element type variational method, we shall be able to state the above a priori estimate in terms of
functions. Let V = H1(Ω) and V = V ∩ C0(Ω̄). Let Πh be the P 1 interpolation:

Πh : V → Πh(V ),

Πhv(Xi) = v(Xi) ∀ i, vertex, Πhv|T is affine ∀T, element.

We note that Vh = Πh(V ) = Πh(V) ⊂ V . Let us define:

Ah : V → V ′

(Ahv, w) = (Av,Πhw)

Where (, ) holds for (, )V×V ′ . Then the discretized system writes:

uh ∈ Vh and ∀vh ∈ Vh,
(Ahuh, vh) = (f, vh)

in which the following restriction of Ah is invertible:

Āh : Vh→̃(Vh)′ ; (Āh)−1 : (Vh)′→̃Vh

Observing that:
(Ahu, vh) = (f, vh),

we derive:

(Ah(Πhu− uh), vh) = (Ah(Πhu− u), vh) + (Ah(u− uh), vh) = (Ah(Πhu− u), vh).

We observe that Ah(Πhu− u) ∈ (Vh)′ and therefore:

Πhu− uh = (Āh)−1(Ah(Πhu− u)) (30)
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In the case of the elliptic model, we have:

a(Πhu− uh, ϕh) = a(Πhu− u, ϕh)

where
a(u, v) =

∫
Ω

∇u · ∇v dx.

Let us assume that we have a good approximation of the derivatives of u by a recovery procedure from uh. We can
derive an estimate for the gradient of Πhu− u, see:23

∇(Πhu− u) ≈


(
∂u
∂x

)2 ∂u
∂x

∂u
∂y

∂u
∂x

∂u
∂z

∂u
∂x

∂u
∂y

(
∂u
∂x

)2 ∂u
∂y

∂u
∂z

∂u
∂x

∂u
∂z

∂u
∂y

∂u
∂z

(
∂u
∂z

)2
 ≈ G(h, uh),

where G retains only derivatives of u, recovered from uh. This can help building a right hand side to (30) and get an
error approximate model.

Πhu− uh ≈ u′ such that

a(u′, ϕh) =

∫
Ω

G(h, uh).∇ϕhdx. (31)

Estimates (30) and (31) are the a priori counterparts of the a posteriori estimates of Becker-Rannacher9 used in
combination with an adjoint in Giles-Pierce.28

IV.D. Scalar output goal-oriented analysis

The goal-oriented analysis relies on the minimization of the error committed on a scalar output functional j which we
simplify as follows:

j(u)− j(uh) = (
∂j

∂u
(u),Πhu− uh) = (g,Πhu− uh), (32)

Then, using (30), we get:

j(u)− j(uh) ≈ (A∗hĀ
−∗
h g,Πhu− u). (33)

The above right-hand side transforms in:

(A∗hĀ
−∗
h g,Πhu− u) ≈ (1, trace(M−1/2A∗hĀ

−∗
h g|H(u)|M−1/2)),

whereM is a metric field representing the current mesh according to (27) and (28). To minimize (A∗hĀ
−∗
h g,Πhu−u),

we can consider its stationarity condition, obtained by differentiating it with respect toM. We assume that mesh is
fine enough, and the error term h−1/2 is an infinitely small, typically hα. Then its derivative with respect to mesh is a
O(hα−1), much larger than the variation of A∗hĀ

−∗
h g. We then neglect the latter variation, the optimal metric (mesh)

is then found by evaluating everything on the current (initial) mesh parametrized by h0:

Mopt
h0

= argminMtrace(M−1/2A∗h0
Ā−∗h0

g|H(u)|M−1/2)

Mopt
h0

= Kgoal(A∗h0
Ā−∗h0

g, u)

from which by converging a fixed point we get the solution where adjoints states and Hessian are recovered from the
optimal mesh parametrized by hopt:

Mopt
goal = Kgoal(A∗hoptlĀ

−∗
hopt

g, u).

This defines the second kernel.
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IV.E. Norm-oriented analysis

metric-based goal-oriented metric is used. The norm of the implicit error is then controlled.
We are interested by the minimization of the following expression with respect to the mesh h:

j(h) = ||Πhu− uh||2L2(Ω). (34)

The stationarity condition writes:

j′(h).δh = (Πhu− uh,
∂

∂h
(Πhu− uh).δh). (35)

Now:
∂

∂h
(Πhu− uh).δh =

∂

∂h
(Ā−1

h Ah).δh (Πhu− u) + Ā−1
h Ah

∂

∂h
(Πhu− u).δh (36)

Then a standard metric-based goal-oriented metric is used. The norm of the implicit error is then controlled.
We have to use again the fact that we consider that the error is an infinitely small, typically hα. Then its derivative

with respect to the mesh is a O(hα−1), much larger than the other terms. We write:

∂

∂h
(Πhu− uh).δh ≈ Ā−1

h Ah
∂

∂h
(Πhu− u).δh. (37)

Replacing Πhu− uh by A−1
h Ah(Πhu− u), we get

Mopt
norm = Kgoal(A∗hĀ−∗h Ā−1

h Ah(Πhu− u), u).

As for as the goal oriented approach, the optimal mesh is obtained by iterating the procedure. We consider a counter
α representing the current iteration and the current mesh, the algorithm is then as follows:

Step 1. : Solve the linearised error system:

Āh(α)u′ = Ah(α)(Πh(α)u− u), (38)

where Πhu− u is express ed in terms of metric and Hessian, as in (31).

Step 2. : Solve the adjoint system, where the second member is the corrector obtained in Step 1.:

Ā∗h(α)u
∗ = u′,

Step 3. : Compute the goal-oriented metric to derive the optimal mesh at step α:

M(α+1) = Kgoal(A∗h(α)u
∗, u),

We then iterate Steps 1-3 until we get a fixed point Mopt
norm = M(∞). It is then interesting to evaluate the

optimal functional, obtained by replacingMopt
norm into the norm-based functional j. Second-order accuracy is formally

predicted. Of course this does not rigorously apply to any choice of the initial norm in j. From a practical of view,
the additional cost from goal-oriented or multi-scale approaches is to solve an additional linear system (which is the
transpose of the adjoint one) with the computation of its second member (and estimate of the interpolation error).

REMARK. Note that it is possible to modify the right of side of Step 1. by considering a different error estimate.
Indeed, one disadvantage of the a priori analysis is that it neglects high-order terms in the local error. A way to avoid
this disadvantage is to replace in the square norm one of the error u′ by an a posteriori one u′post, e.g. the solution of:

(Āhu
′
post, vh) = (Auh − f, vh)

for any vh in Vh. We consider now how the RHS of this system

(R,ϕ) = (Auh − f, ϕ)

can be computed in the case of the continuous P1-by-element finite element approximation. It writes:

(Auh − f, vh) = (−f, vh) +
∑
ij

∫
ij

[∇uh · n]meas(ij) dσ

where the sum
∑
ij is computed for all the edges ij in 2D (all the faces ijk in 3D) of the mesh and where the bracket

[] hold for the jump of the quantity inside through the edge ij (resp. face ijk). Therefore this RHS can be introduced
directly in the error equation in order to get u′post and continue the norm-oriented mesh optimisation
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V. Numerical flow solver

In this section, we recall the man features of the flow solver. We restrict ourselves to the case of inviscid flows.
More details for solving RANS equations can be found in.46

V.A. Modeling equations

The compressible Euler equations for mass, momentum and energy conservation reads (with no source terms):

∂ρ

∂t
+∇ · (ρu) = 0 ,

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0,

∂(ρe)

∂t
+∇ · ((ρe+ p)u) = 0,

where ρ denotes the density, u the velocity, e the total energy per mass and p the pressure. This system can be rewritten
under vectorial form:

Wt + F1(W )x + F2(W )y + F3(W )z = 0,

where W is the nondimensionalized conservative variables vector:

W = (ρ, ρu, ρv, ρw, ρE)T

F(W ) = (F1(W ), F2(W ), F3(W )) are the convective (Euler) flux functions:

F1(W ) = (ρu, ρu2 + p, ρuv, ρuw, u(ρE + p))T

F2(W ) = (ρv, ρuv, ρv2 + p, ρvw, v(ρE + p))T

F3(W ) = (ρw, ρuw, ρvw, ρw2 + p, w(ρE + p))T .

V.B. Spatial discretization

The spatial discretization of the fluid equations is based on a vertex-centered finite element/finite volume formulation
on unstructured meshes. It combines a HLLC upwind schemes for computing the convective fluxes and the Galerkin
centered method for evaluating the viscous terms. Second order space accuracy is achieved through a piecewise
linear interpolation based on the Monotonic Upwind Scheme for Conservation Law (MUSCL) procedure which uses
a particular edge-based formulation with upwind elements. A specific slope limiter is employed to damp or eliminate
spurious oscillations that may occur in the vicinity of discontinuities.

V.B.1. Finite Volume discretization

Let H a mesh of domain Ω, the vertex-centered finite volume formulation consists in associating with each vertex Pi
of the mesh a control volume or finite volume cell, denoted Ci. Discretized domain Ωh can be written as the union of
the elements or the union of the finite volume cells:

Ωh =

NT⋃
i=1

Ki =

NS⋃
i=1

Ci .

In order to discretize accurately the flow equations on highly anisotropic meshes, the dual finite volume cells are
the containment sphere cells introduced in 2D by Barth6 and generalized to 3D by Dervieux30 instead of the classic
median cells. It consists in subdividing each tetrahedron into four hexahedra cell around each vertex. The hexahedron
cell vertices associated with vertex Pi are (i) the middle of the three edges issued from Pi, (ii) the containment circle
center of the three faces containing Pi, (iii) the containment sphere center of the tetrahedron and (iv) the considered
vertex Pi. The containment sphere cells of vertex Pi is the union of all its hexahedra cells. The containment sphere
center correspond the the sphere circumcenter if it falls inside the element.

The set of equations are integrated on the finite volume cell Ci following a finite volume formulation reads (using
the Green formula):

|Ci|
dWi

dt
+

∫
∂Ci

F(Wi) · ni dγ = B.T., (39)
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where Wi is the mean value of the solution W on the cell Ci, ni is the outer normal to the finite volume cell surface
∂Ci, F, are the convective terms and B.T. represents boundary conditions terms.

V.B.2. Discretization of the convective terms

The integration of convective fluxes F of Equation (39) is done by decomposing the cell boundary in many facets
∂Cij : ∫

∂Ci

F(Wi) · ni dγ =
∑

Pj∈V(Pi)

F|∂Cij ·
∫
∂Cij

ni dγ ,

where V(Pi) is the set of all neighboring vertices linked by an edge to Pi and F|∂Cij represents the constant value of
F(W ) at interface ∂Cij . The flow is calculated with a numerical flux function, denoted Φij :

Φij = Φij(Wi,Wj ,nij) = F|∂Cij ·
∫
∂Cij

ni dγ ,

where nij =

∫
∂Cij

ni dγ. The numerical flux function approximates the hyperbolic terms on the common boundary

∂Cij . We notice that the computation of the convective fluxes is performed mono-dimensionally in the direction
normal to the boundary of the finite volume cell. Therefore, the numerical calculation of the flux function Φij at the
interface ∂Cij is achieved by the resolution of a one-dimensional Riemann problem in the direction of the normal nij
by means of an approximate Riemann solver. In this work, the HLLC approximate Riemann solver is used for the
mean flow - more details can be found7 - and linear upwind advection is used for the turbulent variable convection.

HLLC APPROXIMATE RIEMANN SOLVER. The idea of the HLLC flow solver is to consider locally a simplified
Riemann problem with two intermediate states depending on the local left and right states. The simplified solution
to the Riemann problem consists of a contact wave with a velocity SM and two acoustic waves, which may be either
shocks or expansion fans. The acoustic waves have the smallest and the largest velocities (SL and SR, respectively) of
all the waves present in the exact solution. If SL > 0 then the flow is supersonic from left to right and the upwind flux
is simply defined from F(Wl) whereWl is the state to the left of the discontinuity. Similarly, if SR < 0 then the flow is
supersonic from right to left and the flux is defined from F(Wr) where Wr is the state to the right of the discontinuity.
In the more difficult subsonic case when SL < 0 < SR we have to calculate F(W ∗l ) or F(W ∗r ). Consequently, the
HLLC flux is given by:

Φhllclr (Wl,Wr,nlr) =


F(Wl) · nlr if SL > 0

F(W ∗l ) · nlr if SL ≤ 0 < SM

F(W ∗r ) · nlr if SM ≤ 0 ≤ SR
F(Wr) · nlr if SR < 0

Now, let us specify how W ∗l and W ∗r are evaluated. We denote by η = u · n. Assuming that η∗ = η∗l = η∗r = SM ,
the following evaluations are proposed7 (the subscript l or r are omitted for clarity):

W ∗ =
1

S − SM

 ρ (S − η)

ρu (S − η) + (p∗ − p)n
ρE (S − η) + p∗SM − pη

 where p∗ = ρ (S − η)(SM − η) + p .

A key feature of this solver is in the definition of the three waves velocity. For the contact wave we consider:

SM =
ρrηr(SR − ηr)− ρlηl(SL − ηl) + pl − pr

ρr(SR − ηr)− ρl(SL − ηl)
,

and the acoustic wave speeds based on Roe average:

SL = min(ηl − cl, η̃ − c̃) and SR = max(ηr + cr, η̃ + c̃) .

With such waves velocities, the HLLC Riemann solver has the following properties. It automatically (i) satisfies the
entropy inequality, (ii) resolves isolated contacts exactly, (iii) resolves isolated shocks exactly, (iv) preserves positivity.
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HIGH-ORDER ACCURATE VERSION. The MUSCL type reconstruction method has been designed to increase the
order of accuracy of the scheme.34 The idea is to use extrapolated values Wij and Wji of W at the interface ∂Cij to
evaluate the flux. The following approximation is performed:

Φij = Φij(Wij ,Wji,nij) ,

with Wij and Wji which are linearly interpolated as:

Wij = Wi +
1

2
(∇W )ij ·

−−→
PiPj and Wji = Wj +

1

2
(∇W )ji ·

−−→
PjPi ,

where, in contrast to the original MUSCL approach, the approximate ”slopes” (∇W )ij and (∇W )ji are defined for
any edge and obtained using a combination of centered, upwind and nodal gradients.

The centered gradient, which is related to edge PiPj , is defined as:

(∇W )Cij ·
−−→
PiPj = Wj −Wi .

Upwind and downwind gradients, which are also related to edge PiPj , are computed according to the definition of
upstream and downstream tetrahedra of edge PiPj . These tetrahedra are respectively denoted Kij and Kji. Kij (resp.
Kji) is the unique tetrahedron of the ball of Pi (resp. Pj) the opposite face of which is crossed by the line defined by
the edge PiPj . Upwind and downwind gradients are then defined for vertices Pi and Pj as:

(∇W )Uij = (∇W )|Kij and (∇W )Dij = (∇W )|Kji .

where (∇W )|K =
∑
P∈KWP∇φP |K is the P1-Galerkin gradient on tetrahedron K. Parametrized nodal gradients

are built by introducing the β-scheme:

(∇W )ij = (1− β)(∇W )Cij + β (∇W )Uij

(∇W )ji = (1− β)(∇W )Cij + β (∇W )Dij ,

where β ∈ [0, 1] is a parameter controlling the amount of upwinding. For instance, the scheme is centered for β = 0
and fully upwind for β = 1.

NUMERICAL DISSIPATION OF FOURTH-ORDER: V4-SCHEME. The most accurate β-scheme is obtained for β =
1/3. Indeed, it can be demonstrated that this scheme is third-order for the two-dimensional linear advection on struc-
tured triangular meshes. On unstructured meshes, a second-order scheme with a fourth-order numerical dissipation is
obtained. These high-order gradients are given by:

(∇W )V 4
ij =

2

3
(∇W )Cij +

1

3
(∇W )Uij

(∇W )V 4
ji =

2

3
(∇W )Cji +

1

3
(∇W )Dij .

NUMERICAL DISSIPATION OF SIXTH-ORDER: V6-SCHEME. An even less dissipative scheme has been proposed.19

It is a more complex linear combination of gradients using centered, upwind and nodal P1-Galerkin gradients. The
nodal P1-Galerkin gradient of Pi is related to cell Ci and is computed by averaging the gradients of all the tetrahedra
containing vertex Pi:

(∇W )Pi =
1

4 |Ci|
∑
K∈Ci

|K|(∇W )|K .

A sixth-order dissipation scheme is then obtained by considering the following high-order gradient:

(∇W )V 6
ij = (∇W )V 4

ij −
1

30

(
(∇W )Uij − 2 (∇W )Cij + (∇W )Dij

)
− 2

15

(
(∇W )Mi − 2 (∇W )Pi + (∇W )Pj

)
(∇W )V 6

ji = (∇W )V 4
ji −

1

30

(
(∇W )Dij − 2 (∇W )Cij + (∇W )Uij

)
− 2

15

(
(∇W )Mj − 2 (∇W )Pj + (∇W )Pi

)
,

where (∇W )Mi,j
is the gradient at the points Mi,j intersection of the line defined by PiPj and upwind-downwind

tetrahedra. These gradients are computed by linear interpolation of the nodal gradients of faces containing Mi,j .
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DERVIEUX LIMITER. The previous MUSCL schemes are not monotone. Therefore, limiting functions must be
coupled with the previous high-order gradient evaluations to guarantee the TVD property of the scheme. The gradient
is substituted by a limited gradient denoted (∇W )limij . Here, we consider the three-entries limiter introduced by
Dervieux which is a generalization of the Superbee limiter:18

if uv ≤ 0 then
Lim(u, v, w) = 0

else
Lim(u, v, w) = Sign(u)min(2 |u|, 2 |v|, |w|) ,

and we use: Lim((∇W )Cij , (∇W )Dij , (∇W )HOij ) where (∇W )HOij is even (∇W )V 4
ij or (∇W )V 6

ij .

V.C. Boundary conditions

For presented flow simulations, three boundary conditions are required. Slip boundary conditions are imposed for
bodies when the flow is considered inviscid or for symmetry. For viscous flow, no slip boundary conditions are
considered for bodies. And finally, we used Steger-Warming flux to set up free-stream (external flow) conditions.

SLIP CONDITION For this boundary condition we impose weakly u·n = 0, which is done by imposing the following
boundary flux:

Φslip(Wi, T ) =
∑
T3Pi

∫
∂Ci∩T

Fslip(Wi) · nT dγ with Fslip(Wi) · nT = (0, pi nT , 0)t .

where T are boundary faces with normals nT .

NO SLIP CONDITION. Adiabatic conditions are considered, therefore only a null velocity is imposed strongly for
this boundary condition: u = 0.

FREE-STREAM CONDITION. This condition imposes a free-stream uniform flow from the infinite. It applies when
we have a boundary Γ∞ for which the infinite constant state W∞ is prescribed:

W∞ = (ρ∞, (ρu)∞, (ρE)∞)
t and ν̃farfield ∈ [3ν∞ , 5ν∞] .

This state enables upwind fluxes at the infinite to be computed. The considered boundary fluxes are built from a
decomposition following the characteristics values. We consider the Steger-Warming flux which is completely upwind
on solution Wi:

Φ∞(Wi, T ) = A+(Wi,nT)Wi +A−(Wi,nT)W∞ where A+ =
|A|+A

2
and A− =

|A| −A
2

.

V.D. Time integration

V.D.1. Implicit scheme

For an explicit time discretization, the semi-discretized system reads:

|Ci|
δtni

(
Wn+1
i −Wn

i

)
= Ri(W

n)

where Ri(W
n) = −

∑
j∈V(i)

Φhllc(W
n
i ,W

n
j ,nij) −

∑
T3Pi

Φbc,T (Wn
i ,nT ). For implicit time discretization, we have :

|Ci|
δtni

(
Wn+1
i −Wn

i

)
= Ri(W

n+1)

which is linearized as: (
|Ci|
δtni

Id −
∂Ri
∂W

(Wn)

)(
Wn+1
i −Wn

i

)
= Ri(W

n)
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where ∂Ri

∂W
(Wn) contributes the ith line of the matrix and the following linearization have been done (with the notation

δW = Wn+1 −Wn):

Φhllc(W
n+1
i ,Wn+1

j ,nij) = Φhllc(W
n
i ,W

n
j ,nij) +

Φhllc

∂Wi
(Wn

i ,W
n
j ,nij)δWi +

Φhllc

∂Wj
(Wn

i ,W
n
j ,nij)δWj

Φbc,T (Wn+1
i ,nT ) = Φbc,T (Wn

i ,nT ) +
Φbc,T

∂Wi
(Wn

i ,nT )δWi .

Terms ∂Φ

∂Wi
and

∂Φ

∂Wi
contribute to the matrix diagonal block and extra-diagonal block, respectively, and terms Φ

contributes to the right-hand side.

We then rewrite the linearized system in compact form:

An δWn = Rn

where An =
|C|
δtn

I− ∂Rn

∂W
and δWn = Wn+1 −Wn .

V.D.2. Newton’s method

To solve the non-linear system, we follow the approach based on Lower-Upper Symmetric Gauss-Seidel (LU-SGS)
implicit solver initially introduced by Jameson32 and fully developed by Sharov et al. and Luo et al.43, 44, 52, 53 The
Newton’s method can be either the LU-SGS approximate factorization or the SGS relaxation or the GMRES method
with LUSGS or SGS as preconditioner. The LU-SGS and SGS are very attractive because they use an edge-based data
structure which can be efficiently parallelized with p-threads.4, 52 From our experience, we have made the following -
crucial - choices to solve the compressible Euler equations.

Converging the Newton’s method is important for the global convergence of the Euler non-linear problem. Hence,
an iterative method is required such as SGS or GMRES+LUSGS or GMRES+SGSa. Usually, the Newton’s method
iterates until the residual of the linear system is reduced by two orders of magnitude: 0.01.

The choice of the renumbering also impacts strongly the convergence of the non-linear system. While Hilbert-type
(space filling curve) renumbering is very efficient for cache misses and memory contention,4, 52 Breadth-first search
renumbering proves to be more effective for the convergence of the implicit method and the overall efficiency.

Luo et al.43, 44, 52 proposed to use a simplified flux function - a Rusanov approximate Riemann solver for the
convective terms and the operator spectral radius for the viscous terms - to compute Jacobians while keeping the
complex flux function for the right-hand side term. But, we observed that this modification slow down the convergence
of the whole process. We found very advantageous to fully differentiate the HLLC approximate Riemann solver,8 the
FEM viscous terms and the Spalart-Allmaras source terms.3

To achieve high efficiency, automation and robustness in the resolution of the non-linear system of algebraic
equations to steady-state, it is mandatory to have a clever strategy to specify the time step. This is done by coupling
local under-relaxation coefficient and local CFL, see Section D 4.

In this work, we have considered the symmetric Gauss-Seidel (SGS) relaxation. This linear system can be re-
written:

(D + L)D−1(D + U) δWn = Rn + (LD−1U) δWn

The following approximate system is used:

(D + L)D−1(D + U) δWn = Rn .

Matrix (D+L)D−1(D+U) can inverted in two sweeps which correspond to the LU-SGS approximate factorization:

Forward sweep: (D + L) δW∗ = R

Backward sweep: (D + U) δW = DδW∗ .

This sweeps can be written point wise:

δW ∗i = D−1
ii

(
Ri −

∑
j∈L(i)

LijδW
∗
j

)
δWi = δW ∗i −D−1

ii

∑
j∈U(i)

UijδW
∗
j .

aIn comparison, the LU-SGS method works well for the compressible Euler equation
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where L(i) (resp. U(i)) is the set of vertices with an index lower (resp. upper) that i. The lower and upper parts can
be stored or not (i.e., matrix-free) as choice between efficiency or memory requirements.

In the SGS relaxation, we first zero the unknown: δW 0 = 0. Then, kmax sub-iterations are made using forward
and backward sweeps:

(D + L) δWk+1/2 = R−U Wk

(D + U) δWk+1 = R− L Wk+1/2 .

or rewritten point wise:

δW
k+1/2
i = D−1

ii

(
Ri −

∑
j∈L(i)

LijδW
k+1/2
j −

∑
j∈U(i)

UijδW
k
j

)
δW k+1

i = D−1
ii

(
Ri −

∑
j∈U(i)

UijδW
k+1
j −

∑
j∈L(i)

LijδW
k+1/2
j

)
.

For one sub-iteration, the SGS method is equivalent to the LU-SGS method.

V.D.3. Time step computation

The local time step is computed at each vertex:

δt = CFL
h2

h (c+ ‖u‖)
,

where h represents the minimal altitude of the cell of the vertex.

V.D.4. CFL Law

Many CFL laws exist in the literature - linear, geometric, residual based, ... - but these laws generally require param-
eters that are difficult to establish optimally because they depend on the considered flow, the geometry and the size of
the mesh. In other words, they dependent too much user’s data. But, they are mandatory to achieve fast convergence
in solving non-linear equations.

To avoid this issue, Luke et al. proposed a new approach42 based on bounding the primitive variables, ρ, p and
T , variations at each time step. More precisely, initially we allowed the maximal time step at each vertex, then this
local time step is truncated such that the change in ρ, p and T are below a user given percentage η. But, the change in
primitive variables during a given interval of time has to be estimated. A way to accomplish this is to solve an explicit
time-integration step to describe a functional relationship between time and primitive variable. Notice that it is done
before assembling the matrix and the truncated local time step is used to compute the mass matrix.

This method achieves a maximal efficiency as each vertex is progressing at its own optimal time step. But, that
choice is made from an estimation before the linear system resolution, thus there is no guarantee on the convergence
of the Newton’s method.

Another attractive approach has been proposed by Burgess and Glasby12 which couples under-relaxation coeffi-
cient and dynamic CFL. Here, the solution is analyzed at each step of the Newton’s method (after solving the linear
system) and before updating the solution. First, the change in primitive variables, ρ and p, is again controlled by a user
given percentage η and defines a under-relaxation coefficient ωn at each step of the process. This global coefficient
is then applied to the solution evolution: Wn+1 = Wn + ωnδW . Then, the CFL value is updated depending on that
under-relaxation coefficient:

CFLn+1 =


0.1CFLn if ωn < 0.1

CFLn if 0.1 ≤ ωn < 1

αCFLn + β if ωn = 1

where we choose α = 1 and β = 1 for a linear increase or α = 2 and β = 0 for a geometric increase. This adaptive
CFL, thus time step, is attractive because it is based on the behavior of the Newton’s method. To improve even more
the robustness of the method, they propose to set the solution update to zero when the value of ωn is less than 0.1, i.e.,
ωn = 0.
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This approach is extremely robust because if the Newton’s method diverges, the current step is cancelled and the
time step, via the CFL, is automatically reduced. But the considered criterium is global and hence one bad vertex in
the mesh can kill the overall efficiency by not allowing the CFL to grow.

In Wolf, we consider an hybrid method having the efficiency of the first method and the robustness of the second
one. We proceed exactly like the second approach but the under-relaxation coefficient is set locally, i.e., vertex-wise,
and each vertex is supplied with its own CFL coefficient which evolves with respect to its own under-relaxation
coefficient. Thus, we have a local time step and a local CFL for each vertex.

VI. Correctors for the Euler equations

In this section, we first derive the linear error equation corresponding to (38) in the case of the Euler equations.
We then turn this error model into a non linear error equation.

CORRECTOR IN A LINEAR SETTING. In order to apply the previous analysis to the set of Euler equations, we use
the finite-volume/Galerkin equivalence.48 We do not mention boundary conditions that are expressed by boundary
integrals (“BI”). The numerical and continuous solutions of the Euler equations are given by the following equations:∫∫

φ divF(W ) + BI = 0 and
∫∫

φh divFh(Wh) + BIh = 0,

where the discrete fluxes are simply:
Fh(.) = ΠhF(Πh.).

To build the a posteriori estimate, we combine previous equations, the added last term is null:∫∫
φ div(F(W )−F(Wh)) + BI = −

∫∫
φ divF(Wh) +

∫∫
φh divFh(Wh) + BI

By using a Taylor expansion of F , we get:∫∫
φ div

∂F
∂W

δw = −
∫∫

φ divF(Wh) +

∫∫
φh divFh(Wh),

where δw is the implicit error δw = ΠhW −Wh By using the Green formula, we obtain:∫∫
φ div

∂F
∂W

δw = +

∫∫
F(Wh)∇φ−

∫∫
Fh(Wh)∇φh. (40)

In practice we take φh = 0, then we discretise. Note that BI terms remain. In contrast to the elliptic case, the RHS
will not be zero when φ is replaced by φh. To use this estimate, we assume we can recover fromWh a smooth solution
Rh(Wh) enjoying the following properties

1. Rh(Wh) is smooth,

2. Rh(Wh) interpolates Wh in the sense that ΠhRh(Wh) = Wh.

We can build a quadratic representation of Rh(Wh) from Wh. The proposed quadratic scheme uses P2 Lagrange test
functions in triangle K to reconstruct a quadratic representation of the solution on K. This interpolation requires the
solution nodal value at triangle vertices P0, P1 and P2 , and the solution at the triangle mid-edges. We denote by P3,
P4 and P5 the middle of edges ~e2, ~e0 and ~e1, respectively. We denote by (Wi)i=0,2 the nodal value of Wh and ∇Wi

the nodal gradient of Wh. The quadratic scheme is given by:

Rh(Wh)(P ) =

2∑
i=0

ψi(P )Wh(Pi) +

5∑
i=3

ψi(P )Rh(Wh)(Pi),

with: {
ψi(P ) = βi(P ) (2βi(P )− 1) for i = 0, ..., 2 ,

ψi(P ) = 4β[i](P )β[i+1](P ) for i = 3, ..., 5.
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The mid-node values (Rh(Wh)(Pi))i=3,5 are recovered from the nodal gradients of vertices P0, P1, P2:

Rh(Wh)(P3) = 1
2 (W1 +W2) + 1

4 (∇W1 +∇W2) · P1P2,

Rh(Wh)(P4) = 1
2 (W0 +W2) + 1

4 (∇W2 +∇W0) · P2P0,

Rh(Wh)(P5) = 1
2 (W0 +W1) + 1

4 (∇W0 +∇W1) · P0P1.

With this scheme, we have Rh(Wh)(Pi) = Wi for the nodal values, and Rh is quadratic, such that properties 1. and
2. hold. Then the last term of (40) is still zero but can be used for building an kind of interpolation error:∫∫

φ div
∂F
∂W

δw ≈ +

∫∫
∇φh (F(Wh)−Fh(Wh)). (41)

To get the a priori estimate, we combine the two states equations, where the added last term is null:∫ ∫
φh div(Fh(Wh)−Fh(W )) + BIh = −

∫ ∫
φhdivFh(W ) +

∫ ∫
φhdivF(W ).

In a similar way, by using a Taylor expansion and Green formula, we have:∫∫
φ div

∂Fh
∂W

(−δw) = +

∫∫
Fh(W )∇φh −

∫∫
F(W )∇φh. (42)

To derive the corrector equation, we just have to replace W by Wh:∫∫
φ div

∂Fh
∂W

(−δw) = +

∫∫
∇φh (Fh(Wh)−F(W )). (43)

We observe that (41) and (43) are close to each other.
Previous correctors are straightforward to implement when an adjoint solver is already integrated in the flow solver.

However, they have several weaknesses:

• There is no guarantee that the corrected solution Wh + δw will be physical,

• the approximation of the discrete fluxes Fh can be far the real numerical fluxes Φij.

In addition, it is also very complex to apply the numerical fluxes Φij to the recovered solution Rh(Wh). Indeed, as
the nodal values are the same, it is necessary to take into account the gradient variation (during the extrapolation) in
the different flux choices (fourth or sixth order dissipation). Another simpler strategy is used non linear correctors.

CORRECTOR IN A NON LINEAR SETTING. Instead of solving a linear equation to find the corrector, we build an
error equation that consists in adding a source term to reduce a defect. This residual is close to the second member
found in Equations (41) and (43). In the a priori setting, the defect is the residual of numerical flux applied to the
continuous solution. Indeed, optimally, we want

div(Fh(W )) = 0, (a priori) (44)

when W is the exact solution and Fh represents the numerical scheme. Consequently, the corrected solution Wc of
the current discrete solution Wh is found by solving the non linear equation:

div(Fh(Wc)) = −Sh(W ),

where Sh(W ) is the source term computed from the divergence of Fh(W ). In our approach W is replaced by the
smooth recovery Rh(Wh) and we use locally a finer mesh to take into account the nodal values at mid-edges. Sh(W )
is then approximated as:

Sh(W ) ≈ div(Fh/2(Rh(Wh))).

A transfer procedure is used to accumulateFh/2(Rh(Wh)) on the coarser mesh h. In contrast with the linear approach,
the only modification in the flow solver is to take into account a residual source term. The corrected solution is found
(instead of the implicit error) and the corrected solution is guarantee to be physical.
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In the a posteriori setting, the defect is the gap between the continuous PDE with respect to the numerical solution.
Indeed, ideally, Wh should verify

div(F(Wh)) = 0, (a posteriori) (45)

meaning that the numerical solution solves exactly the continuous set of Euler equations. In this case, the (exact)
source term is the divergence of F(Wh). The continuous fluxes F are approximated on locally refined grids, so that
the source term becomes the divergence of Fh/2(Wh). The solution on the finer mesh is interpolation from the coarser
mesh and the source term computed on h/2 is accumulated back from the finer to the coarser mesh.

From a practical point of view, the finer grids are never generated as we can solve local problem to compute the
source terms. The flow solver is then used to inverse the error equation directly. The procedure to derive the corrected
solution is then:

Step 1.: Solve the flow problem to get the numerical solution Wh

Step 2.: Compute the source term on finer mesh −Sh(W ) or S(Wh).

Step 3.: From Wh, converge again the solution with the residual source term added.

To perform mesh adaptation, then the second member of the adjoint equation is Wc −Wh. Then a standard metric-
based goal-oriented metric is used. The norm of the implicit error is then controlled.

Fin de partie morte

VII. Numerical experiments

In this section, we focus on the validation of the correctors. We only consider the a posteriori corrector. In
indeed, the a priori corrector is more delicate to used practically, especially with flows with shocks. If a limiter is
used to recover Rh(Wh), the recover solution may equal the the initial solution. On the contrary, with the a posteriori
corrector, only the continuous flux is approximated on a locally finer mesh while the solution is considered linearly
interpolated.

SUBSONIC BUMP EXAMPLE. We consider the extruded bump geometryb, see Figure 1 with an inflow at Mach 0.3.
We consider a sequence of uniform meshes and we compare the lift and drag computed from the initial solution and the
corrected flow field. As the corrector is on the flow field, all the functional of interest can be corrected simultaneously.
For the lift, we also observe that the corrected lift converges at a higher rates that the uncorrected version, see Figure 2.
For each size of mesh, the corrected lift is 2 to 4 times smaller with the corrected flow field.

Conclusion

A first step in combining into a single formalism mesh adaptation and solution correction strategies is given.
It is based on a priori or a posteriori analysis of the different component of the error arising when discretizing a
PDE: interpolation error, approximation error and implicit error. The interpolation is completely controlled by the the
derivatives of the order of the scheme. For implicit error for the Euler equations, an interpolation of the Euler fluxes is
weighted by the gradient of the adjoint state with respect to the observation functional. The optimal metric is deduced

bfrom http://turbmodels.larc.nasa.gov/bump.html
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Figure 1. 3D bump geometry (left) and density flow field (right).
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Figure 2. 3D bump error on drag (top left), error on lift (top right), computed lift (bottom lift), error to the lift target without and with corrections (bottom
right). Plain black line are uncorrected values while plain red lines are corrected values.
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from the interpolation kernel with a sum of weighted Hessian. Finally, for the norm-oriented functional, a bi-adjoint
strategy is used in order to derive a corrector term. It is then used for any sub-sequent functionals and by using the
traditional goal-oriented strategy.
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