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Introduction

Au = f

We want to combine two ideas:
Multigrid methods and Mesh adaptation
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Multigrid methods

Historic

Dates back to sixties (Bakhvalov, Fedorenko).
Well established theory (Hackbusch, 1985)
Full-Multigrid Method (FMG):
Soon identifies as one of the first O(N) solution algorithm.
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I.Multigrid methods

Theory

MG is iterative.

2G:
After advancing the equation by means of a smoother S (for
exemple, Jacobi : S = diag(A)−1(diag(A)− A)) on the considered
grid, we transfer, with a restriction R, the residual on a coarser
mesh and we compute there a correction which will be retransfered
on the fine mesh with a prolongation P and applied on the fine
grid iterate.
Extension to MG via recursion.
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I. Multigrid methods
Properties of multigrids

MG need two main assumptions:
- smoothing property:
There are a constant CS and a functional η(ν) independent of
mesh size h (of the finest mesh) such that ||ASν || ≤ CSh−2mη(ν)
and η(ν) −→

ν→+∞
0

with 2m =PDE equation order
- approximation property:
There is a constant CA independent of h such that
||A−1 − PĀ−1R|| ≤ CAh2m with P and R the transfer operators.

Then ||ukcycle

h − uh|| < ρk
cycle , ρ not depending on mesh size.

Failure of MG

MG assumes a strong smoothness of equation and of solution.
Otherwise, singular modes slow down the iteration convergence.
Possible cure: use of MG as preconditionner of a quasi-Newton
iteration (GMRES).
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I. Multigrid methods

Full-multigrid method

The FMG algorithm applies successively MG to a sequence of
meshes. We begin on a coarse mesh, then we transfer the
computed solution on a finer mesh, etc...

Multigrid cycles are stopped when algorithmic error ||ukcycle

h − u||
is less than approximation error ||uh − u||.
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I. Multigrid methods

Full-multigrid method

FMG needs smoothing and approximation properties and an
approximation convergence property:
∀iphase > 0, ||uiphase+1 − Puiphase || ≤ C1(hiphase+1)α, α accurary order.

Then ||ukcycle

h − u|| < (1 + ε)||u − uh||, kcycle independent of h (*)
And then, FMG algorithm has a complexity of O(N), with N the
number of vertices of the finest grid.

Failure of FMG

Approximation convergence property is not always true, so
iterative convergence (*) should be controlled.
- Many works based on a priori CV (Arioli, 2004):||uh − u|| ≤ Kh2.
- Another idea is use of a posteriori estimators.
Convergence property does not hold for coarse meshes.
Potential cure: mesh adaptation.
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I. Multigrid methods
Experiment with FMG: Tatebe test case

On each phase, we solve the equation on the finest mesh of the
phase using the GMRES method.
Multigrids are used as the preconditionner of GMRES (Tatebe,
1993).
The smoothing is done with ten Jacobi sweeps (only passing from
fine to coarse).
The transfers between the meshes are done with interpolation (for
a transfer from a coarse mesh to a fine mesh) and accumulation
(for a transfer from a fine mesh to a coarse mesh).

Tatebe case:
−div( 1

ρ∇u) = rhs
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I. Multigrid methods

Results

10 cycles per phase

Converged solution, solution for 10 cycles per phase and difference
between the two solutions.

|min(u)| ≈ 1.1. The approximation is wrong by 1.1% and deviation
between FMG and converged is about the same order.
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II. Hessian-based mesh adaptation

Continuous mesh

Metric M: M(x) a matrix ∀x ∈ Ω.

Number of vertices: C(M) =

∫
Ω

√
det(M(x)) dx

Defining a Riemannian distance between two points:

dist(a,b) = lengthM(ab) =

∫ 1

0

√
tabM(a + θab)ab dθ

HM =unit mesh for M ⇔ ∀ edge e ∈ HM, lengthM(e) ≈ 1
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II. Hessian-based mesh adaptation

Building the metric

An approximation uh of u, computed on a given mesh. Huh
the

Hessian.
hi (x) = (λi (x))−1/2, with (λi (x))i=1,dim eigenvalues of Huh

(x).
(vi (x))i=1,dim the eigenvectors of Huh

(x).
Minimizing the error

εM = ||u − Πhu|| ≈
∫

Ω

N∑
i=1

hi (x)2(x)|tvi (x)Huh
(x)vi (x)| dx

under the constraint: N =
∫

Ω

√
det(ML1(x)) dx.

The optimal metric field ML1(x) is given by:

ML1(x) = DLpdet(|Huh
(x)|)

−1
5 |Huh

(x)|

where DL1 = N
2
3 (

∫
Ω
det(|Huh

(x)|)
2
5 dx)

−2
3 .

Creation of a unit mesh for this metric.
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II. Hessian-based mesh adaptation

Fixed-point mesh adaptation loop

We apply the Hessian-based adaptation until we find the mesh
which is the best for the solving of this equation, the optimal mesh:
1- compute the PDE approximate solution on current mesh
2- compute approximate Hessian and optimal metric
3- build new mesh according to the metric
4- go to 1.
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III. Full-multigrid anisotropic adaptive algorithm

We use FMG algorithm but, for each FMG phase, we apply the
above mesh adaptation loop. Inside it, solution is obtained by MG
cycling. Between phases, the number of nodes is increased in the
optimal metric.
Adaptation carries a better
convergence property.
Adaptive FMG should have a
complexity O(N).
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IV. Test cases

Tatebe test case

This test case is symmetric. After convergence, the difference
between the maximum and the minimum must be equal to 0. We
observe this difference decrease more quickly with adaptation.
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IV. Test cases

A stiff layer case

We observe the minimun tends to a limit value around 1.25 more
quickly achieved with adaptation.
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Conclusion

Synthesis

MG combined with new mesh adaptation technology.

Introducing this more complex algorithm brings
- a higher safety in the accuracy of results and
- a better control of computational cost:

N = ε−
dim
α for obtaining a prescribed error ε.

Prospects

Convergence control of MG.

Convergence control of the adaptation loop.

A posteriori error estimator and corrector : uh ± δuh.
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