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Abstract

A new multirate scheme based on control volume agglomeration is proposed for the solu-
tion of the compressible Navier-Stokes equations possibly equipped with turbulence models.
The method relies on a prediction step where large time steps are performed with an eval-
uation of the �uxes on macro-cells for the smaller elements for stability purpose, and on a
correction step in which small time steps are employed only for the smaller elements.

Keywords: Multirate time advancing, volume agglomeration, explicit scheme, unstructured
grid, blu� body �ow, compressible Navier-Stokes equations.

1 Introduction

A frequent con�guration in mesh adaptation combines an explicit time advancing scheme
for accuracy purpose and a computational grid with a very small portion of much smaller
elements than in the remaining mesh. Examples of such situations are isolated traveling
shock and large eddy simulation of high Reynolds number �ows around blu� bodies where
very thin boundary layers and vortices of much more important size need to be captured.
For such con�gurations, explicit time advancing schemes with global time stepping are too
costly. In order to overcome this problem, the multirate time stepping approach represents
an interesting alternative. The objective of such schemes, which allow to use di�erent time
steps in the computational domain, is not to penalize the advancement in time of unsteady
solutions through the use of small global time steps imposed by the smallest elements such
as those constituting the boundary layers.
Numerous works were made on multirate methods in the �eld of ODE, see for example
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], but only few works were conducted on multirate time
advancing schemes for the solution of PDE and hyperbolic conservation laws [13, 14, 15,
16, 17, 18], and rare applications were performed in Computational Fluid Dynamics (CFD)
[17, 18]. Therefore, there is still much work to do to provide a viable multirate method
for CFD applications. In this work, we propose a new multirate scheme based on control
volume agglomeration which is well suited to our numerical framework using a mixed �nite
volume/�nite element formulation. The method relies on a prediction step where large time
steps are used with an evaluation of the �uxes performed on the macro-cells for the smaller
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elements, and on a correction step in which small time steps are employed only for the
smaller elements. Target applications are three-dimensional unsteady �ows modeled by the
compressible Navier-Stokes equations equipped with turbulence models and discretized on
unstructured possibly deformable meshes.

2 Multirate time advancing by volume agglomeration

In this section, we present the multirate time advancing scheme based on volume agglom-
eration which is currently developing for the solution of the three-dimensional compressible
Navier-Stokes equations.

We �rst de�ne the inner zone and the outer zone, the coarse grid, and the construction
of the �uxes on the coarse grid, ingredients on which our multirate time advancing scheme
is based.

• De�nition of the Inner and Outer zones :

� Let ∆t be the global time step over the computational domain

� We de�ne the outer zone as the set of cells for which the explicit scheme is stable
for a time step K∆t (K ∈ N∗), and the inner zone as its complement

� These zones are de�ned through the local time steps computed on each node.

• De�nition of the coarse grid :

� Objective :

∗ Advancement in time is performed with time step K∆t
∗ Advancement in time preserves accuracy in the outer zone (space order of 3,
Runge-Kutta 4)

∗ Advancement in time is consistent in the inner zone

� The coarse grid is de�ned as the set of the macro cells in the inner zone union
the set of the �ne cells in the outer zone

� Method :

∗ We advance in time the chosen explicit scheme (Runge-Kutta 4 for exemple)
on the coarse grid with K∆t as time step

∗ A �uxes smoothing can be performed on the macro cells for stability purpose.

• Construction of the �ux on the coarse grid

� The nodal �uxes Ψi are assembled on the �ne cells (as usual)

� Fluxes are summed on the macro cells I (inner zone) :

ΨI =
∑
k∈I

Ψk

� Possibly smoothing of the coarse �ux (inner zone) :

ΨI = (
∑

K∈V(I)

ΨKvolK)/(
∑

K∈V(I)

volK)
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�ne cells i macro cell I

The multirate algorithm is then based on a prediction step and a correction step as
de�ned hereafter :

Step 1 (prediction step) :
The solution is advanced in time with time step K∆t, using a Runge-Kutta explicit scheme

for example, on the macro cells in the inner zone and on the �ne cells in the outer zone :
For α = 1, RKstep

outer zone : voliw
(α)
i = voliw

(0)
i + bαK∆t Ψ(α−1)

i

inner zone : volIwI,(α) = volIwI,(0) + bαK∆t ΨI,(α−1)

w
(α)
i = wI,(α) for i ∈ I

EndFor α.

Step 2 (correction step) :

• The unknowns are frozen in the outer zone

• These unknowns (in the outer zone) are interpolated (those useful for the next point)

• In the inner zone, using these interpolated values, the solution is advanced in time with
the chosen explicit scheme and time step ∆t

• The complexity, proportional to the number of points in the inner zone, is mastered.

3 Application

The multirate algorithm introduced in the previous section was implemented in the parallel
CFD code AIRONUM shared by INRIA Sophia-Antipolis, LEMMA company and university
of Montpellier. Special attention was paid to issues related to parallelism, and in particular to
the evaluation of the �uxes on the macro cells located at the boundary between neighboring
subdomains.

As a very �rst application of our multirate approach, the tandem cylinders benchmark at
Reynolds number 1.66×105 is considered. This test case is challenging since several complex
�ow features need to be captured around multiple bodies (stagnation zones, boundary lay-
ers, shear layers, separations, laminar-turbulent transition, recirculations, vortex sheddings,
wakes). Furthermore, small cells are necessary for a proper prediction of the very thin bound-
ary layers, which implies very small global time steps so that classical explicit calculations
become very costly. The application of our multirate scheme to the tandem cylinders bench-
mark is also made more di�cult by the fact that we use a hybrid turbulence model based
on RANS and VMS-LES approaches, so that additional equations associated with turbulent
variables need to be advanced in time.
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The instantaneous vorticity �eld around the tandem cylinders predicted by our hybrid
RANS/VMS-LES model is depicted in Figure 1. The Q-criterion isosurfaces are shown in
Figure 2. Both Figures illustrate the complex �ow features and the very small structures
that need to be captured by the numerical model and the turbulence model, which renders
this simulation particularly challenging.

Figure 1: Tandem cylinders at Reynolds number 1.66× 105 : instantaneous vorticity �eld.

Figure 2: Tandem cylinders at Reynolds number 1.66 × 105 : instantaneous Q-criterion isosur-
faces.

Two meshes were used for this study : a coarse mesh which contains 2.6 million nodes
and 15 million tetrahedra, and a �ne mesh with 16 million nodes and 96 million tetraedra.

Coarse mesh :

The computational domain is decomposed into 192 subdomains. When integer K, used
for the de�nition of the inner and outer zones, is set to 2, 5 and 10, the percentage of nodes
located in the inner zone is 4%, 16% and 25%, respectively.

The lift curve obtained by the multirate scheme with K = 10 and the explicit scheme
corresponding to half of a period of vortex shedding for the �rst cylinder is given in Figure
3. The underlying explicit scheme is the 4-stage Runge-Kutta method and the CFL number
was set to 1. Each simulation was left running over an elapsed time of 40 hours. A number
of 192 cores on a BULL cluster was used to perform these computations. One can check that
the response given by the two schemes is the same, as expected, except for the oscillations at
the top of the lift curve for the multirate method that are due to a not properly controlled
restart in the simulation. The number of time steps is 15284 for the multirate scheme and
132531 for the classical explicit scheme. From Figure 3, an improvement in the e�ciency of
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about 14% is observed when the multirate scheme is used in our parallel solver. This rather
slight improvement in e�ciency can be explained by the fact that some of the subdomains
almost contain only inner nodes so that workload is not equally shared by each computer core
when the proposed multirate approach is used. Indeed, in our parallel strategy which is based
on a decomposition of the computational domain in subdomains, designed to minimize the
inter-core communications, and on a message passing parallel programming (MPI) model,
each subdomain is assigned to a computer core. It is clear that in order to further increase
the e�ciency of the multirate approach in our parallel computing framework, the domain
decomposition needs to be adapted.

Based on the fact that the cost per node in these explicit simulations is essentially due to
the computation of the convective and di�usive �uxes, we can deduce that, for the multirate
simulation that was performed and which involves K = 10 and 25% of the nodes located in
the inner zone, the bene�t-cost ratio between the multirate scheme and the classical 4-stage
Runge-Kutta method would be 3 from a sequential point of view.
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Figure 3: Coarse mesh - Tandem cylinders at Reynolds number 1.66 × 105 : lift curve for the
�rst cylinder, multirate scheme (K=10) and explicit RK4 scheme, corresponding to an elapsed
time of 40 hours.

In a second step, the multirate simulation is carried out with K=5 for the same bench-
mark, which means that the RK4 scheme is now performed with time steps 5∆t and ∆t for
the nodes located in the outer zone and the nodes located in the inner zone, respectively.
The lift curve obtained by the multirate scheme with K = 5 and K = 10 for the �rst cylinder
is depicted in Figure 4. Both simulations were left running over an elapsed time of 20 hours,
which allows to simulate a quarter of a period of vortex shedding with a CFL number set
to 1. One can notice that the response is similar, as expected, for both values of K, and
that the e�ciency is improved by 8.8% when the multirate scheme is used with K = 10 in
our parallel solver. From a sequential point of view, we can also deduce that the cost of the
multirate scheme with K = 5 and K = 10 would be of the same order.

Fine mesh :

The computational domain is decomposed into 768 subdomains. When integer K, used
for the de�nition of the inner and outer zones, is set to 5, 10 and 20, the percentage of nodes
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Figure 4: Coarse mesh - Tandem cylinders at Reynolds number 1.66×105 : lift curve for the �rst
cylinder, multirate scheme with K=5 and K=10, corresponding to an elapsed time of 20 hours.

located in the inner zone is 18%, 24% and 35%, respectively.
The lift curve obtained by the multirate scheme with K = 5, K = 10, and K = 20, and

by the explicit scheme, is shown in Figure 5. The underlying explicit scheme is the 4-stage
Runge-Kutta method and the CFL number was set to 1. Each simulation was left running
over an elapsed time of 1 hour. A number of 768 cores on a BULL cluster was used to
perform these computations.

Figure 5: Fine mesh - Tandem cylinders at Reynolds number 1.66× 105 : lift curve for the �rst
cylinder, multirate scheme (K = 5, K = 10, K = 20) and explicit RK4 scheme, corresponding
to an elapsed time of 1 hour.

One can observe that the lift curves quickly become di�erent between the various options
because of di�erences in the time step size and the rapidly �uctuating small scales that
can be captured by this �ne mesh. These di�erences a�ect the instantaneous solution but
should not a�ect the �ow statistics. From this Figure, an improvement in the e�ciency of
a factor slightly greater than 2 is observed when the multirate option is used with K = 20
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compared to the classical 4-stage Runge-Kutta explicit scheme. For K = 5 and K = 10 this
improvement becomes 1.5 and 1.8, respectively (see Figure 6). The better e�ciency observed
with the �ne mesh compared to the coarse mesh is certainly due to a better distribution of
the workload among the cores when the multirate approach is used.

Figure 6: Fine mesh - Tandem cylinders at Reynolds number 1.66 × 105 : speedup multi-
rate/explicit (RK4)

As for the coarse mesh, the bene�t-cost ratio between the multirate scheme and the
classical 4-stage Runge-Kutta method would be 3 from a sequential point of view.

4 Conclusion

A new multirate strategy is proposed in this work. The method is based on control volume
agglomeration, and relies on a prediction step where large time steps are used and where
the �uxes for the smaller elements are evaluated on macro cells for stability purpose. A
correction step follows in which only the smaller elements are advanced in time with a small
time step. Preliminary results are given which show that the proposed multirate strategy
can be applied in complex CFD problems such as the prediction of three-dimensional �ows
around blu� bodies with complex hybrid turbulence models. Nevertheless, there is still work
to do to obtain an e�cient multirate method in a parallel numerical framework. Indeed, we
need to improve the domain decomposition into subdomains, which is at the present time
designed to minimize the inter-core communications, so that workload becomes (almost)
equally shared by each computer core when the proposed multirate strategy is used.
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