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Anisotropic metric based mesh adaptation has proved its efficiency to reduce the CPU
time of steady simulations while improving their accuracy. However its extension to time-
dependent problems is far from straightforward, and the introduction of moving meshes
adds new problems. This paper presents updates regarding mesh adaptation for unsteady
problems with moving boundaries. A new space-time analysis of the interpolation error
in the continuous mesh framework is proposed, which enables enhancements of the fixed-
point unsteady mesh adaptation algorithm. The analysis is then extended to the case of
moving geometries, within the range of body-fitted moving meshes and ALE simulations,
and the appropriate modifications are made to the adaptation algorithm. Finally, three
dimensional adaptative simulations with moving boundaries are exhibited to validate our
approach.

I. Introduction

Simulating complex moving geometries evolving in unsteady flows in three dimensions, which is more
and more required by industry, still remains a challenge, because it is very time consuming.

To reduce the CPU time of these simulations while preserving their accuracy, anisotropic metric-based
mesh adaptation has already proved its efficiency for steady problems, and appears as a salutary perspective.
However, its extension to the unsteady case is not straightforward. These simulations combine the difficulties
arising from unsteadiness and geometrical complexity: global time step driven by the mesh smallest altitude,
evolution of the phenomena in the whole domain, interpolation spoiling, but also three-dimensional meshing
and remeshing issues with an imposed discretized surface. The introduction of moving geometries in this
process even raises new difficulties, due to the handling of the mesh movement and the deterioration of its
quality, the specific numerical schemes imposed by moving mesh schemes and their restrictions, as well as
fluid/structure coupling and contact handling.

Three different approaches dealing with time-dependent mesh adaptation in literature can be distin-
guished. First,18,20,29,32 an isotropic mesh is adapted frequently in order to maintain the solution within
refined regions and introduce a safety area around critical regions. Another approach is to use an unsteady
mesh adaptation algorithm12,33 based on local or global remeshing techniques and the estimation of the error
every n flow solver iterations. If the error is greater than a prescribed threshold, the mesh is re-adapted.
More recently, local adaptive remeshing enabling the construction of anisotropic meshes has been considered.
In this case,27,30 the mesh is frequently adapted in order to guarantee that the solution always evolves in
refined regions. All these approaches involve a large number of adaptations while introducing unquantified
errors due to the transfer of the solution from the old mesh to the new one. Moreover, none of them consid-
ers the inherent non-linear nature of the mesh adaptation problem: the convergence of the mesh adaptation
process is never addressed and therefore the obtaining of the optimal mesh cannot be expected.

A first answer to these issues has already been proposed.2 It relies on the assumption that the temporal
error is always controlled by the spatial error, which is indeed the case when solving a linear advection
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problem under a CFL condition. However, this algorithm is valid only when the space-time interpolation
error is controlled in L∞ norm. Since multiscale mesh adaptation has now proved its efficiency for steady
CFD computations,4,22–24 it seems relevant to extend the fixed-point algorithm proposed in Alauzet2 to this
framework.

A totally different approach has been developed, in which the mesh is moved at each time step into a
mesh adapted to the solution with so called Moving-Mesh PDEs,15 or more recently using the Monge-Ampère
equation.9,10 This approach is interesting, since it couples closely the mesh and the solution, but it seems
very time-consuming for now, since the PDEs are solved at every solver time step. Moreover, the solution
of the Monge-Ampère equation is known to be very difficult in three dimensions. Finally, it is not sure how
these work could be extended to simulations with complex moving boundaries.

The handling of the moving geometries is crucial in that kind of simulations, both from the purely moving
mesh point of view and from the solver point of view. How to keep a valid mesh all along the simulation
at a lower cost ? What numerical schemes should be used to preserve the accuracy of the solution despite
the specific treatments of the moving mesh ? These questions are out of the scope of this paper, but several
papers 8,13,21,25,28 try to answer to them, and especially Barral6 that details the approach followed in this
paper.

Regarding adaptative strategies for moving mesh simulations, only a few attempts can be found in the
literature among which the work of Löhner and Baum,7,17,19 Saksono and al.,31 Hassan and al.14 and
Compere and al.11 As impressive as they can be, these results nevertheless still suffer from some of the
weaknesses described above, i.e. mainly very frequent remeshing and spoiling interpolation stages.

A two dimension extension of the fixed point algorithm to moving-geometry problems was introduced
by Olivier,5,26 in which an effort was made to quantify the the impact of the mesh motion on the adaption
process. The goal of the present paper is to update the error analysis leading to the unsteady adaptation
algorithm, and to demonstrate numerically that three dimension moving mesh adaptation simulations can
actually be run with this algorithm.

In this paper, we first focus on the unsteady fixed mesh case, the unsteady moving mesh case being
derived from the fixed mesh case. We detail the proposed space-time multiscale error analysis. An enhanced
global version of the fixed-point algorithm introduced in Alauzet2 is presented, that is derived from this error
analysis. The extension of the analysis and algorithm to moving mesh simulations is finally addressed. Nu-
merical examples of three dimensional unsteady moving mesh simulations run with the adaptation algorithm
are presented.

II. Multiscale anisotropic mesh adaptation for unsteady problems

Let us first describe the enhanced version of the unsteady fixed-point adaption algorithm for fixed meshes.
This algorithm is based on a subdivision of the time interval into several sub-intervals, on which a unique
mesh is computed, that is adapted to the whole sub-interval. Compared with the algorithm described in
Alauzet,2 the new algorithm is founded on a new space-time error analysis.

The new error analysis is based on the continuous mesh model22,23 for the mesh adaptation framework.
However, the multiscale mesh adaptation described in these papers controls only spatial errors. In the
context of time-dependent problems, temporal error must be controlled as well. In what follows, we do not
account for time discretization errors but we focus on a space-time analysis of the spatial error in unsteady
simulations. In other words, we seek for the optimal space-time mesh controlling the space-time spatial
discretization error.

The following assumption is made (it has been demonstrated under specific conditions2): as an explicit
time scheme is used for time advancing, the error in time is controlled by the error in space under CFL
condition. As far as the above hypothesis is true, the spatial interpolation error is a good measure of the
total space-time error of the discretized unsteady system.

A. The continuous mesh model

We consider the continuous mesh model.22,23 This model draws a correspondence between the discrete
computational domain and the continuous domain, allowing us to use powerful mathematical tools such as
calculus of variations.

A continuous element is a d× d positive symmetric matrixM (i.e. a metric tensor). A continuous mesh
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of a domain Ω ∈ R3 is defined by a collection of continuous elements M = (M(x))x∈Ω. The local density
of the mesh is the saquare root of the determinant of the metric dM(x) =

√
det (M(x)). The complexity

of a continuous mesh (which corresponds to the number of vertices of a discrete mesh) is the integral of the
density C(M) =

∫
Ω
dM(x)dx. Finally, a continuous linear interpolate πMu can be defined as well, and the

continuous interpolation error is given by ‖u− πMu‖ = trace(M− 1
2 |Hu|M−

1
2 ).

The model was first designed for cases where the mesh does not depend on time, but its extension to
time-dependent problems is almost straightforward, as described below.

B. Space-time Lp error analysis

1. Error model

Our goal is to solve an unsteady PDE which is set in the computational space-time domain Q = Ω× [0, T ]
where T is the (positive) maximal time and Ω ⊂ R3 is the spatial domain. Let Πh be the usual P1 projector.
Its extension to time dependent functions reads:

(Πhϕ) (t) = Πh (ϕ(t)) , ∀ t ∈ [0, T ].

The problem of mesh adaptation considered consists in finding the space-time mesh H of Q that minimizes
the space-time linear interpolation error u − Πhu in Lp norm, for a given sensor u. The problem is thus
stated in an a priori way:

Find Hopt having Nst space-time vertices such that ELp(Hopt) = min
H
‖u−Πhu‖Lp(Ωh×[0,T ]) ,

where E is the interpolation error. In the continuous mesh framework (see founding papers22,23), this
problem is rewritten in the continuous form:

Find MLp = (MLp(x, t))(x,t)∈Q such that ELp(MLp) = min
M
‖u− πMu‖Lp(Ω×[0,T ]) , (1)

under the space-time constraint:

Cst(M) =

∫ T

0

τ(t)−1

(∫
Ω

dM(x, t) dx

)
dt = Nst . (2)

where τ(t) is the time step used at time t of interval [0, T ]. Introducing the continuous interpolation error,
we recall that we can write the continuous error model as follows:

ELp(M) =

(∫ T

0

∫
Ω

trace
(
M− 1

2 (x, t)|Hu(x, t)|M− 1
2 (x, t)

)p
dx dt

) 1
p

.

where Hu is the Hessian of sensor u. To find the optimal space-time continuous mesh, Problem (1-2) is
solved in two steps. First, a spatial minimization is done for a fixed t. Second, a temporal minimization is
performed.

2. Spatial minimization for a fixed t

Let us assume that at time t, we seek for the optimal continuous mesh MLp(t) which minimizes the instan-
taneous error, i.e., the spatial error for a fixed time t:

ẼLp(M(t)) =

∫
Ω

trace
(
M− 1

2 (x, t) |Hu(x, t)|M− 1
2 (x, t)

)p
dx

under the constraint that the complexity is a constant equal to:

C(M(t)) =

∫
Ω

dM(t)(x, t) dx = N(t). (3)
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Similarly to Loseille,22 solving the optimality conditions provides the optimal instantaneous continuous mesh
in Lp norm MLp(t) = (MLp(x, t))x∈Ω at time t defined by:

MLp(x, t) = N(t)
2
3

(∫
Ω

(det |Hu(x̄, t)|)
p

2p+3 dx̄

)− 2
3

(det |Hu(x, t)|)−
1

2p+3 |Hu(x, t)| . (4)

The corresponding optimal instantaneous error at time t writes:

ẼLp(MLp(t)) = 3pN(t)−
2p
3

(∫
Ω

(det |Hu(x, t)|)
p

2p+3 dx

) 2p+3
3

= 3pN(t)−
2p
3 K(t)

2p+3
3 . (5)

Later in this paper, we denote: K(t) =

(∫
Ω

(det |Hu(x, t)|)
p

2p+3 dx

)
.

3. Temporal minimization

To complete the resolution of optimization Problem (1-2), we perform a temporal minimization in order to
get the optimal space-time continuous mesh. In other words, we need to find the optimal time law t→ N(t)
for the instantaneous mesh size. Here, we consider the case where the time step τ is specified by the user
as a function of time t → τ(t). A similar analysis can be done to deal with the case of an explicit time
advancing solver subject to Courant time step condition, but for conciseness we do not give the result here.

After the spatial optimization, the space-time error writes:

ELp(MLp) =

(∫ T

0

ẼLp(MLp(t)) dt

) 1
p

= 3

(∫ T

0

N(t)−
2p
3 K(t)

2p+3
3 dt

) 1
p

(6)

and we aim at minimizing it under the following space-time complexity constraint:∫ T

0

τ(t)−1N(t) dt = Nst. (7)

In other words, we focus on seeking for the optimal distribution of N(t) when the space-time total number of
nodes Nst is prescribed. Solving this temporal optimization problem leads to the expression of the optimal
space-time metric MLp for a prescribed time step:

MLp(x, t) = N
2
3
st

(∫ T

0

τ(t)−
2p

2p+3 K(t)dt

)− 2
3

τ(t)
2

2p+3 (det |Hu(x, t)|)−
1

2p+3 |Hu(x, t)| . (8)

The following optimal error is finally obtained:

ELp(MLp) = 3N
− 2

3
st

(∫ T

0

τ(t)−
2p

2p+3 K(t)dt

) 2p+3
3p

. (9)

C. Space-time Lp error analysis with time sub-intervals

The previous analysis provides the optimal size of the adapted meshes for each time level. Hence, this
analysis requires the mesh to be adapted at each flow solver time step which is inconceivable. Now, we want
to extend the previous analysis to the fixed-point mesh adaptation algorithm context where the simulation
time interval [0,T] is split into nadap sub-intervals [ti−1, ti] for i = 1, .., nadap, see Section D. Each spatial
mesh Mi is then kept constant during each sub-interval [ti−1, ti]. We could consider this partition as a time
discretization of the mesh adaptation problem.

As previously, we get the spatial optimality condition:

Mi
Lp(x) = N

2
3
st

(nadap∑
j=1

Kj
(∫ tj

tj−1

τ(t)−1dt
) 2p

2p+3

)− 2
3(∫ ti

ti−1

τ(t)−1dt
)− 2

2p+3

(det Hi
u(x))−

1
2p+3 Hi

u(x) (10)

where Hi
u(x) is a mean Hessian matrix on each sub-interval, and is called Hessian-metric thereafter.
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D. Global fixed-point mesh adaptation algorithm

Finally, the unsteady adaptation algorithm can be derived from this error analysis. The basic idea consists
in splitting the simulation time frame [0, T ] into nadap adaptation sub-intervals:

[0, T ] = [0 = t0, t1] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap−1, tnadap ] ,

and to keep the same adapted mesh for each time sub-interval. On each sub-interval, the mesh is adapted to
control the solution accuracy from ti to ti+1. Consequently, the time-dependent simulation is performed with
nadap different adapted meshes. This drastically reduces the number of remeshing during the simulation,
hence the number of solution transfers. This can been seen as a coarse adapted discretization of the time axis,
the spatial mesh being kept constant for each sub-interval when the global space-time mesh is visualized,
thus providing a first answer to the adaptation of the whole space-time mesh.

To converge the non-linear mesh adaptation problem, i.e., converge the mesh-solution couple, we propose
a fixed-point mesh adaptation algorithm. This is also a way to predict the solution evolution and to adapt
the mesh accordingly.

Previously,2 the optimal metric of a sub-interval could be computed directly once the simulation on the
sub-interval had been run. However, the computation of the optimal continuous mesh for sub-intervals given
by Relation (10) involves a global normalization term which requires the knowledge of quantities over the
whole simulation time frame. This term writes:

N
2
3
st

(∫ T

0

τ(t)−
2p

2p+3

(∫
Ω

(det |Hu(x̄, t)|)
p

2p+3 dx̄

)
dt

)− 2
3

,

which requires to know all the time steps τ(t) and Hessians Hu(x, t) over time frame [0, T ]. Thus, the
complete simulation must be performed before evaluating any continuous mesh.

To solve this issue, we suggest to consider a global fixed-point mesh adaptation algorithm covering the
whole time frame [0, T ]. All the solutions and Hessian-metrics are computed, and only then can the global
normalization term and thus the metrics for each sub-interval be computed. This algorithm is schematized
in Algorithm 1 where H, S andM denote respectively meshes, solutions and metrics, and H is the Hessian-
metric.

Algorithm 1 Mesh Adaptation Loop for Unsteady Flows

Initial mesh and solution(H0,S0
0 ) and set targeted space-time complexity Nst

// Fixed-point loop to converge the global space-time mesh adaptation problem
For j = 1, nptfx

1. // Adaptive loop to advance the solution in time on time frame [0, T ]
For i = 1, nadap

(a) Sj0,i = Interpolate conservatively next sub-interval initial sol. from (Hj
i−1,S

j
i−1,H

j
i );

(b) Sji = Compute solution on sub-interval from pair (Sj0,i,H
j
i );

(c) |H|ji = Compute sub-interval Hessian-metric from sol. sample (Hj
i , {S

j
i (k)}k=1,nk);

EndFor

2. Cj = Compute space-time complexity from all Hessian-metrics ({|H|ji}i=1,nadap
);

3. {Mj
i}i=1,nadap

= Compute all sub-interval unsteady metrics (Cj , {|Hmax|ji}i=1,nadap
);

4. {Hj+1
i }i=1,nadap

= Generate all sub-interval adapted meshes ({Hj
i , M

j
i}i=1,nadap

);

EndFor

III. From theory to practice

Several steps of the previous algorithm are not straightforward, and need to be further detailed.

5 of 18

American Institute of Aeronautics and Astronautics



A. Computation of the Hessian-metric

The optimal Lp metric involves an averaged Hessian-metric Hi
u on sub-interval i, but it still remains to know

how to compute it practically, i.e., how it is discretized. The strategy adopted2 is to sample the solution
on the time sub-interval. More precisely, nk solutions equally distributed on the sub-interval time frame
are saved, including the initial solution at ti−1 and the final solution at ti. Positive Hessian |Hu(x, tk)| is
evaluated for each sample.

The Hessian matrices are computed using a double least-squares procedure: first the gradients are com-
puted using a linear least-squares reconstruction procedure, and a similar procedure is applied to recover
the Hessians. Once these Hessians are computed, one need to average them. In the previous algorithm,2 the
following discretization was used:

Hi
L∞(x) ≈ ∆ti

nk⋂
k=1

|Hu(x, tk)| = ∆ti |Hi
max(x)| ,

where ∩ has to be understand as the metric intersection in time of all samples. This corresponds to an
integration in time in L∞ norm of the Hessians.

However, the new error analysis leads to write H∗ as the integral over time of the Hessian matrices, and
thus the following discretization is preferred:

Hi
L1(x) ≈ 1

2

∆ti
nk − 1

|Hu(x, ti−1)|+ ∆ti
nk − 1

nk−1∑
k=2

|Hu(x, tk)|+ 1

2

∆ti
nk − 1

|Hu(x, ti)| = ∆ti |Hi
avg(x)| ,

where ∆ti = ti − ti−1 is the sub-interval time length and tk = ti−1 + k−1
nk−1∆ti. This corresponds to an

integration in time in L1 norm of the Hessians.
Comparisons of both discretizations were performed on a large number of test cases, and it seems indeed

that the second discretization (the ”sum of metrics”) captures more accurately the small physical phenomena,
as shown in Figure 1.

Figure 1. Zoom on the final mesh of a shock-bubble interaction problem, adapted using two time-discretizations
for the Hessian-metric. Left, a L∞ integration (intersection of metrics) is used, and right, a L1 integration (a
sum of metrics).

B. Matrix-free P1-exact conservative solution transfer

At each remeshing step, the solution needs to be transferred from the previous mesh to the next one to pursue
the computation. This stage becomes crucial in the context of unsteady problems and even more if a large
number of transfers is performed, as the error introduced by this stage can spoil the overall accuracy of the
solution. In the context of the resolution by a second order numerical scheme of a PDE system of conservation
laws, such as the compressible Euler system, it seems mandatory for the interpolation method to satisfy the
following properties in order to obtain a consistent mesh adaptation scheme: (i) mass conservation, (ii) P1

exactness preserving the second order of the adaptive strategy and (iii) verify the maximum principle.
The mass conservation property of the interpolation operator is achieved by local mesh intersections,

i.e., intersections are performed at the element level. The use of mesh intersection to build a conservative
interpolation process seems natural for unconnected meshes. The locality is primordial for efficiency and
robustness. The idea is to find, for each element of the new mesh, its geometric intersection with all the
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elements of the background mesh it overlaps and to mesh this geometric intersection with simplices. We are
then able to use a Gauss quadrature formula to exactly compute the mass which as been locally transferred.

High-order accuracy is obtained through the reconstruction of the gradient of the solution from the
discrete data and the use of some Taylor formulae. Unfortunately, this high-order interpolation can lead
to a loss of monotonicity. The maximum principle is recovered by correcting the interpolated solution in a
conservative manner. Finally, the solution values at vertices are reconstructed from this piecewise linear by
element discontinuous representation of the solution.

The algorithm is summarized in Algorithm 2:

Algorithm 2 Conservative Interpolation Process

Piecewise linear (continuous or discontinuous) representation of the solution on Hback

1. For all elements Kback ∈ Hback, compute solution mass mKback
and gradient ∇Kback

2. For all elements Knew ∈ Hnew, recover solution mass mKnew
and gradient ∇Knew

:

(a) compute the intersection of Knew with all Ki
back ∈ Hback it overlaps

(b) mesh the intersection polygon/polyhedron of each couple of elements (Knew,K
i
back)

(c) compute mKnew and ∇Knew using Gauss quadrature formulae

=⇒ a piecewise linear discontinuous representation of the mass on Hnew is obtained

3. Correct the gradient to enforce the maximum principle

4. Set the solution values to vertices by an averaging procedure.

Figure 2 points out the superiority of the P1-conservative solution transfer (right) compared with the
classic P1 interpolation (left) on an adaptive blast simulation in two dimensions. For both simulations, all
parameters are the same except for the solution transfer stage. This figure shows the final solution obtained
with 70 mesh adaptations, i.e., a total of 70 solution transfers. The diffusion and the error introduced by
the classic P1 solution transfer clearly spoils the solution accuracy while the solution remains very accurate
with the P1-conservative operator.

As regards CPU time overhead, it is minor in 2D but a major issue in 3D. Fortunately, the procedure is
easily parallelized and scales very well, and the CPU overhead becomes admissible with the parallelization.

Figure 2. Final result of a blast adaptive simulation with 70 mesh adaptations. Left, using a classic P1 solution
transfer. Right, using the P1-conservative solution transfer.

C. Choice of the optimal continuous mesh.

The optimal adapted mesh for each sub-interval is generated according to analysis of Section C. For the
numerical results presented below, we select the optimal mesh given by Relation (10) and the following
particular choice has been made:

• the Hessian-metric for sub-interval i is discretized in time in L1 norm.

• function τ : t→ τ(t) is constant and equal to 1

• all sub-intervals have the same time length ∆t.
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D. The remeshing step

[TODO AWAITING ADRIEN’S CONTRIBUTION]

E. Parallelization of the mesh adaptation loop

All the steps of the adaptation loop have been parallelized. Two different approaches are used for the two
big parts of the loop. The solution computation and the solution transfer procedure are parallelized using
a p-thread paradigm at the element loop level.3 As regards the computation of the metrics, the metric
gradation and the generation of the adapted meshes, a pipeline approach was used. These operations have
to be done at the end of the loop, as many times as there are sub-intervals, but the operations for one
sub-interval are totally independent from the operations for another sub-interval. Consequently, they can
all be run in parallel: if N processors are available, N metrics and their associated meshes can be generated
simultaneously in serial on one processor.

F. Example of a 3D blast test case

Let us illustrate the unsteady fixed-point algorithm. We consider a purely three-dimensional blast problem
proposed by LeVeque.16 In this simulation, shock waves are reflected on a box and interact with each other.

The gas is initially at rest in a box of dimension [−1.5, 1.5]× [−1.5, 1.5]× [0, 1]. The density and pressure
equal one everywhere, except for a sphere of radius 0.2 centered in (0, 0, 0.4), in which the pressure is 5. The
gas is then left to evolve freely until time t = 0.7. Spherical shock waves emanate from the central region
due to the overpressure. Wall conditions are imposed on the boundaris, so that the shock waves are relfected
on them, and create complex pattern when they interact with each other.

The density of the flow is chosen as sensor variable for our mesh adaptation process. The space-time
interpolation error on the solution is controlled in L1 norm. The time frame was split into 20 adaptation
sub-intervals and 5 fixed-point iterations were used to converge the non-linear mesh adaptation problem.
It is very difficult to predict the space-time complexity of a simulation, because it involves the number of
vertices and the number of solver time steps. So we consider a simplified complexity, that is the sum of the
numbers of vertices of the meshes of each sub-intervals, which does not depend on the time discretization of
the sub-intervals. The desired accuracy was set to reach a simplified space-time complexity of 40, 000, 000.

Figures 3 show the solutions and the adapted meshes at different dimensionless times. The mesh adapta-
tion for the whole sub-interval is clearly illustrated. Indeed, the mesh refinement along band-shaped regions,
which is typical of the fixed-point algorithm, is clearly visible. These band-shaped areas correspond to the
evolution zone of the physical phenomena during an adaptation sub-interval. The size of the depicted meshes
varies between 600, 000 and 1.3 millions of vertices.

Thanks to multiscale mesh adaptation, the complex patterns of reflected weaker shocks interacting with
each other are well captured even if strong shocks are moving in the flow field. It results in an accurate
solution with very few vertices compared with a uniform mesh with the smallest element size. In the moving
shock region, the mesh accuracy is around 1.2 e−4 at dimensionless time 0.07 and 9.8 e−5 at dimensionless
time 0.7 for a domain size of [−1.5, 1.5]× [−1.5, 1.5]× [0, 1].

The CPU time to perform the whole adaptive computation (i.e., the 5 loops with the 40 iterations of flow
solver and solution transfer, the computation of the metric, the generation of the adapted mesh) is about 8
hours on a 20-core Intel Xeon processor at 2.5Ghz.

IV. Extension to moving mesh simulations

In this section, the above fixed-point algorithm is extended to unsteady simulations with moving geome-
tries. We are more specifically interested in the case of geometries undergoing large displacement, for which
an approach based on an elasticity-like PDE and generalized edge/face swapping is used to move the mesh
keeping a good mesh quality without remeshing. Due to the boundaries displacement, the volume mesh is
also (largely) distorted over time, and this distortion does not necessarily follow the physical phenomena,
which would in particular break the adaptation of the mesh during the movement. Consequently, the error
estimate (and thus the metric and adapted mesh) have to somehow take into account this mesh deformation.
In this section, after recalling the mesh-connectivity-change moving mesh strategy that is used, the extension
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Figure 3. Adapted meshes and density solutions for the 3D blast test case, at dimensionless times 0.07, 0.315,
0.455 and 0.7. Cuts into the volume mesh are made along the plane x = 0.

of the unsteady error estimate to moving meshes will be presented, and we will explain how this new metric
is plugged into the fixed-point algorithm.
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A. Moving mesh strategy

The moving mesh strategy used in this paper is detailed in Alauzet.1 The mesh adaptation makes us consider
body-fitted simulations. Our strategy is designed to deal with large displacement of the boundaries, when
the volume mesh quickly gets too distorted. The aim of this strategy is to preserve a good mesh quality
all along the movement without costly remeshings, thanks to an improved mesh deformation step and an
improved mesh optimization step.

The aim of the mesh deformation step is to compute a displacement for all inner vertices from the
displacement of the boundaries, so that the volume mesh ”follows” the moving geometries and thus remains
valid. This is achieved solving a linear-elasticity-like PDE on the whole domain, the inside of the meshed
domain being taken for a soft elastic material. To improve the efficiency of this step, the number of such
solutions are significantly reduced: the mesh deformation problem is solved for large time steps, and and
the trajectories are considered constant over these large time steps. To improve the precision of this step,
higher order trajectories are computed: two elasticity problems are solved, thus providing a speed and an
acceleration to the inner vertices.

To preserve a good mesh quality, local mesh optimizations are performed between two mesh deformation
steps, using only vertex smoothing and generalized edge/face swapping. No vertices are added or removed.
Vertex smoothing consists in moving vertices close to the center of gravity of their vertex ball, and helps
recovering nicely shaped elements. The swap operator changes the connectivity of the mesh, and is especially
powerful in handling shear and large deformation movement. This optimization step is performed not at
every solver time step, but only when vertices have crossed a certain predetermined number of elements.

This algorithm was devised to fit in the Arbitrary-Lagrangian-Eulerian (ALE) framweork, for flow sim-
ulations where the mesh is moving independently from the physical phenomena. In this framework, the
connectivity of the mesh is supposed to be constant, so a two dimensional ALE formulation of the swap
operator was proposed.26 This algorithm was successfully coupled to an ALE flow solver,6 and several three
dimensional imposed motion and FSI simulations were presented.

B. Optimal space-time ALE metric

We consider an time evolving sensor u(t), and a mesh moved with the strategy we just described. The
problem is now: how to make sure that the mesh adapted to the beginning of a sub-interval will still be
adapted all along the sub-interval, as it is moved with the displacement prescribed by the elasticity solution?

Let us first consider a simplified problem. tn and tn+1 are two times, Ωn and Ωn+1 the spatial domain
at tn and tn+1 respectively, and Φ is a mapping between those two domains (we assume that this mapping
exists and is a diffeomorphism):

φ : Ωn −→ Ωn+1

xn 7−→ xn+1 = φ (xn) .
(11)

and d is the corresponding mesh displacement field, such that:

xn+1 = φ(xn) = xn + d(xn) (12)

We want to find the metric Mn,ALE
Lp from which we will generate a mesh at time tn that, once moved with

displacement d, will be adapted to the sensor u at time tn.
In Alauzet,5 analyzing an edge between tn and tn+1, and considering that the optimal metric at time

tn+1 is the multiscale Lp metric found previously in Section C, the following ALE metric was proposed a :

MALE
Lp (xn) = DALE

Lp

[
det
(
Ĥn+1(xn)

)]− 1
2p+n

(
∇kφ(xn) · Ĥn+1(xn) · ∇kφT (xn)

)
(13)

with

DALE
Lp =

(
Nn+1

) 2
n

(∫
Ωn+1

[
det
(
Hk+1(xn+1)

)] p
2p+n dxn+1

)− 2
n

(14)

a∇n denotes the gradient operator performed on domain Ωn. Note that the gradient is not the Jacobian, i.e. for an arbitrary

vector field f = (f1, . . . , fn), its gradient matrix is ∇f =
(

∂fj
∂xi

)
ij
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where Nn+1 stands for the complexity C
(
Mk+1

Lp

[
un+1

])
, and the .̂ operator transports a quantity from Ωn+1

to Ωn: Ĥn+1(xn) = Hn+1(Φ(xn)).
This can be rewritten in the more compact form:

MALE
Lp (xn) =


Nn+1∫

Ωk

[
detH∗

] p
2p+n

dxn



2
n

{
det
(
H∗
)}− 1

2p+n

H∗ (15)

with

H∗ =
[
det∇kφ(xn)

] 1
p
(
∇kφ(xn) · Ĥn+1(xn) · ∇kφT (xn)

)
(16)

The latter formulation is similar to the classical unsteady Lp metric formulation of Equation (10), and
is thus the one used in practice.

C. Analytic example

Let us illustrate this result with an analytic example in two dimensions. A uniform mesh Hn
0 , a displacement

field d between two times tn and tn+1, and a sensor un+1 at the final time are given. The goal is to generate
a mesh Hn at the initial time that, once moved into Hn+1 = d(Hn) will be adapted to the sensor. The
following functions are used:

un+1(x, y) =


0.01 sin (50xy) if |xy| ≤ π

50

sin (50xy) if |xy| ≤ 2π

50

and

d(x, y) =



{
−0.3 (x+ 1)

(
y2 − 1

)
exp

(
−5x2

)
, if x ≥ 0

0.3 (x− 1)
(
y2 − 1

)
exp

(
−5x2

)
, if x < 0

{
−0.3

(
x2 − 1

)
(y + 1) exp

(
−5y2

)
, if y ≥ 0

0.3
(
x2 − 1

)
(y − 1) exp

(
−5y2

)
, if y < 0


We start from uniform meshHn

0 . The following procedure is applied, in L1 norm, with a target complexity
of 10, 000 vertices for the adapted mesh:

∇nφ = ComputeTransformationGradient(Hn
0 ,d)

Hn+1
0 = MoveMesh(Hn

0 ,d)

un+1 = ComputeTargetSensor(Hn+1
0 )

Mn,ALE
Lp = ComputeALEMetric(Hn+1

0 , un+1,∇nφ)

Hn = AdaptMesh(Hn,Mn,ALE
Lp )

Hn+1 = MoveMesh(Hn
0 ,d)

According to the above developments, we expect that the mesh Hn+1, obtained by moving the vertices
of Hn with d, to be optimal for the control of the interpolation error of un+1 in L1 norm.

Figure 4 presents the case: it shows the sensor function un+1, the initial uniform mesh H0, and Hn+1
0

moved with d. The sensor function exhibits features of different scales, small oscillations of amplitude 0.01
and big oscillations of amplitude 1, which makes it a suitable example for our multiscale mesh adaptation
process.

Figure 5 shows Hn the mesh generated using the ALE metric at time tn (center), Hn+1 the mesh after
displacement (right), and for comparison, Hn+1

target the mesh adapted to the sensor using a classical adaptation
procedure on a fixed mesh (left), which is the target for Hn+1. We can see that the moving mesh in final
position is well adapted to the sensor, and is similar to the target.
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Figure 4. Sensor function used un+1, initial mesh Hn
0 , and initial mesh moved Hn+1

0 .

Figure 5. Mesh Hn+1
target adapted with a classical procedure, which is our target, mesh Hn adapted with the

optimal ALE metric at time tn, and final mesh Hn+1 moved until time tn+1.

D. The ALE fixed-point algorithm

Only few things need to be modified to extend the fixed-point algorithm to ALE simulations. The overall
algorithm remains the same: the simulation time interval [0, T ] is still cut into nadap identical sub-intervals
of length δt and things work almost as described in Section D. The main difference lies in the computation
of the metric in the solver. The metric is no more associated to a fixed location in space, but it is rather
attached to the moving vertices. Moreover, the ALE metric must now be used: the mean Hessian-metric is
computed averaging the ALE modified H∗ from Equation (16). If the solution is sampled at ti,k ∈ [ti, ti+1],
then the Hessian field associated with this sample is given by:

H∗i,k =
{

det
(
∇i φi,k(xi)

)} 1
p ∇i φi,k(xi) · Ĥi,k(xi) · ∇i φi,k

T (xi)

with φi,k : Ωh(ti) −→ Ωh(ti,k) the mapping between the mesh at ti and the one at ti,k and xi = x(ti).

The Hessian fields
(
H∗i,k

)
1≤k≤nk

are then averaged like in the fixed-mesh case. A mesh adapted for this

sub-interval is then generated as described previously. This way, the mesh generated at ti will be adapted
at each ti,k. The mesh is then moved using the algorithm described in section A according to the prescribed
geometry movement. To perform mesh optimizations without losing the anisotropy of the adapted mesh, the
metric of the previous fixed-point iteration is used to compute qualities. The other steps of the algorithm
(the computation of the global normalization term, the computation of the metrics from the Hessian-metrics,
the generation of the adapted meshes and the interpolation steps) remain unchanged.
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V. Numerical examples

We now present several CFD simulations to illustrate the moving-mesh unsteady fixed-point adaptation
algorithm, that demonstrate the efficiency of this algorithm. All the examples are in three dimensions.

A. The flow solver: Wolf

The following examples were run using our in-house flow solver, Wolf.6 It solves the compressible Euler
equations in the ALE framework, required by the movement of the mesh. A vertex-centered Finite Volume
scheme is used, with an HLLC approximate Riemann solver to compute the numerical fluxes. A high-order
scheme is derived according to a MUSCL type method combined with a generalization of the Superbee
limiter with three entries. As regards the temporal accuracy, the considered SSPRK schemes are based on
the strict application of the Discrete Geometrical Conservation Law (DGCL).

B. An shock tube in expansion

The first example is a variation of the classical Sod schock-tube problem, with a tube being homogeneously
expanded in one direction. This a priori simple test case shows that the refined regions follow the physical
phenomena of interest, and that the anisotropy is well preserved despite the mesh being moved.

The tube initial dimensions are [0, 1]×[−0.15, 015]×[0, 1], and the gas is split in two regions: for x ≤ 0.5 the
state is (ρleft,uleft, pleft) = (1,0, 1) whereas for x > 0.5 the state is (ρright,uright, pright) = (0.125,0, 1).
The gas is then left to evolve freely, and the classical rarefaction wave, contact discontinuity and shock
discontinuity appear and evolve in the tube. The tube is expanded to the right with the following movement
imposed to the mesh vertices: 

x(t) = x0 + 1.5x0 · t
y(t) = y0

z(t) = z0

The simulation is run until time t = 0.66 so that the size of the tube doubles. Special transmitting conditions
are prescribed in x = 0, so that the rarefaction wave can go out of the tube. For that case, 20 sub-intervals
were prescribed, and 4 fixed-point iterations were performed. The density field is used as sensor for the
adaptation. A simplified space-time complexity of 400, 000 was prescribed, and the meshes have an average
size of 21, 000 vertices. [TODO]

The meshes at different time steps and the corresponding solution are shown in Figure 6. Not only do
the waves evolve in the refined bands, but those bands also move as the tube is expanded. The adapted
regions are transported together with the mesh in accordance with our algorithm, that associates metrics
to a moving vertex rather than to a fixed position in space. In Figure 8, we zoom on the solution at the
beginning and the end of the eighth sub-interval to stress the evolution of the physical phenomena inside an
adaptation band during a sub-interval. In Figure 7, we show the mesh at the beginning and at the end of
the last sub-interval, to emphasize the movement of the adapted regions together with the movement of the
tube boundaries, still preserving the anisotropy.

C. A moving ball in a shock tube 3D

In the second example, we take the same shock tube as previously, but we add a moving ball inside the tube,
that interacts with the shock the contact discontinuity.

More precisely, the dimensions of the tube are: [0, 1] × [−0.15, 0.15] × [−0.1, 0.1]. At initial time, the
gas is split in two states: for x ≤ 0.5 the state is (ρleft, uleft, vleft, wleft, pleft) = (1, 0, 0, 0, 1) whereas for
x > 0.5 the state is (ρright, uright, vright, wright, pright) = (0.125, 0, 0, 1). A ball of radius r = 0.02 is immersed
in the gas, its center being in position (0.75, 0, 0). The tube is fixed, while the ball has a constant speed
vball = −0.3 ex. The simulation is run until final time tf = 0.25. After a while, the ball goes through
the shock and the contact discontinuity, creating complex patterns both in front of it and in its wake. We
expect all these physical phenomena to be captured correctly by the multiscale adaptation algorithm. For
that case, 40 sub-intervals were prescribed, and 5 fixed-point iterations were run, and the density field is
used as sensor for the adaptation. A simplified space-time complexity of 3, 000, 000 was prescribed, and the
meshes have an average size of 70, 000 vertices with a size range going from 50, 000 to 130, 000 vertices.
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Figure 6. Adapted meshes and density solutions for the two expading shock tube case at time 0, 0.5 and 0.66.
Cuts into the volume mesh are made along the plane y = 0.

Figure 7. Mesh at the beginning (top) and end of the eighth sub-interval. One can see the bands are move
forward as the tube is being expanded.

Figure 8. Zoom on the mesh and solution at the beginning (top) and at the end (bottom) of the last sub-
interval. Once can see the two waves move forward in the adapted bands.

The meshes at different time steps and the corresponding solution are shown in Figure 9. Since we are
interested in the interaction of the ball with the shock and contact discontinuity, we only show the part
x > 0.5 of the tube. The mesh shown are the meshes at the end of the sub-intervals, i.e. the meshes that
have been moved. The adaptation allows us to capture the two waves with a good accuracy all along the
simulation, but also to recover some more complex features around the ball. It is interesting to note that
the shock is perfectly meshed as soon as the ball has gone through it. A closer look at the surface of the
ball also shows that it is adapted with highly anisotropic elements, and the anisotropy close to the surface
is well preserved.

For this simulations, allowing mesh optimization (smoothing and edge/face swapping) is mandatory,
otherwise, the shearing created by the advance of the ball in the volume mesh quickly creates invalid elements.
Consequently, it is crucial to compute the quality criteria that trigger optimization with regards to the actual
metric of the mesh. In this case, it is clear on the figures that the swaps didn’t break the anisotropy in the
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anisotropic adapted regions.

Figure 9. Adapted meshes and density solutions for the ball in a shock tube test case, at times 0.09375, 0.125,
0.19375 and 0.25. Cuts into the volume mesh are made along the plane y = 0.

D. Two F117 aircraft flight paths crossing

This case is an example of moving mesh simulation, described in Barral.6 It models two F117 aircrafts having
crossing flight paths, translating and rotating. This problem is difficult in terms of mesh movement and it
illustrates the efficiency of the topology-change moving mesh algorithm in handling large displacements of
complex geometries without any remeshing. When both aircrafts cross each other, the mesh deformation
encounters a large shearing due to the opposite flight directions. The topology-change mesh deformation
algorithm handles easily this complex displacement thanks to the mesh local reconnection.

As concerns the fluid simulation, the aircrafts are moved at a speed of Mach 0.4, in an initially inert
uniform fluid: at t = 0 the speed of the air is null everywhere. Transmitting boundary conditions are used
on the sides of the surrounding box, while slipping conditions are imposed on the two F117 bodies. After a
short phase of initialization, the flow is established when the two F117s pass each other. Accoustic waves
are created in front of the F117s, and the density fields around the aircrafts and in their wake interact.
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The adaptation parameters are the following: the adaptation is performed on the density field, the
time interval is divided into 50 sub-intervals, 5 fixed-point iterations are performed, and a simplified space-
time complexity of 20, 000, 000 is targeted. The meshes have between 170, 000 and 420, 000 vertices, for an
average mesh size of 380, 000 vertices. The smallest altitude generated is 5.5 e−4 at the beginning of the
tenth sub-interval, for a domain of dimension [−1800, 2400]× [−800, 1000]× [−1200, 1200]

The meshes and density solutions at different time steps are shown in Figure 11. The meshes are well
adapted to the solution. Thanks to the adaptation, the trails of the F117s are captured far from the aircrafts,
and their interactions with the waves is clearly visible. The anistropy of the meshes is clearly visible, in front
of the aircrafts (corresponding to the acoustic waves created by their setting in motion at t = 0), and in their
wake, even if the anisotropic ratios are not so large, due to limitations in terms of computing power and time.
On Figure 10, a close up on the two aircrafts is made, that shows the adapted surface mesh and solution.
In this case again, a correct handling of the mesh optimization is necessary to preserve the anisotropy.

Figure 10. Close-ups on the surface mesh and solution of the two F117s.

VI. Conclusion

In this paper, a new space-time analysis of the error for time-dependent problems has been established
within the continuous mesh framework. It completes previous analysis, and allows us to correct the fixed-
point multiscale adaption algorithm for unsteady simulations. A new version of this algorithm has been
presented, where the normalization of the metrics and the computation of a mean Hessian-metric has been
updated, and details of its practical implementation have been given. The case of moving meshes, within
the range of body-fitted ALE simulations has then been addressed. The analysis leading to the optimal
ALE metric has been presented. This metric allows us to generate meshes that will remain adapted once
moved as required by the geometry movements. The integration of this metric to the mesh adaptation is
then direct if the appropriate form of the optimal ALE metric is used. Finally, several numerical examples
were shown in three dimensions, that validate the proposed approach: the adapted bands, corresponding to
the adaptation sub-intervals, are correctly moved in the same direction as the phenomena at stake, even if
the moving mesh algorithm moves vertices differently.

There is still a lot of room for improvement. In particular a quantitative analysis of the results of the
moving mesh adaptation algorithm has to be carried out. Some preliminary work studied the difference
between the ALE metric and the classical one in terms of mesh quality.5 However, the impact of the ALE
correction of the metric has to be evaluated within the whole adaptation process, as well as the accuracy of
the solution, and to a lesser extent the loss of accuracy due to the moving mesh. It is necessary to make
sure that no weaker phenomenon is left aside. At a longer term, an effort on the time discretization of the
adaptation algorithm also has to be made, to adapt the size of the sub-intervals, and control the sizes of the
elements during the movement. Finally, work on the moving mesh strategy will also be necessary in order to
run more complex simulations. Fluid-structure simulations have been run with this strategy,6 and we aim
at running adaptative versions of these simulations soon.
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17R. Löhner. Adaptive Remeshing for Transient Problems. Int. J. Numer. Meth. Engng, 75(1–3):195–214, 1989.
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19R. Löhner and J.D. Baum. Numerical Simulation of a Shock Interaction with Complex Geometry Three-Dimensional

Structures using a New Adaptive H-Refinement Scheme on Unstructured Grids. In AIAA-90-0700, 1990.
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thesis, Université Pierre et Marie Curie, Paris VI, Paris, France, 2011.

27C.C Pain, A.P. Humpleby, C.R.E. de Oliveira, and A.J.H. Goddard. Tetrahedral mesh optimisation and adaptivity for
steady-state and transient finite element calculations. Comput. Methods Appl. Mech. Engrg., 190:3771–3796, 2001.

28C.S. Peskin. Flow patterns around heart valves: a numerical method. J. Comp. Phys., 10:252–271, 1972.
29R.D. Rausch, J.T. Batina, and H.T.Y. Yang. Spatial adaptation procedures on tetrahedral meshes for unsteady aerody-

namic flow calculations. AIAA Journal, 30:1243–1251, 1992.
30J.-F. Remacle, X. Li, M.S. Shephard, and J.E. Flaherty. Anisotropic adaptive simulation of transient flows using discon-

tinuous Galerkin methods. Int. J. Numer. Meth. Engng, 62:899–923, 2005.
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Figure 11. Adapted meshes and density solutions for the two F117s test case at different time steps. Cuts
into the volume mesh are made along the plane y = 0.
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