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SUMMARY

We propose and analyze an algorithm for the robust construction of curved meshes in two and three dimen-
sions. The meshes are made of curved simplexes. The algorithm starts from a mesh made of straight
simplexes, and using a linear elasticity analogy applied on well-chosen data, one can generate a curved mesh.
Note that if the initial mesh has a boundary layer, this method allows to conserve it on the final mesh. This
algorithm is used on several airfoils in two and three dimensions, including a turbulent M6 wing. Copyright
© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We are interested in the simulation of steady compressible fluid problems by mean of a for-
mally high-order accurate scheme designed to use unstructured triangular/tetrahedra meshes. The
problem is formalized by the Navier—Stokes equations (laminar or turbulent) written in a domain
QcRYd=23A part of the boundary of €2, that we denote dS2;, corresponds to the solid
boundary, and the rest, denoted by d<2 , corresponds to the fluid boundary where typically, one
applies inflow/outflow conditions. On 9€2;, the velocity is set to 0, and in this paper, we assume
adiabatic wall.

Hence, the goal is to discretize the steady Navier—Stokes equations, which describe the evolution
of W = (p, pu, E, j1;)T, where p is the density, u is the velocity, and if ¢ is the specific internal
energy, £ = pe + % pu?. The variable 1 describes the variables needed for the turbulent model.
Here, we assume Spalart—Allamas model, so that u, is the turbulent viscosity

div(Fe(W) — Fy(W,VW)) = Su in Q (1a)
subjected to boundary conditions
u=0and VT -n=0 on 082 (1b)
and inflow/outflow boundary conditions

W = Wao 01 0Q . (1c)
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A METHOD FOR COMPUTING CURVED MESHES FOR CFD APPLICATIONS 247

In (1a), Sy, is the source term for Spalart—Allmaras model. In (1b), n is the inward normal vector,
Q2 is the solid boundary, and €2 is the fluid boundary, see Figure 1.

From the geometrical point of view, we are given a domain 2 C Rd, d = 2,3, in which boundary
can be parametrized by means of Bézier or non-uniform rational B-spline (NURBS) patches. In this
work, we assume that the patches are triangular (in 3D) or simple segments, see Figure 2, in 2D.

A huge amount of work by many researchers throughout the world is being done to design effi-
cient and robust algorithms for fluid problems with accuracy formally higher than the second order.
If we specialize to the compressible fluid problems only, examples are given by the DG methods,
see for example, among many other, [1-3], the finite element-like methods such as the Streamline
Upwind Petrok Galerkin (SUPG) method [4, 5], the isogeometric analysis method [6], or the residual
distribution methods [7, 8]. In this paper, we are interested in the residual distribution schemes.

However, it is known, because the seminal work by Bassi and Rebay [1], that the true accuracy
of a high-order method can only be revealed provided that the boundary is represented with at least
the same accuracy. This indicates that much effort is needed to be put on the generation of meshes
that fit well the boundaries, and this is a central point of the algorithm design.

This paper is mainly a contribution to provide an efficient and robust algorithm that is able to
construct, in 2D and 3D, curved meshes that fit exactly to a boundary, which is defined by mean of
quadratic Bézier or NURBS patches. We are not interested in discussing in full details the numerical
algorithm that we use to compute the numerical solution nor the structure of the fluid model, our
main interest is in the generation of curved meshes that fit exactly a given curved solid boundary.
We restrict ourselves to elements that are logical simplexes.

e

Figure 1. Simplified geometry for the boundary condition description.

Py

P
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Figure 2. Example of a parametrized domain. For any [P;, P;41], the curve is parametrized by a Bézier or
a NURBS curve.
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In fact, the construction of meshes by triangles and tetrahedra, while respecting the boundaries,
is a well-developed topic, see e.g. [9, 10]. However, the construction of curved meshes is not a
trivial matter, especially in the case of boundary layers and nonconvex domains. Indeed, when the
boundary of the domain is described with curves or surfaces and if the associated boundary mesh
is also composed of curves, the volumic mesh of the domain needs to be curved to obtain a valid
mesh (that means a mesh without crossing edges). A way to deal with this problem is to start
from a triangles/tetrahedron mesh with curved elements on the boundary and to search to make the
volumic mesh valid. There are several ways to do that: perform some local modifications on the
volumic mesh [10-14], propagate the curvature inside the domain with smoothing schemes such
as Laplacian, linear elasticity smoothing [15, 16], nonlinear elasticity smoothing [17], or use an
optimization algorithm [18].

The objective of this paper is to propose an entirely automatic and robust algorithm that is able
to construct valid curved meshes even in the case of boundary layer. It relies on two ingredients:
first, a remark on Bézier and NURBS approximations and then the appropriate use of a linear elas-
ticity analogy applied on a well-designed initial triangular/tet mesh. In this paper, we focus on the
quadratic case, but the algorithm can be, a priory, extended to any order.

We first start by describing quickly, because this is not the central point of the paper, the numerical
scheme we are going to use for the CFD applications. Then, we recall a few classical information
on Bézier and NURBS approximation then we describe the algorithm and analyze it. Finally, we
provide examples in two and three dimensions. We end by applying the method on two turbulent
airfoil configurations, in order to show that these meshes are suitable for CFD simulations.

2. ANUMERICAL SCHEME

We briefly sketch the numerical method. The details can de found in [19, 20].

Let us consider a tessellation 7, of Q with (curved) triangles or tetrahedra. We assume a confor-
mal approximation W” by quadratic element. We denote by K a generic element and o a generic
DOF. For each element K of 7y, the principle of the method is the following:

1. Compute the total residual
ox = [ (FWh = F (WHIWE) = i)

where, following [19], a continuous approximation of the gradient is evaluated. The best strat-
egy is using Zienckewicz and Zu optimal patch recovery, see [19]. The integral is evaluated
thanks to Gaussian formula incorporating the fact that the surface of the element is not planar.
This is basically the only place where the geometry of the element is needed.

2. Evaluate for each DOF o in K, a monotone residual @g’l K They must satisfy

Z MK — g
oeK

The description of <I>§1 g (that boils down to Lax—Friedrichs when the viscous and turbulent
terms cancel) is not necessary for the sake of this paper, see again [19-21].
3. We evaluate the high-order residuals @f x> Which also satisfy the conservation relation

Y ok = Pk
oek
The evaluation of @g x is done such as in the inviscid limit, the solution is non-oscillatory, see
[22]. This can be achieved thanks to the knowledge of {@g” K} e
’ XS
For steady problems, the high-order residuals applied to the interpolation Wa’]’,]7 of a smooth

solution satisfy CDg K (Waﬁp) = O(h**9) to guaranty that the scheme is third-order accurate.
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Similarly, for each boundary element I', one can define the total boundary residual and high-order
boundary {CDgF} . residuals that enable the weak boundary conditions (1b) and (1c). Again,
> o

Gaussian quadraturé formula is used. The details are not useful for our discussion, see [20, 21] again.
Once this is done, the numerical solution is asked to satisfy for any o

> ol = ifo ¢0Q,
K,0eK
)
Z CDCI,{,K + Z @gr =0 else.
K,0eK Ioel

The system (2) is solved by a nonlinear LUSGS algorithm.

3. BEZIER AND NURBS APPROXIMATIONS

Throughout the paper, we only consider Bézier and NURBS approximations with triangular patches.
We recall their structure on simplexes, the case of linear, triangular, and tetrahedral elements are
only particular cases.

Let us consider K C R? a simplex, that is, the convex hull of d 4 1 independent points
{P1,..., Pgq1}, thatis,

I
Vol(K) = = (det (PdHPl,...,PdHPd)j > 0. 3)

We may assume that the numbering of the vertices is such that det (Pd+1 Py, ..., Pgyq Pd) > 0.

We can define barycentric coordinates, that is, for any M € RrRY , a family of real numbers
A(M), ..., g4+1(M) such that

d+1
Yo M) =1
i=1
d+1 (42)
M= L(MP.
i=1
These numbers are unique and A; (M) are equal to the volume of the convex hull {Py,..., Pi_q,

M,Piiq,..., Pg4q} divided by the volume of the convex hull {Py,..., Pj41}. This leads to
formula (4b), where j # i is arbitrary

—_—

det(Pjpl,...,PjPi,...,Pde)

Ai(M) = — — . (4b)
det (P, Pi..... P Pq)
and for any j,
—
PjPiZPjM. (4C)
Let us introduce a few more notations. If « = (&y,...,0441) is a multi-index (o; € N), we

define its length by || = Zid:f aj. T is, in the sequel, the set of multi-indices of length n. If
X = (X1,...,X4+1), we set

o . 0] 02 Ag+1
X" =X X, ...xd+1 .
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We also define

(|a|) _ lex]!
o H?:lla,-!

Let c¢(«) be the coefficient of x* in the development

n

(0§xi) = > clax”.

i=1 o,|lal=n

The Bézier polynomial is

B (M) := c(a) T A (M)% ©)
This family of polynomial defines a basis of P, (x1,...,Xxgz+1) in which the dimension is Nj =
> =0 (p +Z B 1). It satisfies
By(M) = 0forany«,|¢| =nand M € K
> BI(M)=1. (6)
a,lal=n
Let us define the NURBS now. We consider a weight v = (a)ml e, Wg N[;) with w, > 0 for all
o, multi-index of length 7 in N¢*1, Then the NURBS basis functions are
n
N = Z“’—’ZaB %
o o’|=n
Again,
NJ(M)=O0forany o, || =nand M € K
> ONJM) =1 ®

o,|la|=n

In the following, we denote by ¢ either the functions B} or N/}. They satisfy the relations (6)
or (8)

¢y(M)=0forany o, |e| =nand M € K
Y eaM) = 1. ©)

o,|lal=n

We are interested in the approximation of a function ¥ defined on K with values in R?, p > 0.
Given a family of control points P = {Py € R?, o € T}, we approximate by

V(M) ~ Y Pyl (M).

a,u€L

Of course, the control parameters have to be chosen carefully for the approximation to
be meaningful.
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We immediately get the following property

Property 3.1 (Convex hull property)
For any M € K, the relations (9) imply that ¢ (M) lies in the convex hull of P.

This property is not true in the case of Lagrange interpolation because the basis functions are not
always positive, except in the case n = 1, where they are identical to the Bézier polynomials.

Property 3.2
If K is a segment, the tangent vectors at the ends of the curve ¥ (K) have the same direction as the
first and the last control polygon spans, respectively.

4. DESCRIPTION AND ANALYSIS OF THE ALGORITHM

Let us further investigate the convex hull Property 3.1 in the case p = d. In this case, a simplex K
is mapped via

M e K y(M)

onto a ‘curved’ simplex K, see Figure 3.

On this figure, we have represented the points of barycentric coordinate @ = (‘%, e “Td) on
K and their image on K. If the control points {P;}, that are the image of the Lagrange points on
the faces, have disjoint convex hulls, then the images of the faces will not intersect, thanks to the

Figure 4. Transformation of two simplexes or a quadratic Bézier. The control points are represented in red.
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Py Py

Py

P'I P3

Py P;

Figure 5. Curved triangles: on the left, the triangle is valid; on the right, the triangle is invalid.

Property 3.1. Considering, for example, the Figure 4, where two simplexes are represented, we see
that under the same assumption, the two element images of mapping ¥ g, and ¥ g, will not intersect,
because the image of a face is a face and the mapping continuous.

This condition, although valid, is very restrictive. In Figure 5, this condition says that the left
triangle is invalid even if none of its boundary edges crossed. Indeed, the convex hull of the curve
P P, intersects the convex hull of the curve P; Ps.

It is possible to define a less restrictive condition based on the convex hull property and the
property of the curve/surface tangency at its control polygon (Property 3.2). So on each vertex of
the simplex, if we consider the angle between the two tangents at the boundary faces, we know that
if this angle is positive, the boundaries don’t cross. This criterion is less restrictive and more easy to
verify. It is enough to check the orientation of the subsimplex composed by the vertex and the two
adjacent control points. For example, in Figure 5, we have to check the triangles P; P7 Py, P7 P, Ps,
and Pg P3 Pg. That leads to conclude that the left triangle is valid and that the right triangle is not
valid (the area of the triangle P; P; Py is negative). This remark is at the core of our method.

Remark 4.1 (about the Jacobian of the transformation)

The previous validity criterion does not imply that the mapping between K and K is unique. Thus,
it is possible to have no crossing edges and that the Jacobian of the transformation will be negative
somewhere on the triangle. To avoid this problem, it is possible to check an additional criterion on
the Jacobian. Indeed, if we calculate the Jacobian of the mapping using the barycentric coordinates
A;, we find

J = (det(ajs,a34) + det(azg, az6)) A1 Ay + det(ags, ae) AT
— (det(arq, as4) + det(ase, a26)) A1 A3 + det(azs, azs) A3
— (det(azs, as4) + det(ase, a34)) A3 Ay + det(ase, asqg) A3,

where we have set a;; = 2(P; — P;), it is a vector.
Hence, a sufficient condition for the curved element to be valid is

det(al6, 326) >0 det(324, 334) =0 det(356, 354) =0

det(al6, a34) +det(324, 325) >0 det(as4, 315) +det(325, as6) =0 det(354, a34) +det(a34, 356) =0,
10)

with at least one of these terms strictly positive.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 76:246-266
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One can notice that the three first conditions are equivalent to compute the sub-area associated
to the triangle vertex. Thus, to check uniqueness of the mapping, we only need to verify three
additional conditions.

The same reasoning can be done in three dimensions that lead to verify the sub-volumes
associated to the vertex and 16 others conditions.

We describe the idea on the simpler case of quadratic Bézier to begin with.

Consider a domain €2 with boundaries parametrized with Bézier functions. We first design a mesh
with linear elements with one meshing tool. In our case, we have used GMSH [23] and MMG3D [24].
The idea is to deform this linear mesh. If one starts to deform only the linear boundary elements to
produce curved boundary elements corresponding to the parametrized geometry, we may run into
problems because curved faces may intersect volumic elements. An example of such problem is
shown in Figure 6: on the left, a portion of the straight mesh is drawn; on the middle, the figure
represents the same mesh with a curved representation of its boundary. One can see that the curvature
of the boundary edges leads to crossing edges, this mesh is invalid.

So starting from the linear mesh and the parametrized geometry, we want to propagate the bound-
ary curvature into the volumic mesh. To do that easily, we work on a subdivided mesh in which the
vertexes are considered as the control point of our curved mesh. Thanks to Property 3.1 and 3.2, we
know that if this subdivided mesh is valid, then the associated curved mesh will be also valid (no
crossing edge). The main advantage to consider this subdivided mesh is that we only need to deal
with linear elements: the volume evaluation of elements is very easy, hence, it is easy to know if
this mesh is valid or not. Anticipating a bit the rest of this paper, the second reason is that we have
to deal only with P! finite element (in a linear elasticity solver), instead of P2, quadratic Bézier

(a) Straight mesh. (b) Straight mesh + boundary curves.

(c) Valid curved mesh.

Figure 6. An example of invalid curved mesh. (a) Straight mesh, (b) straight mesh + boundary curves, and
(c) valid curved mesh.
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or NURBS into a linear elasticity solver, this is much cheaper and we have a better control on the
individual behaviors of the control points.

In other words, instead of deforming the linear elements, we first subdivide them by adding the
midpoints of edges, more generally the Lagrange points of the elements. Here, we interpret them as
control points. Then, we subdivide the elements to obtain the subdivided mesh, see Figure 7, and
we deform it. On the curved boundary, we impose that the control points that define the boundary
are exactly recovered. If the new mesh is legal, with valid elements, then the mesh obtained from
the new location of control point will also be legal, thanks to the Property 3.1. In Figure 6(c), a valid
curved mesh is represented.

The main issue now is how to deform a linear mesh (obtained by subdivision of an initial P!
mesh), so that

1. The boundary points of this mesh match to the control points defining the curved surface.
2. All the elements of the deformed mesh are legal.

One way of achieving this goal is to use a linear elasticity analogy. Consider a material with Lamé
coefficients A > 0 and u > 0. The solution can be obtained by solving on the initial mesh Tho the
linear elasticity problem

div (Atr(Vu) + u(Vu + VuT)) =0 on Q

(11)
u = gond2.
(a) (b)
Initial P! mesh. Initial subdivided P! mesh.
Cr
Cs
Cy
L]
L]
Cy
Cs
Cy
(c) (d)
Deformed subdivided mesh. Final curved mesh.

Figure 7. Illustration of the different steps of the algorithm. In red is plotted the boundary of €2. It is

parametrized by quadratic Bézier curves. An initial mesh is represented in (a). We introduce the mid points

of the edges and refined the initial P! mesh, see (b). This mesh is then deformed so that the control points

that define the curved boundary are exactly matched, see (c). Then, the internal curved boundaries are com-

puted using the control points, see (d). (a) Initial P! mesh; (b) initial subdivided P! mesh; (c) deformed
subdivided mesh, and (d) final curved mesh.
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The deformed mesh 7;1D of control points is obtained by shifting the initial vertexes of 7;? of u,
that is,

MP vertex of 7;,D if and only if there exists (a unique) M° € 7;? such that MP = M° + u(M°).
(12)

Thus, the Dirichlet boundary condition g is obtained such that if M? € 0QP, let M° € 9Q0 the
initial point before deformation

g(M®) :=MP — MmO,

Unfortunately, the deformed mesh may not be legal if the deformation is too large. To overcome
this problem, we notice that the problem (11) is linear. Let us denote the mapping between g and u
by u = L(g).If 6 € R, we have

Ou = L(Og).

A mesh is legal if for any element K° = convex (A?l, - A?d+1) of 7,2 the set

KP = convex (A?1 +u(49)..... A?d—i-l tu (A?d+1))

has the same orientation as the K°. This condition is violated in particular when the volume of K ”
changes sign. Considering the mapping

wgo : 0 — Vol (convex (A?1 +0u(A}), ... AL, + Ou (A?d+l))) ,
we see that wgo(0) = Vol(K®) > 0, and this is enough to find the smallest § for which there

exists one K such as wgo(6) = 0. This amounts to solving a quadratic (in 2D) or a cubic (in 3D)
polynomial on all the simplexes of 7° and to look for the smallest root.

Figure 8. The three decompositions for the tetrahedron.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 76:246-266
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For obvious numerical reasons, we cannot accept elements with zero volume. It is necessary to
strengthen a bit the previous criteria; if w,,;, is the smallest volume of elements on the initial mesh,
we impose wgo(0) > A wmin. In practise, we have chosen A = 0.9.

The algorithm is thus the following:

0. Create the subdivided mesh 77°.

1. Solve for g in 7°.

2. Look for the smallest 6, say 8, such that for any 6 € [0, o[, wg0(8) > A Wi, for any K in
779, then

e If 6y > 1, the final mesh is obtained, go to step 3.
e If 6y < 1, then update the mesh following (12), denote this new mesh as 7° and go to
step 1.

3. Recompose the curved mesh from the final 7.

We cannot prove if the algorithm is converging, but all the experiments we have done show a very
fast convergence, even for very deformed final meshes. The next section reports some of the tests
we have done.

Remark 4.2 (About the creation of the subdivided mesh)

If the subdivision of the P! mesh by adding the Lagrange points is unique on dimension two, this
is not true on dimension three. Indeed, each tetrahedron is decomposed on eight tetrahedra, four
of them are composed by one vertex of the P! tetrahedron and the middle of its adjacency edges;
for creating the four others, there are three possible configurations, see Figure 8. During the first
step of the algorithm, we have to make a choice and we decide for each tetrahedron to take the
configuration composed with the tetrahedra having the maximum volume. In severe configurations

(a) Curved surface mesh.
./1 &

~ N \ 2% L

(b) On the left: zoom on the curved surface, on the right: volumic cut on the tetrahedron.

Figure 9. Meshes for a mechanical piece. (a) Curved surface mesh and (b) on the left: zoom on the curved
surface, on the right: volumic cut on the tetrahedron.
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(such as turbulent boundary layers), we may use this variety of choice during the simulation to
facilitate the convergence.

Remark 4.3 (About mapping uniqueness)

To ensure that the mapping is unique, one can add to the previous algorithm a step 2, which con-
sists to find the smallest 6;,. such as the Jacobian becomes negative and to update the mesh of
min (0o, jac).

| 4

(a) P1 mesh ; external curved surface.

A

(b) Ail:plane.

(C) Zoom on the airplane.

Figure 10. Meshes for airplane test case. (a) P1 mesh; external curved surface; (b) airplane, and (c) zoom on
the airplane.
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5. EXAMPLES

Many examples on two and three dimensions have been performed. In this paragraph, we explain
some of them to demonstrate the potential of our method.

In this work, we use Sy, the scaled Jacobian measure defined in [13] to evaluate if an element is
valid or not. As shown in [18], this measure does not allow to ensure that a curved element has a
nice shape or not but it is commonly used to detect the invalid elements.

We note & the coordinates in the parametric space, E an element of this space and 7T'(§) the
transformation between E and the element (which may be curved or not) in the physical space. We
denote by Jr the Jacobian of 7" and | J7 | the determinant of this Jacobian. Then, the scaled Jacobian
measure is defined by

min|J7 (§)]
Sy = % (13)

Because the Jacobian of the transformation is constant for a straight element, S; = 1 in this case.
If Sy is close to 0, this means that some element is very slim. If Sy < 0, the element is not valid
(negative volume).

(a) Initial straight mesh. (b) Final curved mesh.

Figure 11. Boundary layers test case. (a) Initial straight mesh and (b) final curved mesh.

3
g
£
-
2
0.2 0 02 04 06 08 1 1.2
Scaled |acobian value
(a) Zoom on boundary layer test case. (b) Scaled Jacobians of last curved mesh.

Figure 12. Analytical boundary layers test case. (a) Zoom on boundary layer test case and (b) scaled
Jacobians of the last curved mesh.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 76:246-266
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5.1. Isotropic curved mesh examples

Most of the isotropic P! mesh can certainly be transformed into a curved mesh without any problem
if the deformation between the piecewise linear boundary and the curved one is not too large because
the curvature of the boundary does not create invalid elements. However, using linear elasticity
analogy allows to generate better meshes, and as we see in this section, the method is quite robust.

5.1.1. Mechanical part. In this example, we consider a mechanical part composed of several holes
and cylinders. This mesh contains 60 606 vertexes, 14 240 triangles, and 50 665 tetrahedra. When
the boundary is curved without modifying the volumic mesh, there are five wrong tetrahedra.
The algorithm succeeds with two iterations. A volumic cut into the curved tetrahedron is shown
in Figure 9.

5.1.2. Airplane. We consider an airplane in a large bounding box, see Figure 10. The initial mesh
contains 77 061 vertexes and 443 458 tetrahedra, and when we curve the boundary mesh only,
the volumic mesh contains one invalid element. For this test case, we need nine iterations of our
algorithm to obtain a valid P? mesh. The invalid element is almost a sliver: its volume is quasi null
and its vertexes are quasi coplanar. The final P2 mesh is valid: the minimum scaled Jacobian is
positive but we can remark that the associated P! mesh is invalid (it contains elements with negative
volume).

(a) Airfoil.

(b) Zoom on the straight mesh with (c) Zoom on the final curved mesh.
curved boundary in red.

Figure 13. Boundary layer-type mesh for an airfoil. (a) Airfoil; (b) zoom on the straight mesh with curved
boundary in red, and (c) zoom on the final curved mesh.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 76:246-266
DOI: 10.1002/1d



260 R. ABGRALL, C. DOBRZYNSKI AND A. FROEHLY

5.2. Boundary layers and anisotropic meshes

Let us consider now examples of mesh with boundary layers. This is a priori more challenging
because we want to preserve the structure of the boundary layer mesh. The original mesh consists,
near the boundary, of succession of layered cells. We want to keep this structure.

5.2.1. Analytical example. In this example, we apply a large deformation on a very stretch mesh.
The initial mesh is represented in Figure 11(a). It has 400 vertexes and 720 triangles. We want to
map the internal square onto a clover-like shape, see Figure 11(b). Obviously, the deformation is so
large that one cannot only deform the boundary.

The mesh represented in Figure 11(b) is computed with our algorithm. We need six iterations
only to obtain a valid curved mesh representing exactly the clover-like shape. All the elements are
valid and most of them have a scaled Jacobian larger than 0.9, a total of 704 elements over the 720
elements of the mesh, see Figure 12(b).

Figure 12(a) shows a zoom in a part of Figure 11(b) to see that the structure of the initial mesh is
conserved.

5.2.2. Three-component wing. In this example, we generate a boundary layer-type mesh for a three-
component wing with GMSH. The mesh size normal to the wall is 0.005, the mesh size tangent to
the wall is 3 (hence, the aspect ratio near the boundary is 600) and the bounding box of the domain
is [-4615.2,5384.8] x [—4985.3,5014.7]. Hence, the mesh is very stretched along the wing, see

(a) Zoom on straight mesh with  (b) Zoom on the final curved mesh.
curved boundary.

(c) Zoom on straight mesh with (d) Zoom on the final curved mesh.
curved boundary.

Figure 14. Boundary layer-type mesh for an airfoil: zoom. (a) Zoom on straight mesh with curved boundary;
(b) zoom on the final curved mesh; (c) zoom on straight mesh with curved boundary, and (d) zoom on the
final curved mesh.
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Figure 13. The mesh is composed by 41 391 vertexes and 20 023 triangles. In Figure 13(b), we
can see that the curved boundary crosses many elements because of their thickness near the wall.
The final curved mesh is obtained with our algorithm with one iteration. We can see (Figure 13(c))
that the mesh is valid and the structure of the boundary layers is conserved. Moreover, even in the
zone where the mesh was valid, such as in Figure 14, the resolution of the linear elasticity system
improves the mesh, the thickness of the boundary layer is the same as in the initial mesh.

(@) Mesh of the wing : P1 mesh.

(b) Zoom on the volumic mesh around the wing.

(¢) Zoom on the wing. On the left: P1 mesh, on the right: curved surface.

Figure 15. Meshes for Dassault wing test case. (a) Mesh of the wing: P1 mesh; (b) zoom on the volumic
mesh around the wing, and (c) zoom on the wing. On the left: P1 mesh, on the right: curved surface.
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5.2.3. M6 Wing. We consider an M6 wing meshed with boundary layers. The initial straight mesh
contains 77 061 vertexes, 13 776 triangles, and 443 458 tetrahedra. This mesh is originally designed
for the turbulent simulation of Section 6.2, it is very fine and very stretched around the wing (see
Figure 15). There are many invalid elements (more than 100) when we try to curve the surface
mesh only. Our strategy of elasticity analogy succeeds in only one shoot. In Figure 15, we give
some snapshots of the initial straight mesh and the final curved mesh in order to see the structure of
the mesh.

6. APPLICATION TO TURBULENT FLOW PROBLEMS

Several examples have been performed in two and three dimensions using the numerical scheme of
Section 2.

6.1. RAE2822 case

This is the classical RAE 2822 case. The free stream Mach number is M = 0.734, the angle of
attack is 2.79°, and the Reynolds number is 6.5 x 10°. Again, we start from a P! mesh, apply our
algorithm, and obtain the mesh displayed in Figure 16. The grid has 161 192 elements. The Mach
number is shown in Figure 17. Figure 18 shows a comparison, for the pressure coefficient, between
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Figure 16. Quadratic mesh for the RAE2822 problem.

Figure 17. Mach number distribution, RAE2822 problem.
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Figure 18. (a) Pressure coefficient, comparison between experimental data, results obtained with a P! mesh
and the quadratic mesh; (b) split of a P2 element (dotted lines) into four P! linear elements.

p: -1.70 -1.20 -0.70 -0.20 0.30 0.80

Figure 19. C), coefficient.

experimental results, results obtained by subdividing the quadratic elements into linear ones (see
Figure 18(b)) and this quadratic mesh.

6.2. ONERA six-wing case

We consider the M6 wing described in Section 5.2.3. The numerical scheme sketched in the previous
paragraph is used for solving the following turbulent case:

e Inflow mach number: My, = 0.8395,
o Angle of Attack: o = 3.06°,
e Reynolds number: Re = 11.72 x 10°.

The pressure coefficient C, over the wing is displayed in Figure 19. The cross section of the
pressure coefficients at different locations on the wing is displayed in Figure 20 and compared with
the experimental results.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 76:246-266
DOI: 10.1002/1d



264 R. ABGRALL, C. DOBRZYNSKI AND A. FROEHLY

T T T LIS L B B B B B
[ o 2b=20 ] [ 2b=44 ]
1F a Numerical | 1F % a Numerical —
I a Experiment: [ & a a Experimenl:
a o am @8
05 = wmnworeg®®® " 1 05p,; W . .
I 6oy A a TLY : N
Q [e fan®” “emyy Q gooe"" o ]
9 O o M%A@m - ? O-;@Wn ﬁﬁé’% -
[ o [ Twg. ]
[ [2 ]
-0.5 -% B -0.5}F B
e ] ]
'3 g ]
b 1 1 1 L] -1, 1 1 1 1 L]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/c x/c
:|:q;‘ L B B B o ‘: :|2&;u; L L B B o ‘:
1F kﬁa a Numerical | 1o ""oong, a Numerical -
& ) a Experiment I IN Experiment
[ @80 i [ B, ]
05fs T, . 0.5} ¢ .
a Y 1 2 mn““:’@‘a ]
sos " o [ [ ™™ LS ]
8— b g s, 2 [ % P, 1
T O g L. - T o4& B -
[ A ST r T, ]
% o
& i 4
0.5F B 0.5F 4
,Dj 4 - @ .
[4 ] [4 ]
| g | 8 1
U 1 1 L1 1 L] b 1 1 L1 1 L]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/c x/c

Figure 20. Cross section of the pressure coefficient at 20%, 44%, 65%, and 80% of the chord compared with
the experimental results.

7. CONCLUSIONS AND PERSPECTIVES

In this paper, we have developed an algorithm that is able to deform linear P! meshes onto valid
quadratic ones. It assumes that the exact boundary surfaces are known (and are quadratic). This
algorithm uses a linear elasticity analogy, but instead of using it with P? Lagrange element, we apply
it on a linear mesh with vertexes that are interpreted as the control points of Bézier (or NURBS)
elements. This is much less expensive in terms of CPU cost, and also, in practice, the algorithm
reveals to be very robust. No parameter is needed and the procedure is fully automatic.

The resulting curved mesh respects exactly the boundary. The generation of such curved meshes
is automatic and without user-defined parameter. The quality of the elements is good enough to
perform CFD simulations, including when boundary layers exist.

In all the examples we have considered so far, the surface description is of good quality. It
is likely that some more work is needed when the surface description is not of enough quality
or when the initial volume mesh is not of sufficient quality too. The extension to other type
than simplexes seems feasible but this has to be evaluated, as well as the case of higher than
quadratic elements.

APPENDIX A. HIGH-ORDER MESH FILE

To manage high-order meshes, we use the ASCII MESH format with some added keywords

e Order where k is the order of the mesh.
e NumberOfP1Dofs ndof with ndof the number of DOF of the associated P! mesh.
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e Weights
np
w1

Wpp
e PkEdges
e PkTriangles
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