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Summary

A frequent configuration in computational fluid mechanics combines an
explicit time advancing scheme for accuracy purposes and a computational
grid with a very small portion of much smaller elements than in the remain-
ing mesh. Two examples of such situations are the travel of a discontinuity
followed by a moving mesh, and the large eddy simulation of high Reynolds
number flows around bluff bodies where together very thin boundary layers
and vortices of much more important size need to be captured. For such config-
urations, explicit time advancing schemes with global time stepping are very
costly. In order to reduce this problem, the multirate time stepping approach
represents an interesting improvement. The objective of such schemes, which
allow to use different time steps in the computational domain, is to avoid
penalizing the computational cost of the time advancement of unsteady solu-
tions which would become large due to the use of small global time steps
imposed by the smallest elements such as those constituting the boundary
layers. In the present work, a new multirate scheme based on control volume
agglomeration is proposed for the solution of the compressible Navier-Stokes
equations possibly equipped with turbulence models. The method relies on a
prediction step where large time steps are performed with an evaluation of
the fluxes on macro-cells for the smaller elements for stability purpose, and on
a correction step in which small time steps are employed only for the smaller
elements. The accuracy and efficiency of the proposed method are evaluated
on several benchmarks flows: the problem of a moving contact discontinu-
ity (inviscid flow), the computation with a hybrid turbulence model of flows
around bluff bodies like a tandem cylinders at Reynolds number 1.66× 105 ,
a circular cylinder at Reynolds number 8.4× 106, and a flow around a space
probe model at Reynolds number 106.
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1 INTRODUCTION

A frequent configuration in CFD calculations combines an explicit time advancing scheme for accuracy purpose and
a computational grid with a very small portion of much smaller elements than in the remaining mesh. Two typical
examples are the following:
A first example is the hybrid RANS/LES simulation of high Reynolds number flows around bluff bodies. In that

case, very thin boundary layers need be addressed with extremely small cells. When applying explicit time advancing,
the computation is penalized by the very small time-step to be applied (CFL number of order 1). But this is not
the only interesting region of the computational domain. An important part of the meshing effort is devoted to large
regions of medium cell size in which the motion of vortices need be accurately captured. For these vortices, the
efficient and accurate time-step is of order of the ratio of local mesh size by vortex velocity. We can apply an implicit
scheme with such a time-step, which would produce a local CFL of order 1 for the vortices advection and a local
CFL of order hundreds for the boundary layer. However, this can have several disadvantages. First, of course, this
standpoint neglects completely a possible need of unsteady accuracy in the small-cell region. Second, considering the
need of accuracy for vortices motion on medium cells, highly accurate explicit schemes are easily assembled. This
includes the TVD third-order ones, and the standard RK4. In contrast, high-order implicit schemes are complex and
cpu consuming. More simple implicit schemes like BDF1/2 show much more dissipation than explicit schemes.
Our second issue concerns an important complexity issue in unsteady mesh adaptation. Indeed, unsteady mesh

adaptive calculations are penalized by the very small time-step imposed by accuracy requirements on regions involving
small space-time scales. This small time step is for example an important computational penalty for mesh adaptive
methods of AMR type1. This is also the case for unsteady fixed-point mesh-adaptive methods as in2.
In that latter method, the loss of efficiency is even more crucial when the anisotropic mesh is locally strongly

streched. In2, this loss is evaluated as limiting the numerical convergence order for discontinuities to 8/5 instead of
second-order convergence.
This limitation also applies to mesh adaptation by mesh motion. Our second practical example will concentrate on

the computation of an isolated traveling discontinuity. The discontinuity needs to be followed by the mesh, preferably
in a mesh-adaptive mode. Except if the adaptation works in a purely Lagrangian mode, an implicit scheme will
smear the discontinuity of the solution. An explicit scheme will applied a costly very small time step on the whole
computational domain.
In order to overcome these problems, the multirate time stepping approach represents an interesting alternative.

A part of the computational domain is advanced in time with the small time-step imposed by accuracy and stability
constraints. Another part is advanced with the larger time-step giving a good compromise between accuracy and
efficiency.

Bruno: une page de biblio?

The development of multirate schemes was first limited to ODEs and their application restricted to a low number
of special industrial problems. The first multirate method was due to the pioneering work of Rice3. In this work, a
system of first-order ODEs made of a latent component (slow variation) and an active component (fast variation) was
considered. Runge-Kutta type integration methods were developed, in which different integration steps (large for the
latent component and small for the active component) were used and appropriate extrapolations were made for the
latent components when the active components are integrated. Following this early work, many other developments
have been conducted in the field of multirate schemes and ODEs3,4,5,6,7,8,9,10,11,12,13,14. These multirate strategies
usually combine classic numerical integration methods (Backward Differentiation Formulas, Adams methods, Runge-
Kutta schemes, Rosenbrock-Wanner methods), in which a large integration step is used for the slow subsystem of
EDOs and a smaller integration step is used for the fast subsystem, with extrapolation/interpolation algorithms for
coupling active to latent parts and vice versa. In order to assess their stability and efficiency, these multirate meth-
ods were applied to (more or less large) systems of stiff ODEs, often derived from electric circuits problems. As an
example, in9, a multirate 4-steps Rosenbrock-Wanner method was implemented to solve systems of 250−4000 ODEs

0Abbreviations: CFD, Computational Fluid Dynamics
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which model electric circuits, leading to a gain in efficiency up to 2.8 compared to a classic 4-steps Runge-Kutta
method.
Fewer and more recent multirate works were conducted in the field of PDEs and hyperbolic conservations
law15,16,17,18,19,20, and rare applications were performed in Computational Fluid Dynamics (CFD)20,19 for which we
are interested. The first multirate work dealing with hyperbolic problems and applications in CFD was made by
Löhner et al.20. A domain-splitting method was developped in which the Euler equations are discretized by a second
order explicit finite element scheme (Taylor-Galerkin method of Donea) on a domain splitted in several subregions of
different grid resolution. For the time-integration of the equations, larger time steps are used in subregions of coarser
mesh fineness leading to an increase in efficiency. One- and two-dimensional test-cases were considered : a shock tube
problem, and supersonic inviscid flows around a circular cylinder and past a wedge. The results showed that the
method can handle shocks and that a speedup of 2 between the multirate scheme and its single-rate counterpart can
be reached.
Another work of interest, more recent, is the one of Constantinescu et al.15 which focuses on the development of mul-
tirate methods for the solution of one-dimensinal scalar hyperbolic equations. They propose strategies that are based
on an appropriate transition between subregions of different local stability conditions where a classic Runge-Kutta
scheme is used, by introducing buffer regions, where an adapted Runge-Kutta method is employed. The proposed
multirate partioned Runge-Kutta scheme is second order accurate, conservative and nonlinear stable. For the case of
the one-dimensional Burger equation, speedups up to 2.5 are obtained.
In the context of parallel computing, an interesting work on multirate methods is the recent one of Seny et al.19.
This work focuses on the efficient parallel implementation of explicit multirate Runge-Kutta schemes in the frame-
work of discontinuous Galerkin methods. The multirate Runge-Kutta scheme used is the approach proposed by
Constantinescu15. In order to optimize the parallel efficiency of the multirate scheme, they propose a solution based
on multi-constraint mesh partitioning. The objective is to ensure that the workload, for each stage of the multirate
algorithm, is almost equally shared by each computer core i.e. the same number of elements are active on each core,
while minimizing inter-processor communications. The METIS software is used for the mesh decomposition, and the
parallel programming is performed with the Message Passing Interface. The efficiency of the parallel multirate strategy
is evaluated on three test cases: the wind driven circulation in a square basin and the propagation of a tsunami wave
using a shallow water model (two-dimensional), and the acoustic propagation in a turbofan engine intake using the
linearized Euler equations (three-dimensional). It is shown that the multi-constraint partitioning strategy increases
the efficiency of the parallel multirate scheme compared to the classic single-constraint partitioning.
Bruno: une page de biblio?

Many works have been published on multirate methods in the field of ODE, see for example3,4,5,6,7,8,9,10,11,12,13,14,
but fewer works were conducted on multirate time advancing schemes for the solution of PDE and hyperbolic conser-
vation laws15,16,17,18,19,20, and rare applications were performed in Computational Fluid Dynamics (CFD), for shock
propagation in20 and for shallow water computations in19. Therefore, there is still much work to do to provide viable
multirate methods for CFD applications.
In this work, we propose a new multirate scheme based on control volume agglomeration which is at the same time

very simple and well suited to a large class of finite volume approximations. The agglomeration produces macro-cells
by grouping together several neighboring cells of the initial mesh. The method relies on a prediction step where large
time steps are used with an evaluation of the fluxes performed on the macro-cells for the region of smallest cells, and
on a correction step advancing solely the region of small cells, this time with a small time step.
We demonstrate the method in a numerical framework using a vertex centered approximation, the mixed finite

volume/finite element formulation.
Target applications are three-dimensional unsteady flows modeled by the compressible Navier-Stokes equations

equipped with turbulence models and discretized on unstructured possibly deformable meshes. The numerical
illustration involves the two above examples.
The proposed algorithm is described in Section 2. Section 3 provides some motivations of this construction. Section

4 gives several examples of applications.
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2 MULTIRATE TIME ADVANCING BY VOLUME AGGLOMERATION

2.1 Finite-Volume Navier-Stokes
The multirate time advancing scheme based on volume agglomeration is developed for the solution of the three-
dimensional compressible Navier-Stokes equations. The main assumption is that the computational domain is split into
computational finite volume cells such that cells intersect only by their boundaries and cover the whole computational
domain. The discrete Navier-Stokes system is assembled by into a flux summation Ψi summing convective and diffusive
fluxes evaluated at all the interfaces separating two cells. More precisely, the finite-volume spatial discretization
combined with an explicit forward-Euler time-advancing writes for the Navier-Stokes equations possibly equipped
with a k − ε model:

voli w
n+1
i = voli w

n
i + ∆t Ψi, ∀ i = 1, ..., ncell,

where voli is the volume of celli, ∆t the time step, and wni = (ρni , (ρu)ni , (ρv)ni , (ρw)ni , E
n
i , (ρk)ni , (ρε)

n
i ) are as usually

the density, moments, total energy, turbulent energy and turbulent dissipation at celli and time level tn, and ncell
the total number of cells in the mesh.

Given an explicit -conditionally stable- time advancing, we assume that we can define a maximal stable time step
(local time step) ∆ti, i = 1, ..., ncell on each node. The stable local time step is classically defined by the combination
of a viscous stability limit and an advective one according to the following formula:

∆ti ≤
CFL×∆l2i

∆l(||ui||+ ci) + 2 γ
ρi

(
µi

Pr + µti

Prt

) (1)

where ∆li is a local characteristic mesh size, ui the local velocity, ci the sound celerity, γ the ratio of specific heats,
ρi the density, µi

Pr + µti

Prt
the sum of local viscosity to Prandtl ratio, laminar and turbulent, and CFL a parameter

depending of the time advancing scheme, of the order of unity. Using the local time step ∆ti leads to a stable but
not consistent time advancing.
A consistent and stable time advancing should use a global/uniform time step defined by:

∆t = min
1,ncell

∆ti.

2.2 Inner and outer zones
We first define the inner zone and the outer zone, the coarse grid, and the construction of the fluxes on the coarse
grid, ingredients on which our multirate time advancing scheme is based. For this splitting into two zones, the user
is supposed to choose a (integer) time step factor K > 1.

• Definition of the Inner and Outer zones :

– We define the outer zone as the set of cells i for which the explicit scheme is stable for a time step K∆t

∆ti ≥ K∆t,

– the inner zone is the set of cells for which

∆ti < K∆t.

• Definition of the coarse grid :

– Objective :

∗ Advancement in time is performed with time step K∆t

∗ Advancement in time preserves accuracy in the outer zone
∗ Advancement in time is consistent in the inner zone



EMMANUELLE ITAM et al 5

In the example given below, the accuracy of the initial scheme can be defined as a third-order spatial
accuracy on smooth meshes, through the use of a MUSCL-type upwind-biased finite volume, combined
with a fourth-order time accuracy through the use of the standard Runge-Kutta scheme, see21 for details.

– A coarse grid is defined on the inner zone by applying cell agglomeration in such a way that on each
macro-cell, the maximal local stable time step is at least K∆t. Agglomeration consists in considering
each cell and aggregating to it neigboring cells which are not yet aggregated to an other one (Figure 1).
Agglomeration into macro-cell is re-iterated until macro-cells with maximal time step smaller then K∆t

have disappeared.

– Time-advancing on the macro-cells :

∗ We advance in time the chosen explicit scheme on the coarse grid with K∆t as time step.

• Construction of the flux on the coarse grid

– The nodal fluxes Ψi are assembled on the fine cells (as usual)

– Fluxes are summed on the macro-cells I (inner zone) :

ΨI =
∑
k∈I

Ψk (2)

Remark 1: Stability can be further reinforced by adding a smoothing of the coarse flux (inner zone) :

ΨI = (
∑

K∈V(I)

ΨKvolK)/(
∑

K∈V(I)

volK). (3)

We did not need to apply this flux-smoothing.2

fine cells i macro-cell I

FIGURE 1 Sketch (in 2D) of the agglomeration of 4 cells into a macro-cell. Cells are dual cells of triangles, bounded
by sections of triangle medians.

2.3 Multirate time advancing
The multirate algorithm is then based on a prediction step and a correction step as defined hereafter :

Step 1 (prediction step) :
The solution is advanced in time with time step K∆t, on the macro-cells in the inner zone and on the fine cells in

the outer zone :
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For α = 1, RKstep

outer zone : voliw
(α)
i = voliw

(0)
i + bαK∆t Ψ

(α−1)
i (4)

inner zone : volIwI,(α) = volIwI,(0) + bαK∆t ΨI,(α−1) (5)

w
(α)
i = wI,(α) for i ∈ I (6)

EndFor α.

where bα denote the Runge-Kutta parameters, and volI the volume of macro-cell I.

Step 2 (correction step) :

• The unknowns are frozen in the outer zone at level tn +K∆t.

• The outer unknowns near the boundary of the outer zone which are necessary for advancing the inner zone are
interpolated in time.

• In the inner zone, using these interpolated values, the solution is advanced in time with the chosen explicit
scheme and time step ∆t.

This time advancing writes:

For kt = 1,K

For α = 1, RKstep

inner zone : voliw
(α)
i = voliw

(0)
i + bα∆t Ψ

(α−1)
i (7)

EndFor α.
EndFor kt.

Remark 2: The complexity, proportional to the number of points in the inner zone, is therefore mastered.2

3 ELEMENTS OF ANALYSIS

3.1 Stability
The central question concerning the coarse grid is the stability resulting from its use in the computation.
Considering (1), we expect that the viscous stability limit will improve by a factor four for a twice larger cell.

The viscous stability limit can therefore be considered as more easily addressed by our coarsening. For the advective
stability limit, we can be a little more precise. The coarse mesh is an unstructured partition of the domain in
which cells are polyhedra. Analyses of time advancing schemes on unstructured meshes are available in L2 norm for
unstructured meshes, see22,23,24. Here we solely propose a L∞ analysis of the first order advection scheme. The gain
in L∞ stability can be analysed for a first-order upwind advection scheme. We get the following (obvious) lemma:

Lemma : The upwind advection scheme is positive on the mesh made of macro-cells as soon as for all macro-cell I :

∆t ||VI || <

 ∑
J∈N (I)

∫
∂cell(I)∩∂cell(J)

dΣ


−1 ∫

cell(I)

dx
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where N (I) holds for the neighbouring macro-cells of I.2

The application of an adequate neighboring-cell agglomeration, producing large macro-cells of good aspect ration,
combined with the smoothing effect of the mean applied on the residual will produce a K-times larger stability limit.

3.2 Accuracy
In contrast to more sophisticated multirate algorithms, the proposed method has not a rigorous control of the accuracy.
Let us however remark that the generic situation involves variable-size meshes, which limits the unsteady accuracy
on small scales propagation, already before applying the multirate method.
However the two following remarks tend to show that the scheme accuracy is conserved:
- the predictor step involves a sum of the fluxes and is at least as accurate as an equivalent coarse-grid approximation,
- assuming a reasonable mesh smoothness, the equivalent CFL on the inner part of the matching zone will be close

to the explicit CFL applied on the outer part of the matching zone. Then the corrector step will improve the result
in a way which depends on mesh smoothness, i.e. in better extent if the transition from small cells to larger cells is
a smooth one.
In practice, most of our experiments will involve a comparison of explicit advancing and multirate advancing for

the evaluation of a typical global output.

3.3 Efficiency
The proposed two-level multirate depends on only one parameter, the ratio K between the large and small time step.
Considering a mesh with N vertices, a short loop on the mesh will produce the function K 7→ Nsmall(K) ≤ N which
gives the number of cells in the inner region for K.
If CPUExpNode(∆t) denotes the CPU per node and per time step ∆t of the underlying explicit scheme, a model

for the multirate cpu per ∆t would be

CPUMR(K)(∆t) =

(
N

K
+Nsmall(K)

)
× CPUExpNode(∆t)

to be compared with the explicit case:

CPUExpli(∆t) = N × CPUExpNode(∆t).

We shall call the expected gain the ratio:

Gain =
CPUExpli(∆t)

CPUMR(K)(∆t)
=

1
1
K + Nsmall(K)

N

.

The above formula emphasizes the crucial influence of a very small proportion of inner cells.

Remark 3: In most other multirate methods, the phase with a larger time-step does not concern the inner region
and then their gain would be modelled by:

Gain =
1

1
KN (N −Nsmall(K)) + Nsmall(K)

N

Both gains are bounded by N/Nsmall(K) and show that this ratio has to be sufficiently small.2

Remark 4: Once we have evaluated K 7→ Nsmall(K) for a given mesh it is possible to predict a theoretical optimum
Kopt for minimising the CPU time in scalar execution. However we shall see that the pertinence of the above theory
will be strongly noised by implementation conditions.2
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3.4 Parallelism
The proposed method will be experimented with a parallel MPI software relying on mesh partitioning. The usual
Metis software can be applied on the basis of a balanced repoartion of the mesh. Then cell-agglomeration is applied
at run time inside each partition, which saves communications.
However, as remarked in previous works (see for example19), if the mesh partition does not take into account the

inner zone, then the work effort will not be balanced during the corrector.
The bad work balance for corrector can be of low impact if the corrector concerns a small enough part of the mesh,

resulting in a small part of the global work.
But this is generally not the case. An option resulting from the work of Karypis and co-workers25 and available in

Metis is the application of a multi-constrained communication cost minimisation, with the two constraints that:
- partition is balanced for the whole computational domain, which will be favourable to the predictor phase,
- partition is balanced for the inner part of the computational domain, which will be favourable to the corrector phase.

Note that this partitioning algorithm produces a compromise between:
- the number of nodes in partitions of global mesh,
- the number of nodes in partitions of inner part of the mesh,
- the computational time in the multi-constrained communication of both partitions a model of which is minimised
by the multi-constrained algorithm.

In some case, the user can specify a evident partition which perfectly balances the number of nodes in each
partitions. In our experiments, we shall explicitly specifiy when it is the case and how it is performed.

4 APPLICATIONS

The multirate algorithm is implemented into the parallel (MPI) CFD code AIRONUM shared by INRIA, Lemma
company and university of Montpellier. A description of this tool, which solves with a mixed element/volume method
on unstructured meshes the compressible Euler and Navier-Stokes equations possibly equipped with a turbulence
model, can be found in26 and27. The explicit time-advancing is a third-order Shu Runge-Kutta. The mean CPU for
an explicit time step per mesh node is varying between 10−7 and 4 × 10−7 according to partition quality and number
of nodes per subdomain. For some of the test cases, it will be interesting to compare the efficiency and accuracy of the
proposed multirate time advancing with a implicit calculation of the same flow over the same interval. The implicit
algorithm which we use combines a BDF2 time-approximation with a GMRES linear solver, using a Restrictive-
Additive Schwarz préconditionner and ILU(0) in each partition, see21 for further details. In the cases computed with
the implicit scheme, the CFL is fixed to 30 and the total number of GMRES iterations for one time step is around
20. For this CFL, the gain of an implicit computation with respect to an explicit one at CFL 0.5 is measured between
22. and 12. depending on the number of nodes per processor, the implicit scheme scalability being degraded with
partitions less than 10, 000 vertices while the explicit (and multirate) scheme remain scalable for partitions of 5, 000

vertices. This BDF2 is of course second-order accurate in time and we shall use this property when estimating which
timestep reduction is necessary for reducing by a given factor the deviation with respect to explicit time-advancing.

4.1 Contact discontinuity
In this first example, we consider the case of a moving contact discontinuity. For this purpose, the compressible
Euler equations are solved in a rectangular parallelepiped as computational domain where the density is initially
discontinuous at its middle (see Figure 2) while velocity and pressure are uniform.
The uniform velocity is a purely horizontal one. As can be seen in Figure 2, small cells are present on either side of

the disconstinuity. The mesh moves during the computation in such a way that the nodes located at the discontinuity
are still the same, and that the number of small cells are equally balanced on either side of the discontinuity. An
Arbitrary Lagrangian-Eulerian formulation is then used to solve the Euler equations on the resulting deforming mesh.
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FIGURE 2 ALE calculation of a traveling contact discontinuity. Instantaneous mesh with mesh concentration
in the middle of zoom and corresponding advected discontinuous fluid density.

K Nsmall(K)/N Expected CPU CPU Measured
(%) gain pred. phase correc. phase gain

(scalar) (s/K∆t) (s/K∆t) (parallel)

5 1.3 4.7 0.124 0.244 1.7

10 1.3 8.8 0.124 0.482 2.0

15 1.3 12.5 0.124 0.729 2.2

TABLE 1 ALE propagation of a contact discontinuity: Time step factor K, CPU of the explicit scheme per
explicit time-step ∆t and per node, percentage of nodes in the inner region, theoretical gain in scalar mode, CPU of
the prediction phase per time-step K∆t, CPU of the correction phase per time-step K∆t, and measured parallel gain.

Our long term objective is to combine the multirate time advancing with a mesh adaptation algorithm in such a way
that the small time steps imposed by the necessary good resolution of the discontinuity remain of weak impact on
the global computational time.
The 3D mesh used in this simulation contains 25000 nodes and 96000 tetrahedra. The computational domain is

decomposed into 2 subdomains, the partition interface being defined in such a way that it follows the center plan of
the discontinuity.
When integer K, used for the definition of the inner and outer zones, is set to 5, 10 and 15, the percentage of nodes

located in the inner zone is always 1.3%, which corresponds to the vertices of the small cells located on either side of
the discontinuity. The CFL with respect to propagation is 0.5.
The multirate scheme with the aforementioned values of K, as well as a 4-stage Runge-Kutta method, are used

for the computation. Each simulation was run on 2 cores of a Bullx B720 cluster. In Table 1, CPU times (prediction
phase / correction phase) are given for the multirate approach and different time step factors K.
The correction phase, which consists of explicit time advancing on 1.3% of the mesh, concerns solely 78 vertices

on each partition, 1.3% of the mesh, but finally the cpu cost appears as 38% of the cost on the whole partition.
As a result, an improvement in the efficiency of about 1.7, 2.0 and 2.2 is observed when K is set to 5, 10 and 15,
respectively, unstead of the 4.7, 8.8 and 12.5 predicted by the theory.
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K Nsmall

N Expected CPU Measured Error
gain pred./corr. gain

(%) (theoretical) (s/K∆t) (parallel) (%)

10 0.015 8.69 1.81/4.36 2.93 1 10−5

40 0.04 15.38 1.83/17.3 3.82 1.6 10−4

BDF
CFL=30 36. 2 .10−2

CFL=2.7(est.) 3.29 1.6 .10−4

TABLE 2 Spatial probe: Time step factor K, CPU of the explicit scheme per explicit time-step ∆t and per node,
percentage of nodes in the inner region, theoretical gain in scalar mode, CPU of the prediction phase per time-step
K∆t, CPU of the correction phase per time-step K∆t, measured parallel gain, and relative error.

4.2 Spatial probe
We pass now to a less academic example, the supersonic flow around a probe model for Exomars (see for example28).
The Reynolds number is 1 million with respect to probe diameter. Delicate features in this simulation are a separation
arising on a highly curved wall and relatively large recirculation zone at afterbody. Hybrid RANS-LES calculation
brings more information than pure RANS does. The mesh involves 4, 380, 000 cells and the smallest mesh thickness
is 2.10−5. The smallest cells are only a few and are concentrated near the largest radius of the probe. For K = 40,
their number is The mesh is partitioned with the usual option of Metis, into 192 subdomains.
A sketch of this flow is presented in Figure 4. The gain in efficiency varies from 2.93 with K = 10 and 657 cells in

the inner zone to a maximum of 3.82 with K = 40 and 1752 cells in the inner zone (located in the high curvature
region of the boundary layer where few very small cells are present). For K = 40, only 15 subdomains have inner
cells with the usual partition. We observe that using the multirate approach instead of the explicit scheme produce
a very low deviation of the lift history, compared to the implicit calculation (see Table 2 and Figure 3).

FIGURE 3 Spatial probe at Reynolds number 1 million. Zoom of the lift curves obtained with explicit,
implicit and multirate schemes.
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FIGURE 4 Spatial probe at Reynolds number 1 million. Q criterion.

4.3 Tandem cylinders
We turn now to a rather well-known benchmark test case, the calculation of a flow around a tandem cylinders at
Reynolds number 1.66× 105. This was a test case of an AIAA workshop, see29. It is a challenging computation since
several complex flow features need to be captured around multiple bodies (stagnation zones, boundary layers, shear
layers, separations, laminar-turbulent transition, recirculations, vortex sheddings, wakes). Furthermore, small cells
are necessary for a proper prediction of the very thin boundary layers, which implies very small global time steps
so that classical explicit calculations become very costly. The application of our multirate scheme to the tandem
cylinders benchmark is also made more difficult by the fact that we use a hybrid turbulence model based on RANS
and VMS-LES approaches27, so that additional equations associated with turbulent variables need to be advanced
in time.
In order to illustrate the quality of resolution, the Q-criterion isosurfaces are shown in Figure 5. It shows the complex

flow features and the very small structures that need to be captured by the numerical model and the turbulence
model, which renders this simulation particularly challenging. Further information concerning the comparison between
computation and experiments are available in27.
Two meshes were used for this study : a coarse mesh which contains 2.6 million nodes and 15 million tetrahedra, and

a fine mesh with 16 million nodes and 96 million tetraedra. For both meshes, the smallest cell thickness is 1.2.10−4.

• Coarse mesh

The computational domain is decomposed into 192 subdomains. The CFL number is set to 0.5 for the explicit
and multirate computations. When integer K, used for the definition of the inner and outer zones, is set to 2,
5 and 10, the percentage of nodes located in the inner zone is 4%, 16% and 25%, respectively (see Table 3).
CPU times (prediction phase / correction phase) are given in Table 3 for the multirate approach and different
time step factors K. For this test case, the multirate scheme is not very efficient due to a too costly correction
phase (a large number of inner nodes not equally distributed among the subdomains). It is true that the
theoretical scalar gain is also rather small. One can notice that with an implicit simulation and a CFL number
set to 30, the gain is 22 compared to the explicit option. However, the accuracy is degraded with the implicit
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FIGURE 5 Tandem cylinders at Reynolds number 1.66× 105: instantaneous Q-criterion isosurfaces (coloured with
velocity modulus).

approach (see the relative error in Table 3 and Figure 6).

K Nsmall

N Expected CPU(UP) Measured Deviation(%)
(%) gain pred./corr. gain with

(scalar) (s/K∆t) (UP/MCP) explicit
2 4 1.85 0.92/0.86 1.03/− 1.67 10−5

5 16 2.77 0.92/4.10 0.92/− 2.57 10−5

10 25 2.86 0.92/8.48 0.98/− 7.67 10−4

20 30 − − 1.2/1.29 9. 10−4

BDF
CFL=30 22./− 2.5 10−1

CFL=1.9(est.) /− 9. 10−4

TABLE 3 Tandem cylinder - coarse mesh (2.59 M nodes)- 192 processors.. Time step factor K, CPU of
the explicit scheme per explicit time-step ∆t and per node, percentage of nodes in the inner region, theoretical gain
in scalar mode, CPU of the prediction phase per time-step K∆t, CPU of the correction phase per time-step K∆t,
measured parallel gain, and relative error for the explicit, multirate and implicit BDF time advancing. UP holds for
usual partition and MCP for multi-constrained partition.

• Fine mesh:

The computational domain is decomposed into 768 subdomains, and as many cores on a Bullx cluster were used to
perform these computations. When integer K, used for the definition of the inner and outer zones, is set to 5, 10 and
20, the percentage of nodes located in the inner zone is 18%, 24% and 35%, respectively (see Table 4).
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FIGURE 6 Tandem cylinder - coarse mesh (2.59 M nodes)- 192 processors. Zoom of the lift curves obtained
with explicit, implicit and multirate schemes for the first cylinder.

K nproc. Nsmall

N Expected CPU(UP) Measured
(%) gain pred./corr. gain

(scalar) (s/K∆t) (UP/MCP)

5 768 18 2.63 1.55/6.9 0.91

10 768 24 2.94 1.52/14.1 0.99

20 768 35 2.50 1.53/28.9 1.02/2.0

20 192 35 2.50 −/− −/1.77

TABLE 4 Tandem cylinder - fine mesh (16M nodes). Time step factor K, number of processors, CPU of the
explicit scheme per explicit time-step ∆t and per node, percentage of nodes in the inner region, theoretical gain in
scalar mode, CPU of the prediction phase per time-step K∆t, CPU of the correction phase per time-step K∆t, and
measured parallel gain. UP holds for usual partition and MCP for multi-constrained partition.

The CPU times for the explicit and multirate schemes are shown in Table 4. As for the coarse mesh and for the same
reason, the multirate option turns out to be not very efficient. Again, the theoretical scalar gain is rather small in
this case (see Table 4).

4.4 Circular cylinder at very high Reynolds number
The third application concerns the simulation of the flow around a circular cylinder at Reynolds number 8.4 × 106.
As for the previous benchmark, the computational domain is made of small cells around the body in order to allow
a proper representation of the very thin boundary layer that occurs at such a high Reynolds number. On the other
hand, the same hybrid RANS/VMS-LES model as that of the previous benchmark is used to compute this flow, which
implies again that both the fluid and turbulent variables need to be advanced by the time integration scheme, and
therefore also the multirate method. Figure 7 depicts the Q-criterion isosurfaces and shows the very small and complex
structures that need to be captured by the numerical and the turbulence models, which renders this simulation very
challenging.
The mesh used in this simulation contains 4.3 million nodes and 25 million tetrahedra. The smallest cell thickness

is 2.5.10−6. The computational domain is decomposed into 768 subdomains. When integer K, used for the definition
of the inner and outer zones, is set to 5, 10 and 20, the percentage of nodes located in the inner zone is 15%, 19%

and 24%, respectively (see Table 5).
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FIGURE 7 Circular cylinder at Reynolds number 8.4 × 106. Instantaneous Q-criterion isosurfaces (coloured
with velocity modulus).

K nproc Nsmall

N Expected Measured Error
(%) gain gain (%)

(scalar) (UP/MCP/R)

5 768 15 2.86 1.02/− /− 4.4 10−4

10 768 19 3.45 1.11/− /− 7.8 10−4

20 768 24 3.45 1.18/− /− 2.6 10−3

20 384 24 3.45 1.18/1.51/− 2.6 10−3

20 192 24 3.45 −/1.43/2.27 2.6 10−3

60 192 27 3.48 −/1.52/2.32 5. 10−3

BDF
CFL=30 192 20./− /− 1.0

CFL=2(est.) 192 1.5/− /− 5. 10−3

CFL=30 768 12.1/− /− 1.0

CFL=2(est.) 768 0.9/− /− 5. 10−3

TABLE 5 Circular cylinder at Reynolds number 8.4 × 106 Time step factor K, CPU of the explicit scheme
per explicit time-step ∆t and per node, percentage of nodes in the inner region, theoretical gain in scalar mode, CPU
of the prediction phase per time-step K∆t, CPU of the correction phase per time-step K∆t, measured parallel gain,
and relative error for the explicit, multirate and implicit BDF time advancing.UP holds for usual partition, MCP for
Metis multi-constrained partition, R for analytic radial optimal partition.

The explicit scheme is the 4-stage Runge-Kutta method. For each simulation, 768 cores were used on a Bullx B720
cluster, and the CFL number was set to 0.5. CPU times for the explicit and multirate schemes with different values of
K are given in Table 5. One can observe that the efficiency of the multirate approach is rather moderate. The cost of
the correction phase is indeed relatively high compared to the prediction phase. This is certainly due to an important
number of inner nodes (which implies also a moderate theoritical scalar gain) and a non uniform distribution of these
nodes among the computational cores. An implicit simulation, with a CFL number set to 30, was also performed.
An important gain is observed compared to the multirate case, but at the cost of a degradation of the accuracy (see
Table 5 and Figure 8) . In order to obtain the same level of error, the implicit time advancing, which is second-order
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accurate in time, should be run with a CFL of 2, with a CPU time 10% larger (gain= 0.9) than for the explicit
computation, or 2.57 times larger than with the k = 60 multirate computation.

FIGURE 8 Circular cylinder at Reynolds number 8.4 × 106. Zoom of the lift curves obtained with explicit,
implicit and multirate schemes.

5 CONCLUSION

A new simplified multirate strategy for unstructured finite volume CFD is proposed in this work. The motivation of
this research is two folds. First, the very high Reynolds number hybrid simulations can be computed with implicit
time advancing for maintaining a reasonable cpu. But in many cases this is done with an important degradation of
the accuracy with respect to smaller time steps on the same mesh. Second, with the arising of novel anisotropic mesh
adaptation methods, the complexity of computations with large and small mesh sizes needs to be mastered with new
methods. The proposed method is based on control volume agglomeration, and relies on:
- a prediction step where large time steps are used and where the fluxes for the smaller elements are evaluated on
macro-cells for stability purpose,
- a correction step in which only the smaller elements of the so-called inner zone are advanced in time with a small
time step.
The modification effort in an existing explicit unstructured code is very low.
Preliminary interesting results are given. They show that the proposed multirate strategy can be applied to com-

plex unsteady CFD problems such as the prediction of three-dimensional flows around bluff bodies with an hybrid
RANS/LES turbulence model.
Simulations, representative of problems that can be encountered in industrial applications, up to a Reynolds number

as high as 8.4 million are performed. For the considered flow calculations, the fully explicit option is still usable but
of high computational cost.
All the numerical experiments are parallel computed with MPI. This allows to identify the main difficulty in

obtaining high computational gain, which is related with the paralle efficiency of the computations restricted to the
inner zone.
We observed that the proposed multirate strategy offers a superior efficiency when the number of inner nodes,

associated with very small cells in the mesh, is rather moderate. Thanks to the use of an explicit Runge-Kutta time
advancing, the time accuracy of the multirate scheme remains high and the dissipation remains low, as compared
with an implicit computation. Only very small time-scales are lost with respect to a pure explicit computation.
The case of a simplified mesh adaptive calculation is also studied. Due to its simplicity, the proposed method

can be easily extended to several multirate layers corresponding to different time step stability regions in order to
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separate, for example in the case of three layers, very small scales from intermediate ones, and intermediate scales
from larger ones. In a first series of numerical experiments, CPU gains are obtained with a usual mesh partition.
We also performed calculations using a particular partition constrained by the bal- ancing of both global mesh and
inner nodes submesh. Ideally, the workload should be equally shared for both Step1 (prediction phase) and Step2
(correction phase) of the multirate algo- rithm. However, we could not obtain such an ideal partition with our
meshes. Further work on partitioning is probably necessary to get perfectly balanced workloads without too large
communication times. In summary, the proposed multirate method is easy to program into a complex CFD code, is
very stable in practice and the loss of accuracy with respect to an explicit scheme is very low, in contrast to implicit
BDF2-based calculations, although we applied the implicit scheme with a CFL of 30, not much larger than with the
multirate calculation (CFL= 10 for K = 20 in our simulations). Implicit accuracy is limited not only by the intrinsic
scheme accuracy but also by the conditions required to achieve greater efficiency which involve a sufficiently large
time-step and a short, parameter dependant, convergence of the linear solver performed in the time advancing step.
In contrast, explicit and multirate computations are parameter safe, and the accuracy of the multirate method is
optimal in regions complementary to the inner zone, that is, in our vortex shedding flow simulations, where it can be
necessary to propagate accurately vortices, for example from the first cylinder to the second one in the case of the
tandem cylinders.
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