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Abstract

We present a goal-oriented error analysis for the calculation of low Reynolds steady compressible flows with anisotropic mesh
adaptation. The error analysis is of a priori type. Its central principle is to express the right-hand side of the error equation,
often referred as the local error, as a function of the interpolation error of a collection of fields present in the nonlinear Partial
Di↵erential Equations. This goal-oriented error analysis is the extension of [35] done for inviscid flows to laminar viscous flows
by adding viscous terms. The main benefits of this approach, in comparison to other error estimates in the literature, is that the
optimal anisotropy of the mesh directly appears in the error analysis and is not obtained from an ad hoc variable nor a local
analysis. As a consequence, an optimum is obtained and the convergence of the mesh adaptive process is very fast, i.e., generally
the convergence is obtained after 5 to 10 mesh adaptation cycle. Then, using the continuous mesh framework, an optimal metric
is analytically obtained from the error estimation. Applications to mesh adaptive calculations of flows past airfoils are presented.
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1. Introduction

Mesh adaptation progressively plays an increasing role in high-fidelity simulation. Beside the direct quantitative expectations,
like an increased accuracy, and an higher e�ciency for a given error, an important motivation in the extension of mesh adaptation
is the better control of error convergence, for example by a better numerical convergence order, since anisotropic mesh adaptation
is known as yielding such progress, see [36, 53].

The case of Navier-Stokes flows takes a particular place since, due to well identified and localized boundary layers, the
researcher and the engineer have early managed for concentrating and as far as possible stretching the mesh near the no-slip
boundary. However, already for moderate Reynolds number, the automatic mesh adaptation for Navier-Stokes flows, while not a
crucial issue, remains a non-trivial task. A major di�culty is the choice of an error measure.

Many researchers have chosen to focalize on the interpolation error committed on the unknown(s) or on several user-
prescribed sensors depending on the unknowns. Mesh adaptation based on P1 interpolation error estimate is referred as Hessian-
based mesh adaptation. Most works tend to equidistribute the error which consists in minimizing the maximum of the interpo-
lation error. Pioneering works have shown a fertile development of Hessian-based and metric-based methods [8, 11, 18, 22, 25,
26, 30, 42, 43, 48]. In contrast to these equidistribution methods, the “multiscale” variant relies on the optimization of a Lp norm
of the interpolation error [2, 32]. The Lp formulation allows the mesh adaptive process to approximate discontinuous solutions
with higher-order convergence [36]. However, these methods are limited to the minimization of some interpolation errors for
some solution fields, the “sensors”. If for many applications, this simplifying standpoint is an advantage, there are also many
applications where Hessian-based mesh adaptation is far from optimal regarding the way the degrees of freedom are distributed
in the computational domain. Indeed, Hessian-based methods aim at controlling the interpolation error but this purpose is not
often so close to the objective that consists in obtaining the best approximate solution of the PDE. Further, in many engineering
applications, one (or several) specific scalar output needs to be accurately evaluated, e.g. lift, drag, or heat flux. Hessian-based
mesh adaptation methods are not designed to address this issue.

A generation of a posteriori error estimates has renewed the existing answers to that issue. A posteriori error estimates take
the generic form:

H 7! E(uh) ⇡ Eexact(u � uh) ,

where uh = uh(H) is the discrete solution obtained using mesh H . In the Dual Weighted Residual (DWR) method (see [7]),
an important element is introduced, the functional error, which carries a mathematical formulation of the purpose of the mesh
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adaptation e↵ort. Let u, uh, u⇤ be the state, the discrete state, and the adjoint state such that

a(u,') = ( f ,') ; a(uh,'h) = ( f ,'h) ; a( , u⇤) = (g, ) ,

the DWR method starts with:

Eexact(u � uh) = (g, u � uh) = ( f , u⇤ � ⇧hu⇤) � a(uh, u⇤ � ⇧hu⇤) ,

where ⇧h is the P1 interpolation operator on mesh H . We observe that the right-hand side is zero if uh solves the continuous
equation, or if u⇤ is a�ne, or both. By decomposing the integrals over mesh elements and applying a Green formula, the DWR
method identifies the local error which the mesh update will attempt to make uniform. Another way is to evaluate the local error
with a finer mesh or by increasing the order of the numerical scheme. These goal-oriented methods have been developed in a
series of papers, see e.g. [7, 24, 27, 29, 44, 49, 50, 51, 52].

However, the initial form of the DWR method does not give a good access to anisotropic mesh adaptation. This di�culty has
been circumvented by combining the DWR method and interpolation error criteria as in [49]. It can also be solved by introducing
local deformation maps as in [20, 19]. It is also addressed in [52], where it is proposed to perform a “what if” study which re-
evaluate locally the error after an anisotropic division has been applied to an element. The resulting information is then projected
into an anisotropic refinement criterion involving a stretching direction and anisotropy strength. Such approaches are only locally
optimal, they do not provide a global optimum. As a consequence, the adaptive process may require a large number of iterations.

Our proposal relies on a priori estimates. An a posteriori estimate depends on the mesh through the discrete solution. In
contrast, an a priori estimate is expressed directly as a function of the mesh and of the continuous solution u. Typically, it writes:

H 7! E(u,H) ⇡ Eexact(u � uh).

An attracting consequence is that in the case of a scalar error, for example a goal-oriented one, the mesh adaptation problem can
be expressed as an inverse problem for the a priori estimate (u fixed):

Find Hopt such that E(u,Hopt) = min
H

(E(u,H)). (1)

In Problem (1), it is mandatory that the “min” is sought in a set of meshes enjoying some compactness in order to have a well-
posed inverse problem. At least, the number of degrees of freedom of the meshes of this set has to be bounded. But, a second
important feature of a priori estimates is that we can specify in a more detailed way the class of considered meshes, imposing
some regularity, which will lead to a more accurate error analysis. Lastly, the right-hand side of the a priori estimate which we
propose here is somewhat dual to the DWR one. Indeed, it writes:

Eexact(u � uh) = (g, u � uh) = a(⇧hu � u, u⇤h) + (g, u � ⇧hu) , (2)

where u⇤h is the discrete adjoint state. We observe that the error is zero for an a�ne exact solution: this is the P1-exactness. In
contrast to the DWR method, this formulation gives the priority to the reduction of the interpolation error for the state variables.

Right hand-side of Relation (2) involves derivatives of ⇧hu � u leading to a H1 analysis of the interpolation error which is
much more complex. However, due to the scalar (i.e., integral) form of the functional, integration by parts combined with a
smoothness assumption for the adjoint solves this obstacle. Indeed, using integration by part, derivatives can be transposed onto
the adjoint state to obtain interpolation errors in L1 norm weighted by derivatives of the adjoint state. It is then possible to apply
the interpolation error theory to get a majoration of the error. It is also possible to consider the continuous mesh framework
[33, 34] to derive the optimal mesh minimizing the considered error for a given number of vertices. This gives an optimal answer
to Problem (1). This stresses the central role of Pk-exactness of the approximation: if the above interpolation error vanishes, then
the approximation error is also zero. And, according to the standard finite element analysis, if the H1 norm of this interpolation
error is small, so is the approximation error (in the same norm).

The first contribution of this paper is to propose an adjoint-based a priori analysis for elliptic models. A preliminary formu-
lation of this analysis was given in [9]. It was tested for elliptic models in [12]. In the present paper, we establish in a more direct
manner the error estimation for the elliptic terms.

The second contribution is to extend this analysis to the complete compressible Navier-Stokes system, which involves non-
linear parabolic terms. We can demonstrate by manipulating the non-linear viscous terms that each of them can be written as
a combination of an elliptic terms (on which the above mentioned error estimation applies) and higher order error terms (that
can be neglected). By addressing viscous terms, this analysis complements the previous inviscid analysis performed for the
compressible Euler equations [35].

The paper is outlined as follows. Section 2 recalls the continuous mesh framework which provides a duality between discrete
meshes and entities and Riemannian metric space and metric tensor. The continuous interpolation error local model is also
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provided. Section 3 proposes a new a priori estimate for the Poisson problem. Then, Section 4 gives the Navier-Stokes system
for compressible gas and the considered variational discrete formulation. The goal-oriented error estimate for the Navier-Stokes
equations is given in Section 5, and Section 6 formulates the mesh optimization problem leading to the expression of the optimal
continuous mesh. Finally, Section 7 states how the optimal discrete meshes is obtained and Section 8 gives few numerical
experiments illustrating the optimality of the proposed adaptation process.

2. Continuous mesh model

We propose to work in the continuous mesh framework introduced in [33, 34]. The main idea of this framework is to model
discrete meshes by continuous Riemannian metric fields. In that context, a continuous mesh M of computational domain ⌦ ⇢ Rd

is identified to a Riemannian metric field (M(x))x2⌦. It defines proper di↵erentiable optimization [6], in other words calculus of
variations can be used on continuous meshes while it cannot be applied on discrete meshes. For d = 3 and any x of ⌦,M(x) is
a symmetric 3 ⇥ 3 matrix having (�i(x))i=1,3 as eigenvalues along the principal directions R(x) = (vi(x))i=1,3. Metric tensorM(x)
is a continuous element modeling discrete element K (triangle in 2D and tetrahedron in 3D). For i = 1, 3, sizes along principal
directions vi(x) are given by hi(x) = ��

1
2

i (x) and anisotropy quotients ri are defined by: ri = h3
i (h1h2h3)�1. Anisotropic quotient

represent the anisotropy of the continuous element. The diagonalisation ofM(x) writes:

M(x) = d
2
3
M(x)R(x)
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B

B
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tR(x) . (3)

The continuous mesh density dM(x) at node x is equal to: dM = (h1h2h3)�1 = (�1�2�3)
1
2 =

p

det(M). By integrating it, we
define the continuous mesh complexity C(M)

C(M) =
Z

⌦

dM(x) dx =
Z

⌦

p

det(M(x)) dx ,

which enables the user to control the level of accuracy of the mesh, and thus, to implicitly control the number of vertices of the
resulting discrete mesh.

The main idea of metric-based mesh adaptation, initially introduced in [23], is to generate a unit mesh in the prescribed
Riemannian metric space M, e.g. a mesh of ⌦ ⇢ Rd such that each edge e has a unit length and each element K - tetrahedron or
triangle - is regular (or equilateral) with respect to (M(x))x2⌦:

8e, `M(e) = 1 and 8K, |K|M =
p

3
4

in 2D or |K|M =
p

2
12

in 3D ,

where the length of edge e = ab with respect to M is computed using the straight line parameterization �(t) = a + t ab, where
t 2 [0, 1]:

`M(ab) =
Z 1

0
k�0(t)kM dt =

Z 1

0

q

abT M(a + t ab) ab dt ,

and the volume of element K with respect to M is:

|K|M =
Z

K

p

detM(x) dx .

The resulting discrete mesh in the canonical Euclidean space will be anisotropic and adapted. We want to emphasize that the
set of all the discrete meshes that are unit meshes with respect to a unique continuous mesh M contains an infinite number of
discrete meshes.

Given a smooth function u defined on⌦, to each unit meshH with respect to continuous mesh M corresponds a local discrete
interpolation error |u � ⇧hu| on each element. In [33, 34], it is shown that all these interpolation errors are well represented by
the continuous interpolation error related to M which is locally expressed in term of the Hessian Hu of function u as follows:

|u � ⇡Mu|(x) = cd trace
⇣

M� 1
2 (x) |Hu(x)|M� 1

2 (x)
⌘

, (4)

where cd equals 1
8 in 2D and 1

20 in 3D, and |Hu| is deduced from Hu by taking the absolute values of its eigenvalues.
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Remark 2.1. The above metric density dM is generally a smooth function representing the discrete vertex density dH of the unit
mesh H with respect to M. In contrast, the density dH is a sum of Dirac located at vertices and can be therefore considered
as highly oscillating. The metric density is a homogenization of the unit mesh density. Indeed, a continuous mesh convergent
sequence can be defined according to the continuous mesh complexity C(M) = N and a reference metricM1 of complexity equal
to one C(M1) = 1:

MN = C(M)M1 = NM1 , N ! 1 .
To fix the idea, we can consider an average mesh size h corresponding to complexity N, and reformulate the continuous mesh
convergent sequence as:

Mh = h�dM1, h ! 0 ,

where d is the domain dimension. The continuous and discrete densities are close to each other in the sense that:

8� 2 D(⌦), (dMN , �) � (dHN , �)! 0 as N ! 1 ,
whereHN is a unit mesh forMN, andD(⌦) is the subset of C1(⌦̄) functions with compact support.

Similarly, given a smooth function u defined on ⌦, and its P1 interpolation ⇧hu on unit mesh H forMh. The interpolation
error u � ⇧hu is also a highly oscillatory function. Now, according to [33, 34], it is possible to homogenize the discrete
interpolation error using the continuous interpolation error of Relation (4) expressed in terms of the Hessian Hu of u in such a
way that, for h ! 0,

|u � ⇧hu| = h2ehomog
interp (u) + h2eoscill

interp(u) + h2 o(h)L2(⌦) with ehomog
interp (u) = |u � ⇡M1 u|

where ehomog
interp (u) is the homogenized interpolation error, h2 o(h)L2(⌦) is an error term of order strictly higher than two according

to L2 analysis, and h2 eoscill
interp(u) is the oscillatory component of the interpolation error which is also a error term of order strictly

higher that two since eoscill
interp ! 0 inD0(⌦).

3. A priori finite-element analysis

Standard a priori estimates have been early derived in H1(⌦) (“projection property”), and in L2(⌦) (Aubin-Nitsche analysis),
but only by means of inequalities. Moreover, the leading term of the error is generally not exhibited (only bounds of it are
proposed). In this section, we go a little further in the Aubin-Nitsche a priori analysis to be able to consider the continuous
mesh framework and to be able to exhibit the optimal adapted mesh such as in [10, 35]. To this end, we consider an important
simplification in the analysis by neglecting the boundary error terms. It has already been done and discussed in previous works
[35]. In short, this is possible because in our type of approximation, close to FEM, the accuracy of the boundary discretization
can degrade of one order of accuracy without changing the asymptotic convergence in H1(⌦) or L2(⌦). This simplification avoids
to generate adapted meshes which would be strongly inhomogeneous close to boundaries which may degrades numerical scheme
stability and accuracy. In this section, we focus on the Poisson problem which is set on domain ⌦ ⇢ Rd:

� �u = f on ⌦ ; u = 0 on @⌦ . (5)

Its variational form writes:
a(u, v) =

Z

⌦

ru.rv dx = ( f , v) , 8 v 2 V , (6)

where V holds for the Sobolev space V = H1
0(⌦) =

�

u 2 L2(⌦),ru 2 (L2(⌦))d, u|@⌦ = 0
 

. In order to derive an a priori estimate,
we assume that solution u has some extra smoothness:

u 2 V = V \ C3(⌦̄).

where C3(⌦̄) is the set of functions of class C3 on ⌦ [ @⌦. Let H be a mesh of ⌦ made of simplices (triangles in 2D and
tetrahedra in 3D):H = S

k Kk. And, let Vh be the subspace of V of continuous functions that are P1 on each element of the mesh:

Vh =
n

'h 2 V
�

�

� 'h |K is a�ne 8K 2 H
o

.

The discrete variational problem is then defined by:

a(uh, vh) = ( f , vh) , 8 vh 2 Vh. (7)

Let us introduce the linear interpolation operator ⇧h from vertices values:

⇧h : V ! Vh ; u 7! ⇧hu such that ⇧hu|K is a�ne 8K 2 H and ⇧hu(p) = u(p) , for all vertices p of meshH .
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In a goal-oriented analysis, we are interested in estimating (g, uh � u) which can be split into two components:

(g, uh � u) = (g, uh � ⇧hu) + (g, ⇧hu � u) , (8)

where we recognize in the second di↵erence ⇧hu � u the interpolation error, and the first di↵erence uh � ⇧hu is referred as the
implicit error. Introducing the continuous and the discrete adjoint states u⇤ and u⇤h verifying:

a( , u⇤) = (g, ) , 8 2 V and a( h, u⇤h) = (g, h) , 8 h 2 Vh ,

we get
(g, uh � u) = a(uh � ⇧hu, u⇤h) + (g, ⇧hu � u) . (9)

The second term of the right hand-side can be estimated without any di�culty using Relation (4) :

|(g, ⇧hu � u)| �
Z

⌦

|g| |u � ⇧hu| d⌦ �
Z

⌦

cd |g| trace
⇣

M� 1
2 |Hu|M� 1

2
⌘

d⌦ ,

while it would have been a lot more complicated using the equality:

(g,⇧hu � u) = a(⇧hu � u, u⇤) .

Analyzing the first term of the right hand-side of Relation (9) comes to study the following term:

a(uh � ⇧hu, ⇧h') ,

where ' is any su�ciently smooth function. To this end, we first express the implicit error term as a function of the interpolation
error. It is useful to remark that the discrete statement is equivalently written:

a(uh, ⇧h') = ( f , ⇧h') , 8 ' 2 V. (10)

Using Relation (10) and then Relation (6), we get:

a(uh � ⇧hu, ⇧h') = a(uh, ⇧h') � a(⇧hu, ⇧h') = ( f , ⇧h') � a(⇧hu, ⇧h') = a(u, ⇧h') � a(⇧hu, ⇧h') , (11)

which gives:
a(uh � ⇧hu, ⇧h') = a(u � ⇧hu, ⇧h') , 8 ' 2 V. (12)

Note that u �⇧hu is not solution of the discrete adjoint system because u is not in Vh. Therefore, we propose the following main
result:

Lemma 3.1. For any couple of smooth functions (u,'), where u is not necessarily a solution of Problem (5), we have the
following bounds:

|
Z

⌦

@

@xi
(u � ⇧hu)

@

@x j
⇧h' d⌦| � Kd

Z

⌦

| ⇢H(')| |u � ⇧hu| d⌦ + BT

|
Z

⌦

@

@xi
u(u � ⇧hu)

@

@x j
⇧h' d⌦| � Kd

Z

⌦

| ⇢H(')| |u| |u � ⇧hu| d⌦ + BT

where Kd = 3 in two dimensions, Kd = 6 in three dimensions, and A � B holds for a majoration asymptotically valid, i.e.
A  B + o(A) when mesh size tends to zero. Expression | ⇢H(') | holds for spectral radius of H(') which is the Hessian of ', i.e.,
the largest (in absolute value) eigenvalue of H('). The boundary terms BT are not used in the sequel.

To prove this result, we analyze the right-hand side term of Equality (12):

a(u � ⇧hu, ⇧h') =
Z

⌦

r(u � ⇧hu) · r⇧h' d⌦ =
X

K2H

Z

K
r(u � ⇧hu) · r⇧h' dK ,

where the sum ⌃ is taken over any element K of meshH . As the aim is to extend this analysis to the Navier-Stokes equations, we
analyze the following generic integral term (in which index i is not necessary equal to index j contrary to the Poisson problem):

I =
X

K2H

Z

K

 

@

@xi
(u � ⇧hu)

@

@x j
⇧h'

!

dK =
X

K2H

 

Z

@K
(u � ⇧hu)

 

@

@x j
⇧h'

!

nK
xi

d� �
Z

K
(u � ⇧hu)

 

@2

@xi@x j
⇧h'

!

dK
!

,
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after integration by parts, and, as ⇧h' is linear over K, it reduces to:

I =
X

K2H

Z

K

 

@

@xi
(u � ⇧hu)

@

@x j
⇧h'

!

dK =
X

K2H

Z

@K
(r⇧h') |K · e j nK

xi
(u � ⇧hu) d� .

where (e j) j=1..d stands for the canonical basis of Rd, and nK
xi

is the ith component of unit outward normal nK = (nK
x1
, nK

x2
, nK

x3
)T to

the element boundary. As stated above, boundary integrals on @⌦ do not contribute to the volume estimate and are thus discarded
in our analysis. The above integral can also be written as an integral over the edges in 2D or the faces in 3D of the mesh. Hence, to
develop further this analysis, we consider the integral on the edge or the face sharing the two neighboring triangles or tetrahedra
K+ and K�. Thanks to the continuity of u � ⇧hu, it writes:

I =
X

@K+\@K�

Z

@K+\@K�

⇥

(r⇧h') |K+ � (r⇧h') |K�
⇤ · e j nK+�

xi
(u � ⇧hu) d� ,

where nK+�
xi is the ith component of nK+� = (nK+�

x1 , nK+�
x2 , nK+�

x3 )T the unit normal to the considered edge/face. Introducing the
following notation for the jump of the '-derivative over the edge/face:

⇥r⇧h'
⇤

+� =
⇥

(r⇧h') |K+ � (r⇧h') |K�
⇤

,

we observe that the gradient component of ⇧h' in direction tK+� tangent to the common edge/face is continuous, therefore we
have:

⇥r⇧h'
⇤

+� · tK+� = 0 ,

from which we deduce the following relations with the unit edge/face normal:
⇥r⇧h'

⇤

+� =
�

�

�

⇥r⇧h'
⇤

+�
�

�

� nK+� and
�

�

�

⇥r⇧h'
⇤

+�
�

�

� =
⇥r⇧h'

⇤

+� · nK+� .

From the above relations, we get:
⇥r⇧h'

⇤

+� · e j =
�

�

�

⇥r⇧h'
⇤

+�
�

�

� nK+�
x j
=

⇥r⇧h'
⇤

+� · nK+� nK+�
x j
,

and, finally, we obtain:
⇥r⇧h'

⇤

+� · e j nK+�
xi
=

⇥r⇧h'
⇤

+� · nK+� nK+�
x j

nK+�
xi
.

Thus, the above integral becomes:

I =
X

@K+\@K�

Z

@K+\@K�

⇥

(r⇧h') |K+ � (r⇧h') |K�
⇤ · nK+� nK+�

x j
nK+�

xi
(u � ⇧hu) d� ,

Now, we can provide a first upper bound:

|I| =
�

�

�

�

�

�

Z

⌦

 

@

@xi
(u � ⇧hu)

@

@x j
⇧h'

!

d⌦
�

�

�

�

�

�

�
X

@K+\@K�

�

�

�

⇥

(r⇧h') |K+ � (r⇧h') |K�
⇤ · nK+�

�

�

�

Z

@K+\@K�
|u � ⇧hu| d� ,

To pursue our analysis, this integral can be transformed into an integral over ⌦ by considering a diamond cell partitioning:
H = S

k Kk =
S

k Dk, where each diamond cell D is associated to an edge in 2D or a face in 3D. In two dimensions, a diamond
cell De associated to an edge e is the union of the two sub-triangles that are build by joining the centers of gravity of the two
triangles sharing the edge e to the edge e, see Figure 1 (left). In three dimensions, a diamond cell Df attached to a face f is the
union of the two sub-tetrahedra that are build by joining the centers of gravity of the two tetrahedra sharing the face f to the face
f , see Figure 1 (right). If we denote by | · | the measure (length, area, volume) of geometric entity and h the height of a simplex
K, by definition, we have the following relations for the area in 2D:

|De| = |K+| + |K�|3
= |e| |h+| + |h�|

6
, (13)

and for the volume in 3D:
|Df | = |K+| + |K�|4

= | f | |h+| + |h�|
12

. (14)

Moreover, taking the mean of |u � ⇧hu| over the edge e = @K+ \ @K� or the face f = @K+ \ @K� is a consistent quadrature for
the integration of |u � ⇧hu| over the diamond cell D+�, thus:

1
|@K+ \ @K�|

Z

@K+\@K�
|u � ⇧hu| d� ⇡ 1

|D+�|
Z

D+�
|u � ⇧hu| dD+� , (15)
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Figure 1: Superconvergent molecule for a vertical derivative. Diamond decomposition of the mesh over each edge in 2D (left image) and each face in 3D (right
image).

And finally, we observe that the term:

�

�

�

⇥

(r⇧h') |K+ � (r⇧h') |K�
⇤ · nK+�

�

�

� =

�

�

�

�

�

@

@nK+
⇧h'|K+ �

@

@nK�
⇧h'|K�

�

�

�

�

�

appears as a second derivative of ' in the normal direction to the edge/face weighted by the inverse of the average height of the
two neighboring simplex. If we introduce | ⇢H(') | the spectral radius of H(') which is the Hessian of ', the spectral radius being
the largest (in absolute value) eigenvalue of H('), we get the following bound:

�

�

�

⇥

(r⇧h') |K+ � (r⇧h') |K�
⇤ · nK+�

�

�

� � |h+| + |h�|
2

| ⇢H(')| . (16)

In two dimensions, using Relations (13), (15), and (16), we obtain the following upper bounds:

|I| �
X

@K+\@K�

�

�

�

⇥

(r⇧h') |K+ � (r⇧h') |K�
⇤ · nK+�

�

�

�

Z

@K+\@K�
|u � ⇧hu| d�

�
X

e2H

 |h+| + |h�|
2

| ⇢H(')|
!

0

B

B

B

B

B

@

|e|
|e| |h+ |+|h� |6

Z

De

|u � ⇧hu| dDe

1

C

C

C

C

C

A

,

and after canceling terms, we finally obtain:

|I| �
X

e2H
3 | ⇢H(')|

Z

De

|u � ⇧hu| dDe = 3
Z

⌦

| ⇢H(')| |u � ⇧hu| d⌦ , in 2D .

Similarly, in three dimensions, using Relations (14), (15), and (16) and cancelling terms, we obtain the following upper bounds:

|I| �
X

f2H
6 | ⇢H(')|

Z

Df

|u � ⇧hu| dDf = 6
Z

⌦

| ⇢H(')| |u � ⇧hu| d⌦ , in 3D .

The same demonstration holds if the replace the term (u � ⇧hu) by the term u (u � ⇧hu). This concludes the proof of the Lemma
3.1.

4. Navier-Stokes Model

4.1. Continuous state system
The compressible Navier-Stokes system for a perfect gas is set in computational domain ⌦ ⇢ R3 and can be written under a

compact form as:

r · F E(W) + r · F V (W) = 0 on⌦ (17)

where W = t(⇢, ⇢u, ⇢E) is the conservative flow variables vector and vector F E represents the Euler fluxes:

F E(W) = t (⇢u, ⇢uu + pe1, ⇢vu + pe2, ⇢wu + pe3, ⇢uH) .
7



We have noted ⇢ the density, u = (u1, u2, u3) the velocity vector, H = E + p/⇢ is the total enthalpy, E = T + kuk
2

2 the total energy
and p = (�� 1)⇢T the pressure with � = 1.4 the ratio of specific heat capacities, T the temperature, and (e1, e2, e3) the canonical
basis. We describe in short the viscous fluxes and viscous stress tensor � as follows:

F V (W) = [0,�,�(q � u.�)]T ; � = µ(ru + ruT) � 2
3
µr.uI,

with µ representing the constant viscosity. The heat flux q is given by Fourier’s law q = ��rT , where � is the heat conduction
(assumed here to be constant). The five unknowns are gathered in functional product space (we use the same notation):

V =
h

H1(⌦) \C3(⌦̄)
i

⇥
h

H1
0(⌦) \C3(⌦̄)

i3 ⇥
h

H1(⌦) \C3(⌦̄)
i

, (18)

assuming adiabatic conditions on walls. We formulate the Navier-Stokes model in a compact variational formulation:

Find W 2 V such that 8 2 V, ( (W) ,  ) = 0 with  =  E +  � +  V , (19)

where  =
⇣

 ⇢, ⇢u1 , ⇢u2 , ⇢u3 , ⇢E
⌘T

. The Euler term  E relies on the usual Euler fluxes F E :

⇣

 E(W) ,  
⌘

=

Z

⌦

 · r · F E(W) d⌦. (20)

Term  � holds for boundary fluxes which we denote shortly:

⇣

 �(W) ,  
⌘

=

Z

�

 · F̂ �(W) · n d�.

Viscous fluxes  V provide seven terms:

( V (W), ) =
Z

⌦

 · r · F V (W) d⌦ =
7

X

k=1

T V
k . (21)

The first three terms come from moment equations and depend only on  ⇢u = ( ⇢u1 , ⇢u2 , ⇢u3 )T :

T V
1 =

Z

⌦

 ⇢u · r · (µru) d⌦

T V
2 =

Z

⌦

 ⇢u · r ·
⇣

µ(ru)T
⌘

d⌦

T V
3 = �2

3

Z

⌦

 ⇢u · r · (µ (r · u) I) d⌦ .

The last four terms are derived from the energy equation:

T V
4 =

Z

⌦

 ⇢Er · (�rT ) d⌦

T V
5 =

Z

⌦

 ⇢Er ·
⇣

µu · (ru)T
⌘

d⌦

T V
6 =

Z

⌦

 ⇢Er · (µu · ru) d⌦

T V
7 = �2

3

Z

⌦

 ⇢Er · (µu · ((r · u) I)) d⌦ .

4.2. Variational discrete formulation
For the spatial semi-discrete model, we consider the mixed Finite Element - Finite Volume formulation [17, 41]. As in [35],

we reformulate it under the form of a finite element variational formulation. We assume that ⌦ is covered by a unit meshH with
respect to a given Riemannian metric space M = (M(x))x2⌦ composed of simplicial elements, denoted K. Let us introduce the
following approximation space:

Vh =
n

 h 2 V
�

�

�  h |K is a�ne 8K 2 H
o

, whereV is defined by Relation (18). (22)
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The weak discrete formulation writes:

Find Wh 2 Vh such that 8 h 2 Vh,
�

 h(Wh) ,  h
�

= 0,

with
�

 h(Wh) ,  h
�

=

Z

⌦

 h · r · F E
h (Wh) d⌦ �

Z

�

 h · F̂ �h (Wh).n d� +
Z

⌦

 h · r · F V
h (Wh) d⌦ +

Z

⌦

 h · Dh(Wh) d⌦ . (23)

The fourth term in Formulation (23) is an added numerical di↵usion dedicated to numerical stability. In short, the Dh term
involves the di↵erence between the Galerkin central-di↵erences approximation and a second-order Godunov approximation
defined as in [17]. In the present study, we only need to know that for smooth fields, the Dh term is a third-order term with
respect to the mesh size parameter h and will not be considered in our estimate.

Taking in System (23) the P1 interpolation of the fluxes F as discretization principle, produces a finite-element scheme which
is identical to the central-di↵erenced finite-volume scheme built on the so-called median dual cells [41], thus:

8 W 2 Vh [V , F E
h (W) = ⇧hF E(W) and F̂ �h (W) = ⇧hF̂ �(W) . (24)

However, concerning the viscous term, we cannot apply a similar treatment because we have fluxes of order two (second deriva-
tives) and we cannot apply directly the interpolation operator. Let f be the transformation function from primitive variables
U = (⇢,u,T ) into conservatives ones W = (⇢, ⇢u, ⇢E), we set:

F V
h (W) = F V

h ( f (U)) = F V ( f (⇧hU)) = F V ( f (⇧h f �1(W))).

In other words, our discretization consists of P1 interpolating the primitive variables in the above viscous terms {T V
i }i=1..7 for our

discretization principle. This completes the definition of the discrete system under study.

4.3. Mesh adaptation : discrete problem statement
Let g be a function ofV. We assume that the purpose of the numerical problem is to evaluate the output functional:

j = (g,W) where W is the solution of Problem (19).

The problem addressed in this paper is to find the discrete mesh which minimizes the following functional error given a fixed
number of vertices N:

� j = (g,W �Wh) where W is the solution of Problem (19) and Wh is the solution of Problem (23).

The next sections are devoted to this error analysis and the optimal formulation of the mesh adaptation problem.

5. Error analysis for Navier-Stokes problem

The Navier-Stokes equations are a non-linear system, thus some extra justifications are required to be able to perform an error
analysis similar to the linear case (done in Section 3). The following justify why it is possible to apply a similar analysis in the
non-linear case.

Let  be a smooth test function ofV defined in Relation (18). Let W be the solution of Problem (19) and Wh the solution of
Problem (23), the continuous and discrete state equation write:

( (W) ,  ) = 0 and ( h(Wh) , ⇧h ) = 0 ,

where ⇧h lies in Vh defined by Relation (22). We also introduce the continuous and the discrete adjoint states: W⇤ and W⇤h .
The continuous adjoint system related to the objective functional writes:

W⇤ 2 V , 8 2 V :
 

@ 

@W
(W) ,W⇤

!

= (g, ) . (25)

From functional analysis theory, a well-posed continuous adjoint system can be derived for any functional output as far as the
linearized system is well posed. This however does not mean that any output functional leads to properly defined adjoint boundary
conditions. Several works in the literature [4, 5, 14, 16] illustrate this problem and propose solutions, usually by adding auxiliary
boundary terms to the Lagrangian functional. In [16], it is concluded that for the compressible Navier-Stokes system, only
functionals which involve the entire stress tensor at obstacle boundary are admissible. We assume here that (??) is well-posed
and gives a su�ciently smooth continuous adjoint state. The discrete adjoint systeme writes:

W⇤h 2 Vh , 8 h 2 Vh :
 

@ h

@W
(Wh) h,W

⇤
h

!

= (g, h) .

9



5.1. Linearized error system
In our error estimation problem presented in Section 4.3, the approximation error can be decomposed into an implicit error

term and an interpolation error term:

� j = (g,W �Wh) = (g,W � ⇧hW) + (g,⇧hW �Wh) .

The interpolation error can be easily estimated, see Relation (4), while the implicit error is solution of a discrete system that we
derive in the following. Now, we assume that Wh can be made close enough to ⇧hW when h ! 0 in such a way that we can
identify the main term of the left-hand side as a Jacobian times the di↵erence:

 

@ h

@W
(Wh)(Wh � ⇧hW) , ⇧h 

!

⇡
⇣

 h(Wh) �  h(⇧hW) , ⇧h 
⌘

as h! 0.

Then, combining continuous and discrete systems, we can write similarly to Relation (11) an equality linking implicit and
interpolation errors which is valid for all  :

( h(Wh) �  h(⇧hW) , ⇧h ) = ( h(Wh) , ⇧h ) � ( h(⇧hW) , ⇧h ) = ( (W) , ⇧h ) � ( h(⇧hW) , ⇧h )
= ( (W) �  h(⇧hW) , ⇧h )

We are then interested in the following error on functional:

|(g,Wh � ⇧hW)| ⇡
⇣

 h(Wh) �  h(⇧hW) , W⇤h
⌘

=
⇣

 (W) �  h(⇧hW) , W⇤h
⌘

. (26)

The right-hand side of the above relation is composed of (see Relation (23)) the Euler term, the Euler boundary term, the viscous
term, and the stabilization term. In the following, we neglect the boundary term (as in the previous analysis) and the stabilization
term thanks to smoothness of functions W and W⇤. The boundary term analysis is given in [35].

The method proposed here involves some heuristics. In particular, we assume that the interpolate of the adjoint is close to the
discrete adjoint:

⇧hW⇤ ⇡ W⇤h .
Therefore:

|(g,Wh � ⇧hW)| ⇡ ( (W) �  h(⇧hW) , ⇧hW⇤) .

5.2. A priori estimate for Navier-Stokes problem
We can now give the main result of this paper which is the following a priori estimate:

Proposition 5.1. Let us assume that W 2 V and  2 V whereV is defined by Relation (18) and  =
⇣

 ⇢, ⇢u1 , ⇢u2 , ⇢u3 , ⇢E
⌘T

.
Then, we have the following error bound for h su�ciently small:

|( (W) �  h(⇧hW),⇧h )| � E
with:

E =

Z

⌦

|r | · ���F E(W) � ⇧hF E(W)
�

�

� d⌦

+

 

d +
1
3

!

Kd

d
X

i=1

Z

⌦

µ | ⇢H( ⇢ui )| |ui � ⇧hui| d⌦

+
1
3

Kd

d
X

i=1

d
X

j=1
j,i

Z

⌦

µ | ⇢H( ⇢ui )| |u j � ⇧hu j| d⌦

+ Kd

Z

⌦

� | ⇢H( ⇢E)| |T � ⇧hT | d⌦

+ (d +
1
3

) Kd

d
X

i=1

Z

⌦

µ | ⇢H( ⇢E)| |ui| |ui � ⇧hui| d⌦

+
1
3

Kd

d
X

i=1

d
X

j=1
j,i

Z

⌦

µ | ⇢H( ⇢E)| |ui| |u j � ⇧hu j| d⌦

+
5
3

d
X

i=1

d
X

j=1
j,i

Z

⌦

µ

�

�

�

�

�

�

@(⇧h ⇢E)
@x j

 

(u j � ⇧hu j)
@ui

@xi
� (ui � ⇧hui)

@u j

@xi

!

�

�

�

�

�

�

d⌦ ,
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and Kd = 3 in two dimensions, Kd = 6 in three dimensions, and A � B holds for a majoration asymptotically valid, i.e.
A  B + o(A) when mesh size tends to zero. Expression | ⇢H(') | holds for spectral radius of the Hessian of '.

The proof of this Proposition is given in Appendix A. Le last term of this estimation requires additional manipulations (done
in the Appendix) to make its implementation easier. This term is expressed in the following by means of the vector !.

This main result can be written in a more convenient way to facilitate its implementation by gathering interpolation error
terms on the primitive variables. Here, we give the 2D and the 3D re-writting of it, using notations introduced in Appendix A.

Corollary 5.1. Let us assume that W 2 V and  2 V whereV is defined by Relation (18) and  =
⇣

 ⇢, ⇢u1 , ⇢u2 , ⇢E
⌘T

. Then,
in two dimensions (Kd = 3), we have the following error bound for h su�ciently small:

|( (W) �  h(⇧hW),⇧h )| �
Z

⌦

GF E

�

�

�F E(W) � ⇧hF E(W)
�

�

� d⌦

+

Z

⌦

Gu1 |u1 � ⇧hu1| d⌦ +
Z

⌦

Gu2 |u2 � ⇧hu2| d⌦ +
Z

⌦

GT |T � ⇧hT | d⌦ ,

with the coe�cients:

GF E = |r |
Gu1 = µ

 

7 | ⇢H( ⇢u1 )| + | ⇢H( ⇢u2 )| +
⇣

7|u1| + |u2|
⌘

| ⇢H( ⇢E)| + 5
3
|!u2,z|

!

Gu2 = µ

 

| ⇢H( ⇢u1 )| + 7 | ⇢H( ⇢u2 )| +
⇣

|u1| + 7|u2|
⌘

| ⇢H( ⇢E)| + 5
3
|!u1,z|

!

GT = 3 � | ⇢H( ⇢E)|
and the ! vector defined by:

rui ⇥ r ⇢E = !ui =
⇣

!ui,x, !ui,y, !ui,z
⌘T
,

where only the last component is not zero.

Corollary 5.2. Let us assume that W 2 V and  2 V whereV is defined by Relation (18) and  =
⇣

 ⇢, ⇢u1 , ⇢u2 , ⇢u3 , ⇢E
⌘T

.
Then, in three dimensions (Kd = 6), we have the following error bound for h su�ciently small:

|( (W) �  h(⇧hW),⇧h )| �
Z

⌦

GF E

�

�

�F E(W) � ⇧hF E(W)
�

�

� d⌦

+

Z

⌦

Gu1 |u1 � ⇧hu1| d⌦ +
Z

⌦

Gu2 |u2 � ⇧hu2| d⌦ +
Z

⌦

Gu3 |u3 � ⇧hu3| d⌦ +
Z

⌦

GT |T � ⇧hT | d⌦ ,

with the coe�cients:

GF E = |r |
Gu1 = µ

 

20 | ⇢H( ⇢u1 )| + 2 | ⇢H( ⇢u2 )| + 2 | ⇢H( ⇢u3 )| +
⇣

20|u1| + 2|u2| + 2|u3|
⌘

| ⇢H( ⇢E)| + 5
3
|!u3,y � !u2,z|

!

Gu2 = µ

 

2 | ⇢H( ⇢u1 )| + 20 | ⇢H( ⇢u2 )| + 2 | ⇢H( ⇢u3 )| +
⇣

2|u1| + 20|u2| + 2|u3|
⌘

| ⇢H( ⇢E)| + 5
3
|!u1,z � !u3,x|

!

Gu3 = µ

 

2 | ⇢H( ⇢u1 )| + 2 | ⇢H( ⇢u2 )| + 20 | ⇢H( ⇢u3 )| +
⇣

2|u1| + 2|u2| + 20|u3|
⌘

| ⇢H( ⇢E)| + 5
3
|!u2,x � !u1,y|

!

GT = 6 � | ⇢H( ⇢E)|
and the ! vector defined by:

rui ⇥ r ⇢E = !ui =
⇣

!ui,x, !ui,y, !ui,z
⌘T
.

For the next section where we seek for the optimal mesh that minimize the above error model, it is useful to note that the
error model can be written under the compact form:

|( (W) �  h(⇧hW),⇧h )| �
Z

⌦

X

k

Gk(µ, �,U,r , | ⇢H( )|) �

�

�S k(W) � ⇧hS k(W)
�

�

� d⌦ , (27)

in other words, the error model is a sum of interpolation errors weighted by algebraic functions.
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6. Goal-oriented optimal continuous mesh

6.1. Mesh adaptation : continuous problem statement
According to the continuous mesh theory [33, 34] presented in Section 2, we transform the a priori error estimate of Propo-

sition 5.1 into a continuous error estimate. To this end, the following modifications are done:

• meshH is replaced by continuous mesh M = (M(x))x2⌦

• number of vertices N is replaced by complexity C(M) = N
• the P1 projection operator⇧h defined on meshH is replaced by the P1 continuous mesh operator ⇡M defined on continuous

mesh M = (M(x))x2⌦

• discrete interpolation error u � ⇧hu defined on mesh H is replaced by continuous interpolation error u � ⇡Mu defined on
continuous mesh M = (M(x))x2⌦.

Then, using Relations (26) and (27), we can reformulate the discrete mesh adaptation problem introduced in Section 4.3 in
the continuous mesh framework: find the continuous mesh Mopt which minimizes the following functional error given a fixed
complexity N:

� j = (g,W �Wh) ⇡ (g,W � ⇧hW) + ( (W) �  h(⇧hW) , ⇧hW⇤)

�
Z

⌦

X

k

|gk |
�

�

�Wk � ⇡MWk
�

�

� d⌦ +
Z

⌦

X

k

Gk(µ, �,U,rW⇤, | ⇢H(W⇤)|) �

�

�S k(W) � ⇡MS k(W)
�

�

� d⌦ , (28)

where W is the solution of Problem (19), Wh is the solution of Problem (23) and W⇤ is the solution of Problem (25).

As the above relation is a weighted sum of interpolation errors, by introducing the following positive symmetric matrix

Hgo(x) =
X

k

|gk | |HWk | +
X

k

Gk(µ, �,U,rW⇤, | ⇢H(W⇤)|) |HS k(W)| (29)

where |HWk | and |HS k(W)| are the absolute value of the Hessian of fields Wk and S k(W), and using the definition of the continuous
interpolation error given by Relation (4), we can state the following error estimate on continuous mesh M = (M(x))x2⌦:

� j ⇡ Ego(M) = cd

Z

⌦

trace
⇣

M� 1
2 (x) Hgo(x)M� 1

2 (x)
⌘

d⌦ .

It is then possible to set the well-posed global optimization problem of finding the optimal continuous mesh Mgo minimizing
continuous interpolation error Ego(M):

Find Mgo = min
M

Ego(M) under the constraint C(M) = N . (30)

6.2. Optimal goal-oriented continuous mesh
We seek for the optimal continuous mesh Mgo solution of Problem (30). Similarly to [35], solving the optimality conditions

provides the optimal goal-oriented continuous mesh Mgo = (Mgo(x))x2⌦ defined pointwise by:

Mgo(x) = N 2
d

 

Z

⌦

(det Hgo(x̄))
1

d+2 dx̄
!� 2

d
⇣

det Hgo(x)
⌘� 1

d+2 Hgo(x). (31)

where d is the dimension. The corresponding optimal error writes:

Ego(Mgo) = = 3N� 2
d

 

Z

⌦

(det Hgo(x))
1

d+2 dx
!

2+d
d

, (32)

where the exponent of N illustrates the second-order accuracy of the method.

12



7. From theory to practice

The continuous mesh adaptation problem takes the form of the following continuous optimality system:

W 2 V , 8 2 V , ( (M,W), ) = 0 “Navier-Stokes system”

W⇤ 2 V , 8 2 V ,
 

@ 

@W
(M,W) ,W⇤

!

= (g, ) “Adjoint system”

M =Mgo “Adapted continuous mesh”.

In practice, it is necessary to approximate the above three-field coupled system by the discrete optimality system:

W 2 Vh , 8 h 2 Vh ,
�

 h(H ,Wh), h
�

= 0 “Discrete Navier-Stokes system”

W⇤h 2 Vh , 8 h 2 Vh ,

 

@ 

@W
(H ,Wh) h,W

⇤
h

!

= (g, h) “Discrete Adjoint system”

H = Hgo “Discrete adapted mesh”.

The discrete optimality system is solved using the following fixed-point mesh adaptation algorithm:

Algorithm 1 Viscous Goal-Oriented Mesh Adaptation Loop for Steady Flows
Initial mesh and solution (H1

go,S1
0) and set targeted functional j and complexity N

# Adaptive loop to converge the steady-state solution and its associated optimal adapted discrete mesh
For i = 1, nadap

1. Wi
h = Compute discrete state solution of the discrete Navier-Stokes system from pair (Wi

h,0,H i
go);

2. W⇤,ih = Compute discrete adjoint state solution of the discrete adjoint system from ( j,Wi
h,H i

go);
3. Mi

go = Compute the optimal goal-oriented metric field from (N ,W⇤,ih ,W
i
h,H i

go);
4. H i+1

go = Generate the new adapted mesh which is unit w.r.t. Mi
go from (Mi

go,H i
go);

5. Wi+1
0 = Interpolate the previous discrete state solution on the new mesh from (H i

go,Wi,H i+1
go );

EndFor

The following sections detail each step of the above algorithm. The state and adjoint solutions are given in Section 7.1. The
computation of the discrete metric field is given in Section 7.2. And, the methodology to generate the adapted discrete mesh is
discussed in Section 7.3. The last step is not presented here, we refer to [1] for more details.

7.1. The flow solver: Wolf
The flow is modeled by the conservative laminar Navier-Stokes equations given by Relation (17).
The spatial discretization of the fluid equations is based on a vertex-centered finite element/finite volume formulation on

unstructured meshes composed of triangles in 2D and tetrahedra in 3D. It combines a HLLC upwind schemes for computing the
convective fluxes and the Galerkin centered method for evaluating the viscous terms. Second order space accuracy is achieved
through a piecewise linear interpolation based on the Monotonic Upwind Scheme for Conservation Law (MUSCL) procedure
which uses a particular edge-based formulation with upwind elements. A specific low dissipation scheme is considered using
combination of centered and upwind gradients. A dedicated slope limiter is employed to damp or eliminate spurious oscillations
that may occur in the vicinity of discontinuities.

The temporal discretization considers implicit BDF1 time advancing scheme. To solve the non-linear system, we follow
the approach based on Symmetric Gauss-Seidel (SGS) implicit solver. The Newton’s method based on the SGS relaxation is
very attractive because they use an edge-based data structure which can be e�ciently parallelized with p-threads. From our
experience, we have made the following - crucial - choices to solve the compressible Navier-Stokes equations.

• the SGS relaxation iterates until the residual of the linear system is reduced by two orders of magnitude

• the Breadth-first search renumbering proves to be the more e↵ective for the convergence of the implicit method and the
overall e�ciency

• we found very advantageous to fully di↵erentiate the HLLC approximate Riemann solver and the FEM viscous terms

• to achieve high e�ciency, automation and robustness in the resolution of the non-linear system of algebraic equations to
steady-state, it is mandatory to have a clever strategy to specify the time step.

13



The flow solver Wolf is thoroughly detailed in [41] with all the associated bibliography.

As regards the adjoint state computation, the matrix of the linear system is simply the implicit matrix transposed and the right
hand-side of the system is the chosen functional (for instance, drag, lift, ...) exactly di↵erentiated:

@ h

@Wh

T
W⇤h =

@ j
@Wh

.

In particular, for viscous flows, µ and the stress tensor ⌧ are exactly di↵erentiated. To solve the adjoint system, we use a restarted
GMRES preconditioned with LUSGS relaxation. Note that, it is important to solve the adjoint linear system to machine precision.

7.2. Computation of the optimal continuous mesh
The expression of the optimal goal-oriented metric field is given by Relations (29) and (31) where algebraic functions Gk

and S k are given in Corollaries 5.1 and 5.2 where  is replaced by the adjoint state W⇤. This expression involves the state and
the adjoint state, and their derivatives (first and second). In practice, these terms are approximated by the discrete states and a
derivative recovery is applied to get gradients and Hessians. In this paper, the recovery method is based on the L2-projection
formula. Its formulation along with some comparisons to other methods is available in [2]. We then obtain a discrete metric field
defined at vertices of the mesh.

The discrete adjoint state W⇤h is taken to represent the adjoint state W⇤. The gradient of the adjoint state rW⇤ is replaced by
rRW⇤h where rR stands for the operator that recovers numerically the first derivatives of an initial piecewise linear solution field.
The Hessian is obtained by applying the recovery operator two times: HR = rR � rR. Then, | ⇢H(W⇤)| is obtained from | ⇢H(W⇤h )|
which is evaluated by computing the maximal, in absolute value, eigenvalue of HR(W⇤h ).

Similarly, the discrete state Wh is taken to represent the state W and to compute the Euler fluxes, velocity components and
temperature (i.e., each term S k(W) is replaced by S k(Wh)). The Hessians of the S k(Wh) are obtained using the recovery operator
HR and the absolute values of the Hessians are computed by taking the absolute values of the eigenvalues.

7.3. The local adaptive remesher: Feflo.a
The adaptive remesher used in this paper is based a combination of generalized standard operators (insertion, collapse,

swap of edges and faces). The generalized operators are based on recasting the standard operators in a cavity framework [37].
Additional modifications on the cavity allow to either favor a modification, that would have been rejected with the standard
operator, or to improve the final quality by combining automatically many standard operators at once. In addition, the CPU
time is also improved and becomes independent of the current modification. The unit speed is around 20, 000 points inserted
or removed per second on Intel i7 architecture at 2.7 GHz. For robustness purpose, both the surface and the volume mesh are
adapted simultaneously, and each local modification is checked to verify that a valid mesh is obtained. For the volume, the
validity consists in checking that each newly created element has a strictly positive volume. For the surface, the validity is
checked by ensuring that the deviation of the geometric approximation with respect to a reference surface mesh remains within
a given tolerance [21].

The boundary layer region involves highly directional features requiring the generation of highly stretched meshes (anisotropic
ratio from thousands to hundreds thousands). To control the overall mesh quality and to avoid the creation of large dihedral an-
gles, quasi-structured mesh generation in boundary layer has been favored (for instance [40, 45]) because the surface of the
geometry can be used as a support. Such quasi-structured meshes impacts favorably the stability and the accuracy of the numer-
ical schemes. The generation of such quasi-structured meshes has been generalized in a metric-based mesh adaptation context
[31, 38, 39] allowing quasi-structured stretched elements regions to be generated in the vicinity of any physical features (shocks,
wakes, shear layers, ...). To this end, a procedure to generate metric-aligned and metric-orthogonal anisotropic adapted meshes
has been proposed. The metric-aligned approach uses a point placement that aligns the elements with the eigenvectors of the
underlying metric field. This simple strategy produces solution-adapted anisotropic meshes that are optimal in size and alignment
with the solution gradients upon which the metric field is based. When the goal is to generate locally structured meshes in an
anisotropic context and in the presence of complex geometries, a metric-orthogonal approach is used. In that case, the point
placement proposes points that align with the eigenvectors frame of the underlying metric field. The adaptive algorithm relies
a frontal approach to propose the points which are iteratively inserted using the cavity-based point insertion operator [37]. The
local alignment and orthogonality are naturally inherited from the eigenvectors and eigenvalues of an input metric field.

This strategy has been considered in all the numerical examples presented hereafter.
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8. Numerical Experiments

In order to validate the aforementioned error estimate for viscous flows we have performed a series of simulations of com-
pressible flows dominated by viscous e↵ects around a NACA0012 airfoil. The first three test cases studied hereafter are rather
well studied cases by the aerodynamic community, providing thus (for some examples) useful comparaison support.

The initial mesh employed for these simulations is triangular, unstructured of about 16 000 vertices in a circular domain
of radius 100 and the airfoil chord length is 1. We are interested in deriving the best goal-oriented adapted anisotropic mesh
to observe some quantity of interest. For the first three problems, we have considered the total (induced plus friction) drag
coe�cient CD integrated over the airfoil profile:

CD = Cp +C f =
1

1
2⇢1ku1k2 Lre f

Z

�

(p � p1)(nx cos↵ + ny sin↵) �
⇣

cos↵(⌧xxnx + ⌧xyny) + sin↵(⌧xynx + ⌧yyny)
⌘

.

where n = (nx, ny) is the outward unit normal vector to the surface �, 1
2⇢1ku1k2 is the free-stream dynamic pressure, ↵ the angle

of attack, and Lre f is the chord reference length chosen equal to 1.0089. Note that after each mesh adaptation, vertices located
on the NACA0012 geometry are reprojected exactly on the geometry.

It is interesting to see how the di↵erent terms of the error estimate influence the generation of the adapted meshes for the
computation of the total drag. To this end, for each test case, we compare the viscous and the inviscid [35] (i.e., without the
viscous terms) error estimates by confronting the corresponding meshes in order to emphasize the impact of the error estimate
viscous terms in the mesh adaptation process. Moreover, as the proposed error estimate should be optimal, it must at least do
better than uniform refinement and the inviscid error estimate. Thus, we compare the drag convergence using the viscous and the
inviscid error estimates to assess the optimality new approach.

Remark 8.1. We have now to recall that viscous terms are integrated with the P1-Galerkin discretization. In contrast to many
structured finite-volume methods no special high-order interpolation is applied near the wall. Instead, the P1-Galerkin approx-
imation stencil reduces to solely the wall vertex and its direct neighbors. According to the finite-element theory, convergence
is second order in L2 and first-order in H1, that is for derivatives of unknowns. Taking the trace at wall of the derivative may
degrade this order, but the integral over the wall may upgrade it (through a Green formula). This short a priori analysis leads
to a first-order convergence for the drag. Then, we have to rely on a super-convergence e↵ect if we want a convergence of the
drag coe�cient better than one. In our test cases, drag levels are in some cases compared with reference values obtained with
hundreds-vertices finer meshes. Drag numerical convergence order is never measured with these reference values but from the
numerical outputs.

In two dimensions, the convergence order ↵ of our quantity of interest j for each case is computed using the relation:

↵i =
log(| ji � jre f |) � log(| ji�1 � jre f |)

log(hi) � log(hi�1)
with hi =

1p
Ni
,

where N is the number of vertices of the mesh.

8.1. Laminar transonic flow around NACA0012: M = 0.8, ↵ = 10� and Re = 73
The first test case is the laminar transonic flow around the NACA0012 airfoil. For this case, the free-stream Mach number

is 0.8, the angle of attack is 10� and the Reynolds number is 73. This problem has been investigated by several authors for the
GAMM Workshop (see [13]) on the Solution of Compressible Navier-Stokes flows. The Mach number contours of the computed
solution are depicted in Figure 2, where a thick boundary layer along the airfoil surface is observed, and locally supersonic flow
is attained only in a small pocket outside the edge of the viscous layer on the upper surface.

The considered functional of interest is the total drag coe�cient integrated along the airfoil profile. We have considered our
new a priori error estimate to compute the associated optimal anisotropic adapted meshes for varying mesh complexity. Multiple
views of the resulting adapted mesh composed of about 38 000 vertices obtained after performing 6 fixed-point iterations are
shown in Figure 4 (right column). We observe that most of the refinement is located around the airfoil (boundary layer) and
outside the edge of the viscous layer on the upper and lower regions of the domain. We also notice strong refinement at the
trailing edge of the airfoil.

We also compared adapted meshes obtained using the error estimate with and without the viscous terms. In Figure 4, we
compare the goal-oriented adapted mesh obtained by adapting only for the convective flux with the goal-oriented adapted mesh
where both fluxes (convective and di↵usive) are considered. Both meshes have a similar number of vertices. In the far field,
we observe similar anisotropic refinement, whereas close to the body we notice that the viscous error estimate adds a notable
supplement of resolution in the boundary layer close to the wall and imposes a finer resolution in the vicinity of the trailing edge.
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As expected, the viscous terms of the error estimate govern the mesh density in the boundary layer. These di↵erences strongly
impact the drag estimation as confirmed by the convergence curves of the drag presented in Figure 3. We observe that our new
adaptive method converges quicker to the reference drag value. For instance, the adapted mesh obtained with the viscous error
estimate composed of 18 943 vertices achieves a drag value close to the adapted mesh obtained with the inviscid error estimate
composed of 141 135 vertices. In other words, seven times less vertices are needed to achieve the same accuracy.

The accuracy of the computed drag values and the numerical convergence order are plotted in Figure 3 (right) and listed in
Table 1. To compute the convergence order, we have chosen as reference drag the drag obtained on the finest adapted mesh
(149 465 vertices) obtained with the viscous goal-oriented error estimate: CRe f

D = 0.6648091. We notice a higher order of
convergence with the viscous goal-oriented error estimates (⇡ 2.25) than with the inviscid goal-oriented error estimate (⇡ 1.75).
The observed convergence order of the total drag is a reasonable value for this problem.

8.2. Laminar supersonic flow around NACA0012: M = 2, ↵ = 10� and Re = 106
We present a supersonic laminar viscous flow around the same NACA0012 airfoil starting from the same initial mesh as

before. The free-stream Mach number considered here is 2, with an angle of attack of 10 degrees and a laminar Reynolds number
of 106. A thick bow shock appears upstream of the airfoil profile as shown in Figure 5 where the Mach field is pictured. The
close-up view of the airfoil shows a thick boundary layer and a thick wake for this low Reynolds number flow.

In order to perform the convergence study, several adapted meshes with di↵erent complexity have been obtained for the
inviscid (no viscous terms) and the viscous goal-oriented error estimates targeting the total drag as output. Multiple views for the
adapted meshes containing about 38 000 vertices are shown in Figure 7 for both approaches. These adapted meshes are obtained
after 6 iterations of the mesh adaptation loop. We observe again that the viscous error estimate increases the mesh resolution
in the boundary layer close to the airfoil and at the trailing edge, while the inviscid one add more resolution in the bow shock
vicinity.

As the targeted output functional is the drag, meshes obtained with the new error estimates are closer to our expectation. This
is confirmed by the drag and error convergence curves, see Figure 6 and Table 2. In this example too, an earlier convergence
to the reference value is achieved with the new error estimate. For instance, the adapted mesh obtained with the viscous error
estimate composed of 19 103 vertices achieves a similar drag value as the adapted mesh obtained with the inviscid error estimate
composed of 140 924 vertices. In other words, seven times less vertices are needed to achieve the same accuracy. To analyze
the convergence order, we consider as reference drag, the drag obtained on the finest mesh (149 514 vertices) with the viscous
goal-oriented mesh adaptation: CRe f

D = 0.5549227. Then, we observe a convergence order around 2.4 for the viscous approach
and 1.8 for the inviscid one. This confirms the superiority of the viscous goal-oriented error estimates and the large influence of
the viscous terms in the error estimates. It also reflects the optimality of the obtained meshes.

8.3. Laminar subsonic flow around NACA0012: M = 0.5, ↵ = 3� and Re = 5 000
We present a subsonic laminar viscous flow at a higher Reynolds number around the same NACA0012 airfoil still starting

from the same initial mesh. The free-stream Mach number considered here is 0.5, with an angle of attack of 3 degrees and a
Reynolds number of 5 000. This test case have been initially proposed by Swanson and Turkel [47] without any angle of attack
to evaluate compressible flow solver. This particular case was chosen because it has a small amount of trailing edge separation
and was a good test case to check the levels of dissipation being produced by the numerical scheme. Then, this test case has
been generalized to several angles of attack. These test cases require a robust flow solver to converge the solution to machine
zero. Indeed, it has been shown that a non robust numerical resolution leads to unsteady solutions due to a lack of numerical
convergence. This problem has been deeply investigated by Swanson et al. [46] where the authors pointed out some possible
reason for failing to obtain steady solutions. They mentioned the case presented by Taube et al. in [28] where the angle of attack
↵ = 2�. The authors included adaptation in their calculation, but on a rather coarse mesh where the adaptive criterion pointed
out the wake as the refinement region, resulting thus in an insu�cient resolution in the vicinity of the separation point, which, as
pointed out by Swanson et al., might led to unsteadiness. However, the studies conducted in [46] and on adapted meshes in [49]
showed that this test case is indeed a steady problem.

The Mach contour solution is shown in Figure 8. The flow separates before mid-chord location on the upper surface of the
airfoil. From the streamline patterns, we can observe primary and secondary recirculating regions, with the secondary region
attached to the trailing edge.

As it has been pointed out in [46] the computed aerodynamic values variation should vanish with mesh refinement. We
consider the total drag coe�cient Ctot

D integrated over the airfoil profile as our quantity of interest and we perform convergence
studies with three di↵erent error estimates: the classical Hessian-based error estimates controlling the L2-norm of the interpo-
lation error of the local Mach number field [2, 36], the inviscid goal-oriented error estimate and the viscous error estimate. For
each estimate, we perform multiple adaptations at di↵erent mesh complexity (from 2 000 to 140 000). For each complexity, the
final adapted mesh is obtained after 6 adaptive iterations.
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Figure 2: NACA0012 at M = 0.8, ↵ = 10� and Re = 73: Local Mach number solution field and iso-contours for the transonic laminar viscous flow obtained with
the goal-oriented viscous adapted mesh composed of 37 838 vertices.
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Figure 3: NACA0012 at M = 0.8, ↵ = 10� and Re = 73: Convergence of the total drag with respect to the number of vertices (left) and error convergence (right)
for the transonic laminar viscous flow computed with the inviscid (red curves) and the viscous (blue curves) goal-oriented anisotropic mesh adaptation.

Viscous Error Estimate
Mesh size Ctot

D Error Conv. order
2 384 0.6564739 8.3352 ⇥ 10�3 -
4 840 0.6610405 3.7686 ⇥ 10�3 2.24
9 562 0.6630579 1.7512 ⇥ 10�3 2.25

18 943 0.6639960 8.1310 ⇥ 10�4 2.24
37 838 0.6644963 3.1280 ⇥ 10�4 2.76
75 241 0.6647139 9.5200 ⇥ 10�5 3.46

149 465 0.6648091 Reference -

Inviscid Error Estimate
Mesh size Ctot

D Error Conv. order
2 330 0.6394387 2.5370 ⇥ 10�2 -
4 631 0.6511749 1.3634 ⇥ 10�2 1.81
9 139 0.6576796 7.1295 ⇥ 10�3 1.91

17 987 0.6608486 3.9605 ⇥ 10�3 1.74
35 881 0.6625947 2.2144 ⇥ 10�3 1.68
71 038 0.6635034 1.3057 ⇥ 10�3 1.55

141 135 0.6640958 7.1330 ⇥ 10�4 1.76

Table 1: NACA0012 at M = 0.8, ↵ = 10� and Re = 73: Total drag coe�cient convergence, error convergence and convergence order for the viscous and inviscid
error estimates.
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Figure 4: NACA0012 at M = 0.8, ↵ = 10� and Re = 73: Comparison of adapted meshes composed of about 38 000 vertices for the transonic laminar viscous
flow. Left, goal-oriented adapted mesh without viscous flux contribution to optimal metric (only the Euler fluxes criterion). Right, goal-oriented adapted mesh
with viscous flux contribution to optimal metric.
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Figure 5: NACA0012 at M = 2, ↵ = 10� and Re = 106: Local Mach number solution field and iso-contours for the supersonic laminar viscous flow obtained
with the goal-oriented viscous adapted mesh composed of 37 842 vertices.
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Figure 6: NACA0012 at M = 2, ↵ = 10� and Re = 106: Convergence of the total drag with respect to the number of vertices (left) and error convergence (right)
for the transonic laminar viscous flow computed with the inviscid (red curves) and the viscous (blue curves) goal-oriented anisotropic mesh adaptation.

Viscous Error Estimate
Mesh size Ctot

D Error Conv. order
2 412 0.5470249 7.8978 ⇥ 10�3 -
4 800 0.5514723 3.4504 ⇥ 10�3 2.41
9 605 0.5534449 1.4778 ⇥ 10�3 2.44

19 103 0.5542634 6.5930 ⇥ 10�4 2.35
37 842 0.5546471 2.7560 ⇥ 10�4 2.55
75 590 0.5548341 8.8600 ⇥ 10�5 3.28

149 514 0.5549227 Reference -

Inviscid Error Estimate
Mesh size Ctot

D Error Conv. order
2 368 0.5247889 3.0134 ⇥ 10�2 -
4 602 0.5416947 1.3228 ⇥ 10�2 2.48
8 983 0.5484987 6.4240 ⇥ 10�3 2.16

17 853 0.5511675 3.7552 ⇥ 10�3 1.56
35 432 0.5529389 1.9838 ⇥ 10�3 1.86
70 159 0.5538562 1.0665 ⇥ 10�3 1.82

140 924 0.5542778 6.4490 ⇥ 10�4 1.44

Table 2: NACA0012 at M = 2, ↵ = 10� and Re = 106: Total drag coe�cient convergence, error convergence and convergence order for the viscous and inviscid
error estimates.
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Figure 7: NACA0012 at M = 2, ↵ = 10� and Re = 106: Comparison of adapted meshes composed of about 38 000 vertices for the supersonic laminar viscous
flow. Left, goal-oriented adapted mesh without viscous flux contribution to optimal metric (only the Euler fluxes criterion). Right, goal-oriented adapted mesh
with viscous flux contribution to optimal metric.
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The resulting adapted meshes composed of about 38 000 vertices are shown in Figures 10 and 11. The top pictures represent
the adapted mesh obtained with the Hessian-based error estimate. We observe that the remeshing e↵ort is very poor at the leading
edge, at the trailing edge, and around the airfoil profile in the boundary layer, which is what expected from this method based
on minimizing the mach errors values and not directly on improving the total drag. We can also observe that with this method
the wake is highly refined (see the second column of Figure 11). The middle pictures show the adapted mesh obtained with the
inviscid goal-oriented error estimate. We observe that the leading edge, trailing edge and the boundary layer are more refined
than using the Hessian-based error estimate while the wake has been adapted slightly. However, a closer look near the body
shows that the boundary layer is not highly refine as this estimate does not take into account viscous e↵ects. The bottom pictures
illustrate the adapted mesh obtained with the viscous goal-oriented error estimate. We notice that the leading edge, trailing edge
and the boundary layer are even more refined and again less e↵ort has been put in the wake. A closer look near the body points
out the increase refinement in the boundary layer region.

The conclusions regarding the comparison between the three adaptive methods are reinforced by Figure 9 and Tables 3 and
?? where the total drag value convergence with increasing mesh size is given. We can see that the Mach-adapted method shows
only a late convergence for meshes above 70 000 vertices. Both goal-oriented methods shows earlier convergence and again the
viscous estimates proves to be superior to the other methods.

Figure 8: NACA0012 at M = 0.5, ↵ = 3� and Re = 5 000: Local Mach number solution field and iso-contours obtained on the goal-oriented viscous adapted
mesh composed of 37 353 vertices.
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Figure 9: NACA0012 at M = 0.5, ↵ = 3� and Re = 5 000: Convergence of the total drag with respect to the number of vertices for the subsonic laminar viscous
flow computed with Mach Hessian-based error estimate (pink curve), the inviscid (red curves) and the viscous (blue curves) goal-oriented error estimates.
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Figure 10: NACA0012 at M = 0.5, ↵ = 3� and Re = 5 000: Comparison of adapted meshes composed of about 38, 000 vertices for the subsonic laminar viscous
flow. Top, Hessian-based error estimates controlling the L2-norm of the interpolation error of the local Mach number field. Middle, goal-oriented adapted mesh
without viscous flux contribution to optimal metric (only the Euler fluxes criterion). Right, goal-oriented adapted mesh with viscous flux contribution to optimal
metric.
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Figure 11: NACA0012 at M = 0.5, ↵ = 3� and Re = 5 000: Comparison of adapted meshes composed of about 38, 000 vertices for the subsonic laminar viscous
flow. Top, Hessian-based error estimates controlling the L2-norm of the interpolation error of the local Mach number field. Middle, goal-oriented adapted mesh
without viscous flux contribution to optimal metric (only the Euler fluxes criterion). Right, goal-oriented adapted mesh with viscous flux contribution to optimal
metric.
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Viscous Error Estimate
Mesh size Ctot

D
2 397 0.05829608
4 772 0.05772547
9 473 0.05768550

18 861 0.05770964
37 353 0.05773110
73 910 0.05774073

147 257 0.05774982
293 706 0.05775450

Inviscid Error Estimate
Mesh size Ctot

D
2 412 0.05819562
4 739 0.05756836
9 342 0.05757901

18 479 0.05764147
36 487 0.05767100
71 848 0.05769866

142 969 0.05772853

Mach Hessian L2 Error Estimate
Mesh size Ctot

D
2 343 0.06264318
4 662 0.05826357
9 303 0.05836721

18 337 0.05751269
35 956 0.05752201
71 395 0.05740691

139 523 0.05749961

Table 3: NACA0012 at M = 0.5, ↵ = 3� and Re = 5 000: Total drag coe�cient convergence for the viscous, the inviscid, and the Hessian-based error estimates.

8.4. NACA0012 shock-boundary layer interaction M = 1.4, ↵ = 0� and Re = 1 000
The next exemple is a shock-boundary layer interaction problem in a rectangular domain of size [�10, 20]⇥[�10, 10] contain-

ing a NACA0012 airfoil. The left, right and top parts of the domain are considered as inflow and outflow boundary conditions.
The bottom part of the domain is the ground. It is considered as a slip surface except a region between x = 4 and x = 20 which
is a no-slip surface where develops a boundary layer. The leading edge of the airfoil is located at (0, 0); this represents a distance
of 10 chords length from the ground. The airfoil is also considered as a slip surface.

As the supersonic flow conditions are a free-stream Mach number of 1.4, an angle of attack of 0� and a Reynolds number of
1 000; the flow is strongly shock dominated. It is then interesting to investigate the interaction between the bow shock emitted
by the airfoil and the boundary layer on the ground. For the observation, we consider the pressure deviation on a small part of
no-slip ground � = [8, 11] ⇥ 0 (shown in Figure 12):

j(w) =
1
2

Z

�

(p � p1)2

p1
d� .

We run this simulation on a quasi-uniform mesh composed of about 42 000 vertices. The obtained solution is depicted in
Figure 12 where the local Mach number is plotted. The supersonic airfoil generates a bow shock that propagates to the ground.
This shock interacts with the reflected shock coming from the edge of the boundary layer and with the boundary layer. At
first sight, on this quasi-uniform mesh there is no visible impact resulting from the shock-boundary layer interaction. Physical
phenomena are spread out on this non-adapted mesh.

We have applied our goal-based adaptive method starting from a quasi-uniform mesh containing about 16 000 vertices. For
this initial mesh, no particular boundary layer mesh has been considered at the ground, and we expect the mesh adaptive method
to capture it and mesh it adequately to reduce the error committed on our scalar functional j. It is also interesting to observe
the behavior of the goal-oriented mesh adaptation as an indirect physical phenomenon (the bow shock) is interacting with the
boundary layer just before the observation area. To perform a convergence study, many complexities have been considered.
Several pictures of the resulting adaptive mesh using the viscous goal-oriented error estimate composed of about 72 000 vertices
are given in Figure 14. The first view (top pictures) illustrates the resulting adaptive mesh for the entire computational domain
with the associated solution. We observe, as expected, a concentration of the refinement e↵ort in the lower half of the domain
and to the ground meaning that the flow in these regions contributes the most to the errors committed on our observation. Indeed,
even if the upper part of the shocks are refined by the algorithm, the mesh density in that region is a lot coarser than in the lower
part of the domain as its impact on the observation is weak. We notice that shocks reflection to the ground are also stopped to be
refined after their interactions with the tail shock. The last view (bottom pictures) shows a close-up view of the shock-boundary
layer interaction region. Thanks to the mesh adaptation, we observe that we are able to capture accurately the separation bubble
and the lift o↵ of the boundary layer due to the impact of the oblique shock, and we also capture the reflected shock in front of
the bubble and the expansion fan at the foot of the oblique shock. All these waves are visible in the mesh.

We have also considered a series of adapted meshes for the inviscid error estimator and compared the convergence of the
scalar functional with increasing number of vertices. The results are shown in Figure 13 and Table 4. We can see that with the
exception of the first computations on a rather coarse mesh of 2 000 vertices, for both cases, the value of the scalar functional
converges quickly and remains quite close to final value. Both approaches are almost superposed with increasing mesh size.
From far, the adapted meshes obtained with the viscous and the inviscid goal-oriented error estimates look similar, indeed the
viscous terms have a little impact in the far field. In fact, the discrepancies between the two goal-oriented adaptive methods
for this problem are mostly visible in the boundary layer at the ground level. If we zoom in the boundary layer region near the
observation area �, we notice that the region close to the ground is more refined with the viscous error estimate as shown in
Figure 15.
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Figure 12: NACA0012 at M = 1.4, ↵ = 0� and Re = 1 000: Local Mach number solution field and iso-contours for the shock-boundary layer interaction problem
obtained on a quasi-uniform mesh of about 42, 000 vertices. Left, visualisation of the observation region � on the ground.
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Figure 13: NACA0012 at M = 1.4, ↵ = 0� and Re = 1 000: Convergence of the functional j with respect to the number of vertices for the supersonic laminar
viscous flow computed with the inviscid (red curves) and the viscous (blue curves) goal-oriented anisotropic mesh adaptation.

Viscous Error Estimate
Mesh size Ctot

D
2 319 0.004462248
4 601 0.004662791
9 200 0.004678465

18 107 0.004678565
36 090 0.004675225
71 887 0.004670773

Inviscid Error Estimate
Mesh size Ctot

D
2 324 0.004258559
4 598 0.004644956
9 187 0.004652647

18 476 0.004674319
36 104 0.004672913
71 822 0.004671156

Table 4: NACA0012 at M = 1.4, ↵ = 0� and Re = 1 000: Pressure functional j convergence for the viscous and inviscid goal-oriented error estimates.
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Figure 14: NACA0012 at M = 1.4, ↵ = 0� and Re = 1 000: Adapted meshes (left) composed of about 72 000 vertices and associated Mach number field (right)
obtained using the goal-oriented viscous error estimate. From top to bottom, global view of the domain, close-up view of the airfoil and zoom in the boundary
layer region where the shock-boundary layer interaction occurs.
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Figure 15: NACA0012 at M = 1.4, ↵ = 0� and Re = 1 000: Comparison of adapted meshes composed of about 72 000 vertices in the boundary layer region.
Left, goal-oriented adapted mesh without viscous flux contribution to optimal metric (only the Euler fluxes criterion). Right, goal-oriented adapted mesh with
viscous flux contribution to optimal metric.

8.5. Three dimensional shock-boundary layer interaction M = 1.4, ↵ = 0� and Re = 3.6 ⇥ 106

The last example is a three-dimensional turbulent shock-boundary layer interaction problem. The geometry consists in a
diamond shape of length 0.2 and thickness 0.02 immersed in a box of size [�0.1, 1.25] ⇥ [�0.05, 0.05] ⇥ [0, 0.5]. The leading
edge is along the y-axis located at x = 0 and z = 0.2. The supersonic flow conditions are a free-stream Mach number of 1.4, an
angle of attack of 0� and a Reynolds number of 3.6 ⇥ 106. The boundary conditions of this test case are presented in Figure 16.
The diamond geometry is creating shock waves which impact the flat plate located at the bottom of the domain. The flat plate is
also impacted by shock waves reflected by the top wall. This configuration leads to a complex pattern of shock waves with many
shock-boundary layer interactions.

The viscous goal-oriented error estimate has been considered to control the error on the total drag on the flat plate. The
adaptive process starts from a non-adapted mesh composed of about 170, 000 vertices. This mesh contains a coarse boundary
layer mesh with a first layer at y+ = 13 (i.e., h = 10�4). The solution on this initial mesh is depicted in Figure 16 (right). Six mesh
adaptation iterations are considered to converge the couple mesh solution. The resulting adapted mesh containing 1.6 million
vertices and the associated local Mach field number are shown in Figure 17. The complex shock waves pattern is accurately
captured by the adaptive process in all the regions where it impacts the flat plate (we observe that at the end of the domain, the
mesh has been coarsen). The boundary layer is also highly refined, and a close-up view of the shock boundary layer interaction
region shows that we capture accurately the separation bubble and the lift o↵ of the boundary layer due to the impact of the
oblique shock. We also capture the reflected shock in front of the bubble and the expansion fan at the foot of the oblique shock.
All these waves are visible in the mesh.

No-Slip BC

Slip BC

Inflow BC

Outflow BC

Figure 16: Diamond at M = 1.4, ↵ = 0� and Re = 3.6 ⇥ 106: Left, geometry and boundary conditions. Right, local Mach number solution field and iso-contours
for the shock-boundary layer interaction problem obtained on a non-adapted mesh of about 170, 000 vertices.
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Figure 17: Diamond at M = 1.4, ↵ = 0� and Re = 3.6 ⇥ 106: Adapted meshes (left) composed of about 1.6 million vertices and associated Mach number field
(right) obtained using the goal-oriented viscous error estimate. From top to bottom, global view of the domain surface, global view of the domain with a cut
plane at y = 0, and close-up view in the boundary layer region where the shock-boundary layer interaction occurs.
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9. Conclusion

This study has presented an error analysis for anisotropic goal-oriented mesh adaptation for the compressible Navier-Stokes
equations.

The simplified feature-based/Hessian-based approach consisting in minimizing interpolation errors has early proved its ef-
ficiency and ease of use. Unfortunately, the application to systems is penalized by the arbitrary choice of adequate sensors
(features). Indeed, the mathematical model is not taken into account and the genuine purpose of reducing the approximation
error is not satisfactorily met. In order to reduce e�ciently approximation errors, it is mandatory to use an error estimate. By
construction, an a posteriori estimate does not directly involve information concerning the behavior of local error when the
mesh is stretched. For that reason, we proposed to consider an a priori analysis of a goal-oriented error formulation in order to
express in a natural way the error model in terms of interpolation errors. As in the Hessian-based method, a main advantage of
this approach is that interpolation errors are then transformed to account for the coupled influence of mesh size and stretching.
Moreover, an analytic expression of the optimal mesh is directly obtained thanks to the continuous mesh framework.

The key factor for success was to derive the a priori error estimate. We have first focused on an elliptic model. The extension
of this analysis to the complete collection of terms in the compressible Navier-Stokes system was proposed. It re-uses consistently
the elliptic error analysis and the previous work dedicated to the Euler system [35]. The main result has been re-written in a more
comprehensive form showing that the proposed error estimate is simply a sum of interpolation errors weighted by derivatives of
the adjoint states and velocity components.

The proposed error estimate has been validated on a set of test cases dealing with steady external Navier-Stokes compressible
flows with low Reynolds number at subsonic, transonic and supersonic regime. For all the test cases, a nice mesh convergence
of the considered functional has been observed. Moreover, the viscous estimate has been compared to the inviscid one and the
Hessian-based approach, and for each case has proven its superiority. This emphasizes the optimality of the viscous goal-oriented
adapted mesh. The proposed mesh adaptation brings more fidelity on the output evaluation. The proposed approach has also
been applied to a turbulent test case in three dimensions.

The proposed analysis has a good potential for the extension of the method to other (possibly more complex) physical models,
in particular to turbulence models such as the Spalart-Allmaras on equation model or the Menter k�! SST two equations model.
It illustrates the rather general impact of the a priori strategy, which potentially can be applied to numerical approximations
enjoying k� exactness: see [15] for a similar study applied to an ENO approximation.

Time discretization error is not considered in this study. Solving this question is not so important for the type of calculation
that are shown in this paper, but can be of paramount impact in many other cases, since implicit time advancing is mandatory
for most Navier-Stokes calculations. Then in that case, the user needs to prescribe the time step. In a future work, the authors
plan to consider a space-time error analysis in the context of the proposed method. Then, the global fixed-point unsteady mesh
adaptation algorithm will be a candidate for the extension to unsteady compressible Navier-Stokes [3, 10].

Even if a test case has been shown, the most important next issue remains the extension to higher-Reynolds flows where
meshing issues are still numerous. Indeed, this would require to address the generation of highly-stretched (aspect ratios of tens
to hundreds of thousands) adapted meshes. This extension would use the results of this work, but needs also to solve several
other important di�culties: the metric-controlled generation of highly stretched meshes (in particular for surface meshing), the
definition of a more accurate Hessian recovery, and a consistent interpolation of fields in the boundary layer, three subjects which
we are currently studying.
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Appendix A. Proof of Proposition 5.1

In this section, we demonstrate the result of Proposition 5.1. Thanks to Relation (26), to obtain an error estimate of � j, we
aim at giving an upper bound of:

| ( (W) �  h(⇧hW), ⇧h ) | (A.1)

where  h is composed of (see Relation (23)) the Euler term, the Euler boundary term, the viscous term, and the stabilization
term. In the following, we neglect the boundary term and the stabilization term thanks to smoothness of functions W and  . The
analysis of the boundary term is given in [35].

Appendix A.1. Study of the inviscid term
Thanks to Relation (20), the error for the Euler term (without boundary term) writes:

⇣

 E(W) �  E
h (⇧hW) , ⇧h 

⌘

=

Z

⌦

(⇧h )r · (F E(W) � ⇧hF E(W)) d⌦ .

with  = ( ⇢, ⇢u1 , ⇢u2 , ⇢u3 , ⇢E)T . Here, we give an estimation of the above term with a more concise analysis than the one
proposed in [35]. First, we add and subtract a  term:

⇣

 E(W) �  E
h (⇧hW) , ⇧h 

⌘

=

Z

⌦

(⇧h �  )r · (F E(W) � ⇧hF E(W)) d⌦ +
Z

⌦

 r · (F E(W) � ⇧hF E(W)) d⌦ .

Assuming smoothness of  and F E(W), we deduce that on ⌦, interpolation errors are error terms of order two and interpolation
error gradients are error terms of order one. Therefore, the first term of the right-hand side is an error term of order three and can
be thus neglected. The second term of the right-hand side can be transformed into:

Z

⌦

 r · (F E(W) � ⇧hF E(W)) d⌦ = �
Z

⌦

(r ) · (F E(W) � ⇧hF E(W)) d⌦ +
Z

�

 (F E(W) � ⇧hF E(W)) · n d� .

Again, discarding the boundary integrals, we finally get:
�
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. (A.2)

Appendix A.2. Study of viscous terms T V
1 , T V

2 and T V
3

For the viscous term, we consider:
⇣

 V (W) �  V
h (⇧hW) , ⇧h 

⌘

(A.3)

which is the sum of seven terms, see Relation (21). We first focus on the first three terms of this summation coming from the
momentum equation:

T V
1 (⇧h ,W) =

R

⌦
µ ⇧h ⇢ur · ru d⌦ =

Pd
i=1

Pd
j=1

R

⌦
µ ⇧h ⇢ui

@
@x j

✓

@
@x j

ui

◆

d⌦,

T V
2 (⇧h ,W) =

R

⌦
µ ⇧h ⇢ur · (ru)T d⌦ =

Pd
i=1

Pd
j=1

R

⌦
µ ⇧h ⇢ui

@
@x j

⇣

@
@xi

u j
⌘

d⌦ =
Pd

i=1
Pd

j=1

R

⌦
µ ⇧h ⇢u j

@
@xi

✓

@
@x j

ui

◆

d⌦,

T V
3 (⇧h ,W) = � 2

3

R

⌦
µ ⇧h ⇢ur · (r.uI) d⌦ = � 2

3
Pd

i=1
Pd

j=1

R

⌦
µ ⇧h ⇢ui

@
@xi

✓

@
@x j

u j

◆

d⌦ = � 2
3
Pd

i=1
Pd

j=1

R

⌦
µ ⇧h ⇢u j

@
@x j

⇣

@
@xi

ui
⌘

d⌦ .

31



with  ⇢u = ( ⇢u1 , ⇢u2 , ⇢u3 )T . We remark that T V
2 and T V

3 expressions can be directly added with an exchange of i and j
derivatives (i.e., @2ul

@xi@x j
= @2ul

@x j@xi
). Then, the sum of these terms writes:

T V
1 (⇧h ,W) + T V

2 (⇧h ,W) + T V
3 (⇧h ,W) =

0

B

B

B

B

B

B

@

d
X

i=1

d
X

j=1

Z

⌦

µ ⇧h ⇢ui

@

@x j

 

@

@x j
ui

!

d⌦ +
1
3

d
X

i=1

d
X

j=1

Z

⌦

µ ⇧h ⇢ui

@

@xi

 

@

@x j
u j

!

d⌦

1

C

C

C

C

C

C

A

.

To give a bound of Relation (A.3), we analyse:

�T V
1 + �T

V
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V
3 =

X

k=1,3

T V
k (⇧h ,W) �
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It is su�cient to consider the general expression �ei jkl to analyze all the previous terms:

�ei jkl =

Z

⌦

µ ⇧h ⇢uk

@2

@xi@x j
ul d⌦ �

Z

⌦

µ ⇧h ⇢uk

@2

@xi@x j
⇧hul d⌦ =

Z

⌦

µ ⇧h ⇢uk

@2

@xi@x j
(ul � ⇧hul) d⌦ .

After an integration by part and neglecting the boundary terms, the error term writes:
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Now, according to Lemma 3.1 from the elliptic error analysis such a volume contribution is overestimated as:

�ei jkl � Kd
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µ | ⇢H( ⇢uk )| |ul � ⇧hul| d⌦ .

with Kd = 3 in two dimensions and Kd = 6 in three dimensions. Finally, going back to our initial summation, the following a
priori estimate holds for the first three terms of viscous flux contribution:
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If we split the second term of the right hand-side into a sum with i = j and a sum with i , j, the previous bound can be re-written:
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Appendix A.3. Study of viscous term T V
4

We analyse the first term coming from the energy equation:

T V
4 (⇧h ,W) =

Z

⌦

 ⇢Er · �rT d⌦ .

We focus on the error term:

�T V
4 = T V

4 (⇧h ,W) � T V
4 (⇧h ,⇧hW) =

Z

⌦

⇧h ⇢E r · �rT d⌦ �
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⌦

⇧h ⇢E r · �r(⇧hT ) d⌦ .

After an integration by parts and by neglecting the boundary term as mentioned above, we get:

�T V
4 =

Z
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⇧h ⇢E r · (�r(T � ⇧hT )) d⌦ = �
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�r(⇧h ⇢E)r(T � ⇧hT ) d⌦ .

Then, Lemma 3.1 can be applied and we obtain the following estimate:
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|�| | ⇢H( ⇢E)| |T � ⇧hT | d⌦ . (A.5)

However, this error analysis cannot be directly applied to the next three remaining terms, T V
5 , T V

6 and T V
7 , because of their

non-linearity. A slightly di↵erent analysis is considered in which higher order error terms, that can be neglected, appear.
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Appendix A.4. Study of viscous term T V
5

The T V
5 viscous term can be written under the following development:

T V
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Finding an upper bound of �T V
5 = T V

5 (⇧h ,W) � T V
5 (⇧h ,⇧hW) comes to analyze the following error term:
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Again discarding boundary terms, we get by integration by parts:
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Term Ii j is homogenous to a squared interpolation error, thus it is an error term of order four which can be neglected. Then,
applying Lemma 3.1 to the first term of the right hand-side, we obtain the following estimate:

|�ei j
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Finally, we obtain the following upper bound:
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Appendix A.5. Study of viscous term T V
6

In contrast with the previous term, the gradient of the velocity vector is not transposed, thus velocity components will be
crossed. We have:

T V
6 (⇧h ,W) =
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Again, to find an upper bound of �T V
6 = T V

6 (⇧h ,W) � T V
6 (⇧h ,⇧hW) , we analyze the following error term:
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After integrating by parts both integrals and neglecting the boundary terms, we obtain:
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Lemma 3.1 can be applied to term Ii j
1 leading to the upper bound:
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Term Ii j
2 term can be further analyzed, and re-written as follows:
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The last term of the above relation is a product of interpolation error, thus it is an error term of order four which is neglected.
For i = j, the first and the second terms cancel each other out, the remaining error term is of fourth order error term, hence Iii

2
is neglected. For i , j, only the crossed velocity components terms contribute to the error estimation. Therefore, we get the
following upper bound:
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. (A.7)

In the above above relation, the second term can be reformulated more conveniently as interpolation error on the velocity terms
weighted by cross products of the gradients @(⇧h ⇢E )

@x j
with @ui

@xk
. To this end, we introduce the following vector:
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This conclude the error estimation of the sixth term.
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Appendix A.6. Study of viscous term T V
7

The same remark as previously about crossed velocity components still hold for the seventh term because of multiplication
by the identity matrix. This term writes:
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To obtain an upper bound of �T V
7 = T V

7 (⇧h ,W) � T V
7 (⇧h ,⇧hW) , we analyze the following error term:
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After integrating by parts both integrals and neglecting the boundary terms, we obtain:
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Similarly to term T V
6 , we can directly apply Lemma 3.1 to term Ii j

1 , thus the following estimation holds:
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Regarding the integral Ii j
2 , the following equality holds:
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As previously, for i = j, the first and the second terms cancel each other out. The remaining term is a fourth order error term
because it is the product of interpolation errors. Therefore, Iii

2 can be neglected. For i , j, the last term is neglected as it is a fourth
order error term, then only the crossed velocity components terms contribute to the error estimation. We have the following upper
bound:
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The second term can be reformulated more conveniently using the following vector:
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and in three dimensions, we get:
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In fact, we can get a sharper estimate using the following observations on �T V
6 and �T V

7 terms before considering the absolute
value into the sum:
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• IT V
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1 are identical

• IT V
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2 is the opposite of IT V
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2 .

Then, we deduce that:
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and, again, we can re-formulate the second right hand-side term in a more convenient way.

This concludes the proof of Proposition 5.1, Corollary 5.1 and Corollary 5.2.
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