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Abstract

This paper extends a series of papers dealing with a continuous analysis of metric-based anisotropic
mesh adaption. It discusses an equation-based adaptation, addressing directly approximation error
through the use of an adjoint state. The model problem is a Poisson problem. Continuous-metric
methods were developed for this case and the novelty of this paper is to extend a discrete context
introduced recently by one of the authors in order to rely on a possibly sharper analysis of the
approximation error. The resulting optimal metric has a different anisotropic component. The novel
formulation is compared with the continuous formulation for a few test cases involving high gradient
layers and gradient discontinuities.
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1. Introduction

This paper addresses anisotropic mesh adaptation for PDE’s (Partial Differential Equations). We
focus on methods which prescribe a somewhat optimal mesh under the form of a parametrization of it
by a Riemannian metric. These Riemann metrics can be considered under a continuous standpoint,
as proposed in [21, 22]. A dual way proposed in [15, 16] relies on mesh-based tensorial statistics.

Continuous and tensorial metrics both rely on the parametrization of the mesh by a spatial field
defining in any point of the computational domain a matrix giving information on mesh size in all
the spatial directions.

Both methods solve an optimality system, the continuous metric builds a continuous optimality
system which has, afterwards, to be discretised and solved, while the tensorial metric builds a discrete
optimality system to be solved directly. Also, the continuous metric theory defines the ideal metric to
be choosen. The resulting ideal mesh produced by the optimization is a unit mesh for the ideal metric.
In contrast, the tensorial metric obtained from optimization in [15, 16] defines the modification to
apply to the current mesh in order to obtain the ideal mesh. Then the way to parameterize the
final mesh with the two metrics is different, since the ideal mesh is of length unity (any edge has a
length 1 for the metric) for the continuous metric, while the tensorial metric defines the ideal mesh
from local directional amplifications of the background mesh. Similarly, the constraint imposing a
prescribed number of nodes is formulated vertices by vertices for the continuous metric and edges by
edges for the tensorial method.

Both methods apply to a typical family of optimal metric-based method for PDE’s, the P1-
Interpolation-based/Hessian-based method. Hessian-based methods involves the equi-distribution
method, which turns out to finding the metric which minimizes a L∞ norm of the interpolation
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error of one or several sensors depending on the PDE solution. Also involved in Hessian-based
methods is the multiscale method, which minimizes the Lp interpolation error of the sensors. Cf.
[13, 17, 3, 24, 18, 25, 19, 14, 4, 28]. These Hessian-based methods, while taking into account the
features of the PDE solution, do not take into account the features of the PDE itself. However, if
sensors are cleverly chosen, a good convergence of the whole approximate solution field to the exact
solution field is usually observed.

Goal-oriented methods allow to take into account the equation, a combination with anisotropic
Hessian-based adaption is proposed in [26]. Goal-oriented optimal methods [20, 9, 28], minimize with
respect to the metric the approximation error committed on the evaluation of a scalar functional
depending on the PDE solution. They do take into account the features of the PDE, typically
through the use of an adjoint state. Goal-oriented methods needs also to rely on an error estimate
(and its sensitivity to mesh).

Several methods have been proposed for reducing the approximation error through an estimate.
A pioneering approach is the work Becker and Rannacher [7] which rely, as most estimate-based
work, on an a posteriori estimate. A good synthesis concerning a posteriori estimates is [27]. An
interest of a posteriori estimate is that it is expressed in terms of the approximate solution, assumed
to be available in a mesh adaption loop. A second interest is that it does not require the use of
higher order (approximate) derivatives, in contrast to truncation analyses. These estimates show
accurately where the mesh should be refined. However, deducing the best anisotropic mesh from an
a posteriori estimate remains difficult (see however [28]).

A priori estimates rely quasi systematically on Taylor series, either through divided differences, or
through polynomial approximation of functions. Then approximations of higher order derivatives of
solution need be built from the approximate solution. This is a delicate job since nothing ensures that
a higher order derivative of the approximate solution is a good approximation of the corresponding
higher order derivative of the exact solution. In contrast with the a posteriori option, the Taylor
series can be easily used for proposing a somewhat optimal mesh. Further, A priori estimates can
also provide correctors: an example is given in [12]. In [20, 9], in order to be able to solve the
goal-oriented, metric-based, mesh optimization problem, the authors introduce an a priori analysis
which restricts to the main asymptotic term of the local error. In this paper we use the tensorial
formulation in order to build a novel a priori estimate for the Poisson equation.

With the metric-based goal-oriented formulation, metric-based mesh adaptation becomes a well-
posed optimization problem for the reduction of a genuine approximation error. However, goal-
oriented optimal methods are specialised to a given scalar output. Features of the solution field
which are not related to this output may be neglected by the automatic mesh improvement. As a
consequence, these methods do not provide a convergent solution field. In the present paper, we
study a norm-based formulation (according to [12]) in which the user can prescribe a norm of error
|u− uh| which the algorithm will minimize with respect to the metric parametrization of the mesh.
As a consequence, with an adequate choice of the norm, the norm-oriented mesh adaptation produces
convergent solution fields.

The continuous approach for Hessian-based, goal-oriented, and norm-oriented has been defined
in other papers like [20, 9, 12].

The purpose of this paper is to analyse the possible novelties which can be derived from the
application of a tensorial method to Hessian-based, goal-oriented, and norm-oriented problematics.
The main feature of tensorial approach which we shall exloit is the tensorial inversion of main error
term. In order to adapt this feature to L1-Hessian, to goal-oriented, to norm-oriented problematics,
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we unify the parametrization by choosing the unit-mesh formulation and by measuring the number
of nodes on a vertex basis..

Presentation of plan: ........

2. Poisson problem approximation

Let us introduce some notations: Let V = H1
0 (Ω), Ω being a smooth enough computational

domain of R2. The continuous PDE system is written in short:

Au = f or u ∈ V ∀ φ ∈ V a(u, φ) = (f, φ) (1)

To fix the ideas and simplify notations,

A = −
∑ ∂

∂xk

∂

∂xk

But the extension to a coercive case where A = −
∑

∂
∂xk

(ak`(x) ∂
∂x`

) (where ak` is a scalar, possibly

discontinuous, field) is not difficult. Let Ωh = Ω for simplicity, τh a triangulation of Ωh, and Vh be
the usual P1-continuous finite-element approximation space related to τh:

Vh = φh ∈ C0(Ω̄) ∩ V, φh|T is affine ∀T ∈ τh.

The finite-element discretisation of (1) is written:

uh ∈ Vh ∀ φh ∈ Vh a(uh, φh) = (f, φh). (2)

We are interested first in getting estimates of the approximation error uh−u. Let N be the dimension
of Vh, that is the number of vertices in τh. We observe that (2) is equivalent to computing the array
uh of the degrees of freedom of the discrete solution:

uh ∈ RN ; Ahuh = fh. (3)

From the above array we derive uh by

uh =
∑
i=1,N

uh,iNi(x)

where the Ni are the canonic finite-element basis of Vh:

Ni ∈ Vh, Ni(xj) = 1 if i = j, 0 else.

We also introduce the interpolation operator Πh:

for v ∈ V ∩H2(Ω), Πhv ∈ Vh, (Πhv − v)(xi) = 0 ∀xi vertex of τh.

An a priori error analysis can be applied in order to build a corrector, which is a signed ap-
proximate, and not a upper bound, of the approximation error. We start from the discrete above
statement

a(uh, φh) = (fh, φh) ∀φh ∈ Vh.
and observe that for the exact solution satisfies:

a(u, φh) = (f, φh) ∀φh ∈ Vh.
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Then
a(uh, φh) = a(u, φh) + (fh − f, φh) ∀φh ∈ Vh.

Assuming that the solution u is sufficiently smooth, we get:

a(Πhu− uh, φh) = a(Πhu− u, φh) + (f − fh, φh) ∀φh ∈ Vh. (4)

We call Πhu−uh the implicit error. It differs from the approximation error by an interpolation error:

u− uh = u− Πhu + Πhu− uh.

The rest of the section is devoted to finding an approximate of the implicit error. In practice, we
need to evaluate the RHS for any basis function Ni. The second term of RHS is easy to evaluate (we
know f and fh). The first term of RHS can be transformed as follows:

a(Πhu− u, φh) =
∑
T

∫
T

∇φh∇(Πhu− u) dxdy

=
∑
T

∫
∂T

(Πhu− u)∇φh · n dσ.

Then we get:

a(Πhu− u, φh) = K(φ, uh) with

K(φ, uh) = =
∑
∂Tij

∇(φh|Ti − φh|Tj) · nij
∫
∂Tij

(Πhu− u) dσ (5)

where the last sum is taken for all edges ij = ∂Tij (2D case) separating triangles T+
ij and T−ij of the

triangulation. The unit vector nij normal to ∂Tij is pointing outward Ti.
Now we do not know u but uh. In order to evaluate the interpolation error, we introduce the

following interpolation estimator π:

for v ∈ V ∩ C2(Ω̄), πv − v = H(v)δxδy

where H(v) holds for the Hessian matrix of u and δxδy hold for local mesh sizes in Cartesian direc-
tions. Further, in πv− v, the second derivatives of the unknown u are approximated by approximate
second derivatives of the discrete solution as for example in [5]. This more or less assumes that
the second derivatives of the approximate solution are not a too bad approximation of the second
derivatives of the unknown exact solution. This last statement is far from being stated. However,
under this condition our corrector is defined by:

a(u′prio, φh) = K(φh, uh) with

K(φh, uh) =
∑
∂Tij

(∇φh|Ti −∇φh|Tj) · nij
∫
∂Tij

(πhuh − uh) dσ. (6)

In practice, the term πhuh − uh is built on the edge Tij as a quadratic function vanishing at
both extremities of Tij, and of second derivative in direction Tij equal to the approximate second
derivative in same direction of uh.

The above relation (6) is routinely used for building mesh adaption loops, see [10]. The use of (6)
for deriving a genuine corrector for uh is a more delicate job, since the derivation on the test function
cannot hide that we need a consistent approximation of the second derivative of the interpolation
error which may mean that we need the convergence of a fourth derivative of the approximate
solution.
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3. Continuous metric parametrization

3.1. Mesh parametrization

We recall the continuous mesh framework, introduced in [21, 22]. The main idea of this framework
is to model discrete meshes by Riemannian metric fields. It allows us to define a differentiable
optimization problem [2, 6], i.e., to apply on the class continuous metrics a calculus of variations
which cannot be appied on the class of discrete meshes. This framework lies in the class of metric-
based methods. A continuous meshM of the computational domain Ω is identified to a Riemannian
metric field [11] M = (M(x))x∈Ω. For all x of Ω, M(x) is a symmetric 3 × 3 matrix having
(λi(x))i=1,3 as eigenvalues along the principal directions R(x) = (vi(x))i=1,3. Sizes along these

directions are denoted (hi(x))i=1,3 = (λ
− 1

2
i (x))i=1,3 and the three anisotropy quotients ri are defined

by: ri = h3
i (h1h2h3)−1. The diagonalisation of M(x) writes:

M(x) = d
2
3 (x)R(x)

 r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)

 tR(x), (7)

The vertex density d is equal to: d = (h1h2h3)−1 = (λ1λ2λ3)
1
2 =

√
det(M). By integrating it, we

define the total number of vertices C:

C(M) =

∫
Ω

d(x) dx =

∫
Ω

√
det(M(x)) dx. (8)

Given a continuous meshM, we shall say, following [21, 22], that a discrete mesh H of the same
domain Ω is a unit mesh with respect to M, if each triangle K ∈ H, defined by its list of edges
(ei)i=1...3, verifies:

∀i ∈ [1, 3], `M(ei) ∈
[

1√
2
,
√

2

]
,

in which the length of an edge `M(ei) is defined as follows:

`M(ei) =

∫ 1

0

√
tabM(a + t ab) ab dt, with ei = ab,

The unit edge property of unit mesh writes also in short:

For a unit mesh xM , any edge xMij satisfies
(
xMij − xMij ,M(xMij − xMij )

)
= 1.

We want to emphasize that the set of all the discrete meshes that are unit meshes with respect to
a uniqueM contains an infinite number of meshes, but these meshes have properties sufficiently close
to each others so that we consider these meshes as an equivalence class of meshes. We henceforward
denote by M both the metric and the corresponding unit mesh.

3.2. Optimal continuous metric

We recall, following [21, 22], the main features of the metric-based analysis initiated in several
papers like [17, 13, 3]. The continuous interpolation error of a function u defined on the computational
domain is denoted now:

u− πMu = |tr(M− 1
2 |Hu|M− 1

2 )| (9)
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where Hu is the Hessian of u. Let denote also M a unit mesh for metric M. We shall use the
estimate

|u− ΠMu| ≈
1

8
|u− πMu|. (10)

Once we have a continuous tensorial error kernel, we consider minimizing:

jp(M) = ‖u− πMu‖Lp(Ωh) (11)

and we define as optimal metric the one which minimizes the right hand side under the constraint
of a total number of vertices equal to a parameter N . In the case of a bounded p, after solving
analytically this optimization problem, we get -without using the fact that H is anything but a
positive symmetric matrix- the unique optimal (MLp(x))x∈Ω as:

MLp = Kp(1, H with Kp(1, u) = DLp (det(H))
−1

2p+2 H and DLp = N
2
2

(∫
Ω

(det(H))
p

2p+2

)− 2
2

, (12)

where DLp is a global normalization term set to obtain a continuous mesh with complexity N and

(det(H))
−1

2p+2 is a local normalization term accounting for the sensitivity of the Lp norm.

A particular case: L∞-norm/iso-distribution It is important to remark that error iso-distribution
is taken into account by setting p =∞, a limiting case for which we get:

(det(H))
−1

2∞+2 = 1.

and
ML∞ = K∞(1, H) with K∞(1, H) = DL∞ H

where DL∞ is defined from the specification of the number of nodes of the mesh.
Another way to see it is to write that the error is uniform, indeed:

ML∞(x) = const. (indep. of x) H ⇒ trace
(
M− 1

2
L∞(x)H(x)M− 1

2
L∞(x)

)
= const. (indep. of x).

Main case under study: L1-norm optimisation The rest of the paper concentrates with the case:

p = 1

Replacing the optimal metric ML1 in the L1 norm shows that second-order convergence is obtained
for smooth contexts. This can also be extended to non-smooth ones, cf. [23].

Let k a sufficiently smooth scalar function defined on Ω. We shall be, in the sequel, interested in
minimizing the right-hand side of:

|(k, u− ΠMu)Ω| ≈
∫

Ω

trace
(
M− 1

2 (x)|k(x)H(x)|M− 1
2 (x)

)
dx. (13)

The optimum metric is given by:

M1,k
opt = K1(k,H) with K1(k,H) = D1,k

opt (det |kH|)
−1
4 |kH| and D1,k

opt = N

(∫
Ω

(det |kH|)
1
4

)
. (14)
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It is interesting to compare this result with the result of equidistribution, at least for the particular
case of an interpolation error. We observe that:

M1,k
opt = const. |k|

3
4 |(det |H|)

−1
4 |H| = const. |Hk|

Hk = |k|
3
4 |(det |H|)

−1
4 H (15)

Which means that the error minimisation in L1
weight,k is equivalent to an equi-distribution process

with a matrix H corrected by a scalar factor |k| 34 |(det |H|)−1
4 :

M1,k
opt = const. K∞(|k|

3
4 |(det |H|)

−1
4 , H).

3.3. Idea of the proofs

Pointwise optimization: For both norms, same level of error in each direction around a given
point i of the computational domain (Loseille-Alauzet, SIAM 2011).

Mi
opt = mi |H i

u| ∀ i ∈ Ω.

The global optimization determines mi :

ML∞ = N
2
3

(∫
det(|Hu|)

)− 2
3

|Hu| (16)

ML1 = N
2
3

(∫
det(|Hu|)

2
5

)− 2
3

det(|Hu|)−
1
5 |Hu|. (17)

To synthetize, the continuous mesh/metric method yields the mesh adaptation solution under
the form of a continuous KKT system involving the continuous initial PDE, its continuous adjoint,
and a stationaly condition explicitly solved by (16,17). In practice, the KKT system is discretized
and then solved.

The rest of the paper examines the approach closer to [15, 16], refered in this paper as a tensorial
method, which consists in the direct building of a discrete KKT system.

4. Approximation of metric properties

4.1. Generic mesh notations

Given a mesh Hx, we can define the following partitions:

- a mesh-vertex is a vertex of numero i and coordinates xi of an element of the mesh.

- when there is an edge between vertex i and vertex j, we denote xij = xj − xi.

- two tetrahedra m and n having a common face have face mn or face nm as common face.
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- elements : triangles (i, j, k) or tetrahedra (i, j, k, l). Elements are divided in sub-elements: 6
subtriangles using medians and 24 subtetrahedra using median plans. The vertices of a subtetrahe-
dron are : a mesh-vertex i , a center Iij of an edge ij having i as extremity, the centroid gijk of
a face ijk containing i and j, the element centroid Gijkl. The measure of a subtetrahedron of the
tetrahedron T is 1/24 meas(T ).

- cell i : for a vertex i of the mesh, cell i is union of sub-elements having i as vertex of the
sub-element. A cell measure is defined as

measx(i) = 1
dim+1

∑
Tx3i meas(Tx)

where Tx are elements of Hx containing i.

- 2D-diamond Dij : union of the 4 subtriangles (of triangles ijk and ijl) having a side beared by
edge ij.

- face-diamond D̄mn, where m and n are two tetrahedra having a common face ijk : union of 6
subtetrahedra having a subtriangle of the common face ijk as face.

- edge-diamond Dij: union of subtetrahedra having having a side beared by edge ij.

The integral of a function eij defined on the edges can be approximated by:

errL1 =
∑
i

measx(i)Γ(i)−1
∑
j

eij

or introducing the diamond partition Ω = ∪D̄mn where m and n are elements with a common face:

errL1 =
1

3

∑
D̄mn

measx(D̄mn) (eij + eik + ejk).

where i, j, k are vertices of the face mn.

4.2. Discretizing an arbitrary continuous metric on a background mesh

In order to find the optimal metric we are given a background mesh x . We assume that the
unknown metric M is defined on the vertices M(xi) = Mi of the background mesh and that it is
P 1-continuously interpolated. The total number of nodes can be approximated on the mesh x by a
quadrature of (8) as follows:

C(M) =
∑

imeasx(i)
√
det(Mi)

To simplify, we assume that the unit mesh is a deformation of x, and that xMij and xij are colinear.
Then we can derive from the unit-mesh property a relation between the edge lengths of unknown
mesh and the edge lengths of the background mesh:

(xMij ,MxMij ) = 1 = (xij
|xMij |
|xij|

,Mxij
|xMij |
|xij|

) = (xij,Mxij)
|xMij |2

|xij|2

⇒ xMij ≈ xij(xij,Mxij)
− 1

2 .

In order now to evaluate the approximation error provoked by the application of the unit-mesh, we
need to define an error model.
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5. Second-order error of a metric on a background mesh

Let us define a generic family of error with values on mesh edges. We restrict to second-order or
quadratic errors, on the model of P1-interpolation error.
Definition : The directional second-order or quadratic error produced by the use of the unit mesh
xM of metric M has an intensity defined on edge xMij by:

eMij = ēij |xMij |2.
in which ēij depends only on location and direction of xMij , typically:

eMij = |xMij |2 ēij(
1
2
(xMi + xMj ),

xMij
|xMij |

).

Since we a priori do not know the optimal metric and mesh, it is useful to evaluate this error on
a given background mesh x. We use that the unit mesh is a deformation of x in such a way that xMij
and xij are colinear. Then the intensity eMij of the error with the unit mesh evaluated at middle of
xij of the initial mesh writes:

eMij = |xij|2 (xij,Mijxij)
−1 ēij(

1

2
(xi + xj),

xij
|xij|

) (18)

where Mij is evaluated on 1
2
(xi + xj). The mesh adaptation problem will be set as the research of

the discrete metric, defined on mesh verices and linearly interopolated, of a given number of nodes
N

C(M) = N

and minimizing the discrete error norm:

j(M) =
∑
i

measx(i)
1

Γ(i)

∑
ij3i

eMij . (19)

In Section 6 we determine the optimal mesh for this type of error, as far as ēij is identified. The
rest of the present section is devoted to the description of three examples of quadratic errors.

5.1. First example: interpolation error

The above generic model of quadratic error applies to the P1-interpolation error. Indeed, the
weighted P1-interpolation error of a quadratic function u on xMij can be discretized similarly to
(9),(10) as follows:

∫
|g||u− Πhu|dΩ � 1

8

∑
i measx(i)Γ(i)−1

∑
j e
M,g,u
ij (xij)

eM,g,u
ij = |xMij |2 |gij| |Hij| ·

xMij
|xMij |
· xMij
|xMij |

.

where Hij = H(1
2
(xMi + xMj )), H(x) being the Hessian of u at point x, and gij = g(1

2
(xMi + xMj )).

Here � holds for an inequality applying for a sufficiently fine mesh, with a multiplicative constant
close to 1. It can be evaluated on a background mesh as follows:

eM,g,u
ij (xij) = |xMij |2 ēij(xij) = (xij,Mxij)

−1 |xij|2 ēij(xij)

with:

ēij(xij) = |gij(xij)| |Hij(xij)| ·
xMij
|xMij |
· xMij
|xMij |

= |gij(xij)| |Hij(xij)| · xij
|xij | ·

xij
|xij | .

Then this first example takes place into the context of (18)(19).

9



5.2. Goal-oriented error

Quadratic errors can also be encountered in the case of a goal-oriented error analysis. Let u be
the solution of (1) and uM the discrete solution of (2) when the mesh is an unit mesh for metric
M. A typical goal-oriented analysis relies on the minimization of the error δjgoal(M) done in the
evaluation of the scalar output j = (g, u) , error which we write as follows:

δjgoal(M) = |(g, u− uM)| = |(g,ΠMu− uM + u− ΠMu)|. (20)

According to the Aubin-Nitsche analysis, this error is second-order with respect to mesh size. Let us
define the discrete adjoint state u∗goal:

∀ψM ∈ VM, a(ψM, u
∗
goal) = (ψM, g). (21)

In the sequel, we use a fixed-point in which the adjoint is frozen with respect to the metric M.
Injecting (21) in (20) we get:

(g,ΠMu− uM + u− ΠMu) = a(ΠMu− uM, u∗goal) + (g, u− ΠMu)

and, using (4),

(g,ΠMu− uM + u− ΠMu) = a(ΠMu− u, u∗goal) + (f − ΠMf, u
∗
goal) + (g, u− ΠMu)

thus

δjgoal(M) ≈ |a(ΠMu− u, u∗goal) + (f − ΠMf, u
∗
goal) + (g, u− ΠMu)|

Recall that u is unknown. The second and third terms, similar to the main term of the Hessian-based
adaptation in previous section can be explicitly approached in the same way.

δjgoal(M) � |a(ΠMu− u, u∗goal)|+ |(f − ΠMf, u
∗
goal)|+ |g||u− ΠMu|

The second and third terms give Hessian-like quadratic errors e
M,u∗goal,f

ij and eM,g,u
ij :

|(f − ΠMf, u
∗
goal)|+ |g||πMuM − uM|

�
∑
i

measx(i)Γ(i)−1
∑
ij3i

(
e
M,u∗goal,f

ij + eM,g,u
ij

)
�
∑
i

measx(i)Γ(i)−1
∑
ij3i

(xij,Mxij)
−1 |xij|2

(
ēij

u∗goal,f + ēij
g,u
)

with

ēij
u∗goal,f (xij) = |u∗goal,ij| |H

f
ij| ·

xij
|xij|

· xij
|xij|

ēij
g,u(xij) = |gij| |Hu

ij| ·
xij
|xij|

· xij
|xij|

and

u∗goal,ij = u∗goal(
xi + xj

2
)

gij = g(
xi + xj

2
)
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Hf
ij = Hf (

xi + xj
2

)

Hu
ij = Hu(

xi + xj
2

)

The first term is more complex. It can be estimated in a different way from the continuous
method presented in [8] and used in [12].

|a(ΠMu−u, u∗goal)| = |
∫

Ω

∇(ΠMu−u)∇ΠMu
∗
g,Mdx| �

∑
∂Tmn

|∇u∗goal|Tm−∇u∗goal|Tn|·nmn
∫
∂Tmn

|ΠMu−u| dσ.

In the 3D case, the intersection ∂Tmn of two elements Tm and Tn is a common face with vertices
i, j, k and an area area(mn). The following quantity is known:

κmn(u∗goal) = |
(
∇u∗goal

)
|Tm · nmn −

(
∇u∗goal

)
|Tn · nmn|.

The remaining expression can be expressed in terms of interpolation errors:∫
∂Tmn

|ΠMu− u| ≈
1

3
area(mn)(eM,u

ij + eM,u
ik + eM,u

kj )

with (for αβ=ij,ik and kj):

eM,u
αβ = (xαβ,Mxαβ)−1 |xαβ|2 ēuαβ

¯eαβ
u(xαβ) = |gαβ| |Hu

αβ| ·
xαβ
|xαβ|

· xαβ
|xαβ|

.

We get:

|a(ΠMu− u, u∗goal)| �
∑
D̄mn

|D̄mn|
area(mn)

|D̄mn|
1

3
(eM,u
ij + eM,u

ik + eM,u
jk ) κmn(u∗goal)

Let us convert the RHS into an edge-by-edge sum:

|a(ΠMu− u, u∗goal)| �
∑
D̄mn

∑
αβ=ij,ik,jk

area(mn)
1

3
eMαβκmn(u∗goal)

=
∑

edges ij

∑
D̄mn3ij

area(mn)
1

3
eMij κmn(u∗goal) =

∑
edges ij

eM,a
ij |Dij|

where we recognize the edge-by-edge integral of a field eM,a
ij defined on edges, with the notation:

eM,a
ij =

1

|Dij|
∑

D̄mn3ij

area(mn)
1

3
eMij κmn(u∗goal). (22)

Equivalently (at the second order) we get the(18)(19) format:

|a(ΠMu− u, u∗goal)| �
∑
i

measx(i)
1

Γ(i)

∑
ij3i

eM,a
ij .

11



Gathering the analyses of the three terms, introducing:

ēij
M,a = (xij,Mxij) |xij|−2 eM,a

ij

we get:

δjgoal(M) �
∑
i

measx(i)Γ(i)−1
∑
ij3i

(xij,Mxij)
−1 |xij|2

(
ēij
M,a + ē

u∗goal,f

ij + ēg,uij

)
which takes place in the context of (18)(19).

5.3. Norm-oriented error

The norm-oriented analysis is defined in details in [1]. In short, this method focusses on the
minimization of the following norm with respect to the mesh M:

δj(M) = ||u− uM||2L2(Ω). (23)

Introducing gM = u− uM, we get a formulation similar to the goal-oriented formulation:

δj(M) = (gM, u− uM). (24)

But in the practical application u− uM is not known. We approximate it by a function close to it,
which we call a corrector. An example is the field gM = ū′prio,M−(πMuM−uM) in which πMuM−uM
is a Hessian-based approximation of the interpolation error and in which ū′prio,M is the solution of:

a(ū′prio,M, φ) =
∑
∂Tij

(∇φ|Ti −∇φ|Tj) · nij
∫
∂Tij

(πMuM − uM) dσ − (φ, πMfM − fM). (25)

Another example with a RHS evaluated on a two-times finer grid is given in [1].
Let us define the discrete adjoint state u∗norm:

∀ψM ∈ VM, a(ψM, u
∗
norm) = (ψM, gM). (26)

Then, similarly to previous section we shall minimize:

δjnorm(M) ≈ |a(ΠMu− u, u∗norm) + (f − ΠMf, u
∗
norm) + (gM, u− ΠMu)|

and, more precisely, minimize:

E(M) =
∑
i

measx(i)Γ(i)−1
∑
ij3i

(xij,Mxij)
−1 |xij|2

(
ēij
M,a + ē

u∗norm,f
ij + ēg,uij

)
with

ēij
u∗norm,f = |u∗norm,ij| |H

f
ij| ·

xij
|xij|

· xij
|xij|

ēij
g,u = |gij| |Hu

ij| ·
xij
|xij|

· xij
|xij|

ēij
M,a = (xij,Mxij) |xij|−2 1

|Dij|
∑

D̄mn3ij

area(mn)
1

3
eMij κmn(u∗norm) (27)

and with κmn(u∗norm) = | (∇u∗norm) |Tm · nmn − (∇u∗norm) |Tn · nmn|. This again takes place in the
context of (18)(19).
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6. Optimal metric

The purpose is to minimize with respect to the metric for a given number of vertices N a functional
of the form:

E(M) =
∑
i

measx(i)Γ(i)−1
∑
xij

(xij)
2(xij,Mxij)

−1 ēij.

We solve this in two steps as in [20]: first we minimize the functional in a point of the computational
domain and get a first property of the solution, second we finish determining the optimum by solving
a sub-problem on the whole domain.

6.1. Pointwise optimal metric

The pointwise minimum problem can be set with a fixed number of vertices by considering a met-
ricM with a product of eigenvalues equal to unity, i.e. λ1λ2λ2 = (h1h2h3)−2 = 1. This is equivalent
to say that the metric is searched with an unknown scalar multiplicative constant. In the continuous
metric formulation, according for example to [21, 22], an optimal error at a point is obtained when
the directional error is uniform w.r.t. direction. In the discrete context, according to [15, 16], the
error is uniform on the different edges ij, ik, il, ... around a vertex i.:

eMij = eMik = ... = Ci ⇔ (xij)
2 (xij,Mxij)

−1 ēij = Ci ∀j ⇔ (xij)
−2 (xij,Mxij) ē−1

ij = C−1
i ∀j.

Summing around a vertex gives:∑
j∈Γ(i)

(xij)
−2 ē−1

ij (xij,Mxij) = |Γ(i)|C−1
i .

Then:

|Γ(i)|C−1
i =

∑
j∈Γ(i)

(M ē
− 1

2
ij |xij|xij, ē

− 1
2

ij |xij|xij) =M :
∑
j∈Γ(i)

ē
− 1

2
ij |xij|xij ⊗ ē

− 1
2

ij |xij|xij

now, remembering that A : B = tr(tA.B), it is interesting to choose (among the possible solutions):

Mi =
|Γ(i)|C−1

i

dim

∑
j∈Γ(i)

ē−1
ij |xij|−2xij ⊗ xij

−1

.

It remains to evaluate the optimal field C on the mesh vertices.

6.2. Global optimal metric

Let:

Mi
1 =

|Γ(i)

dim

∑
j∈Γ(i)

ē−1
ij |xij|−2xij ⊗ xij

−1

,

we look for a Ci which minimizes:

errL1 =
∑
i

measx(i)Γ(i)−1
∑
xij

(xij)
2(xij, C

−1
i Mi

1xij)
−1 ēij

or:
errL1 =

∑
i

αi Ci ; with αi = measx(i)Γ(i)−1
∑
xij

(xij)
2(xij,Mi

1xij)
−1 ēij

13



to minimize under the constraint:
∑

imeasx(i)
√
det(C−1

i Mi
1) = N or:∑

i

µi C
− dim

2
i = N with µi = measx(i)

√
det(Mi

1)

This problem is easy to solve if we consider the following variable change di = µiC
−β
i , with

β = dim/2 giving:

Min
∑
i

ηid
− 1
β

i under the constraint
∑
i

di = N, (28)

with ηi = αiµ
1
β

i . The solution of (28) writes:

di =

(∑
j

η
β+1
β

j

)−1

η
β+1
β

i N.

Lemma: The optimal metric is defined by:

Mi = C−1
i Mi

1

with

Mi
1 =

|Γ(i)

dim

∑
j∈Γ(i)

ē−1
ij |xij|−2xij ⊗ xij

−1

,

C−1
i = µ

− 2
dim

i

(∑
j

η
dim+2
dim

j

)− 2
dim

η
2dim+4

dim2

i N
2
dim ,

αi =
measx(i)

Γ(i)−1

∑
xij

(xij)
2

(xij,Mi
1xij)

−1
ēij ; µi = measx(i)

√
det(Mi

1) ; ηi = αiµ
dim
2

i .�

14



7. Numerical examples : EN COURS

Figure 1: hess-tenso

Figure 2: goal-tenso
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Figure 3: norm-tenso

8. Conclusion

We have proposed an adaptation of the dicrete tensorial approach for metric-based mesh adap-
tation and compared it to the continuous metric method for an elliptic model. The tensorial option
assumes that the iterated mesh is locally of same edge directions as the background mesh. The main
theoretical difference is in the treatment of goal and norm oriented error analysis. The error analysis
is simpler and does not require an anisotropy bound as in the continuous approach.

9. Acknowledgements

10. Annexe

Lemmas Lemma 1: Given Li ≥ 0, if∑
Liδµi = 0 ∀δµi s.t.

∑
δµi = 0

Then Li = L (indep of i).
Proof: if Lk > Lm then Lk.(−1) + Lm.(+1) is not zero.

Lemma 2: M matrix, x vecteur:

(M x,x) =M : (x⊗ x)

Lemma 3: assuming M is symmetric

M =
1

dim
(x⊗ x)−1 ⇒ M : (x⊗ x) = 1.

Proof: A : B = tr( tA.B).
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