BACK TO INDEX

Publications of Vincent Arsigny

Thesis

  1. Vincent Arsigny. Processing Data in Lie Groups: An Algebraic Approach. Application to Non-Linear Registration and Diffusion Tensor MRI. Thèse de sciences (PhD Thesis), École polytechnique, November 2006. Keyword(s): DT-MRI, Tensors, Riemannian geometry, Lie groups, interpolation, Log-Euclidean metrics, Polyaffine transformations, Diffeomorphisms, Non-rigid registration, Multi-affine registration, Magnetic Resonance Imaging, Bi-invariant means, Fréchet means, Statistics. [bibtex-entry]


Articles in journal, book chapters

  1. Xavier Pennec and Vincent Arsigny. Exponential Barycenters of the Canonical Cartan Connection and Invariant Means on Lie Groups. In Frederic Barbaresco, Amit Mishra, and Frank Nielsen, editors, Matrix Information Geometry, pages 123-166. Springer, May 2012. ISBN: 978-3-642-30231-2. HAL ID: hal-00699361. [Abstract] [bibtex-entry]


  2. Vincent Arsigny, Olivier Commowick, Nicholas Ayache, and Xavier Pennec. A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration. Journal of Mathematical Imaging and Vision, 33(2):222-238, 2009. [bibtex-entry]


  3. Olivier Commowick, Vincent Arsigny, Aurélie Isambert, Jimena Costa, Frédéric Dhermain, François Bidault, Pierre-Yves Bondiau, Nicholas Ayache, and Grégoire Malandain. An efficient locally affine framework for the smooth registration of anatomical structures. Medical Image Analysis, 12(4):427-41, August 2008. Keyword(s): Algorithms, Brain, anatomy & histology, Diagnostic Imaging, methods, Humans, Image Processing Computer-Assisted, Radiotherapy Planning Computer-Assisted, methods, Sensitivity and Specificity. [Abstract] [bibtex-entry]


  4. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices. SIAM Journal on Matrix Analysis and Applications, 29(1):328-347, 2007. Keyword(s): DT-MRI, Tensors, Riemannian geometry, Lie groups, interpolation, Log-Euclidean metrics. [bibtex-entry]


  5. Pierre Fillard, Vincent Arsigny, Xavier Pennec, Kiralee M. Hayashi, Paul M. Thompson, and Nicholas Ayache. Measuring Brain Variability by Extrapolating Sparse Tensor Fields Measured on Sulcal Lines. NeuroImage, 34(2):639-650, January 2007. Note: Also as INRIA Research Report 5887, April 2006. PMID: 17113311. [bibtex-entry]


  6. Pierre Fillard, Xavier Pennec, Vincent Arsigny, and Nicholas Ayache. Clinical DT-MRI Estimation, Smoothing and Fiber Tracking with Log-Euclidean Metrics. IEEE Transactions on Medical Imaging, 26(11):1472-1482, November 2007. [bibtex-entry]


  7. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-Euclidean Metrics for Fast and Simple Calculus on Diffusion Tensors. Magnetic Resonance in Medicine, 56(2):411-421, August 2006. Keyword(s): DT-MRI, Tensors, Riemannian geometry, Lie groups, interpolation, Log-Euclidean metrics. [bibtex-entry]


  8. Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Polyrigid and Polyaffine Transformations: a Novel Geometrical Tool to Deal with Non-Rigid Deformations - Application to the registration of histological slices. Medical Image Analysis, 9(6):507-523, December 2005. Keyword(s): Non-rigid registration, Histological slices, Polyaffine transformations, Ordinary differential equations. [bibtex-entry]


Conference articles

  1. Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A Log-Euclidean Framework for Statistics on Diffeomorphisms. In Proc. of the 9th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'06), Part I, number 4190 of LNCS, pages 924-931, 2-4 October 2006. Keyword(s): Non-rigid registration, Lie groups, Diffeomorphisms, Log-Euclidean metrics, Magnetic Resonance Imaging. [bibtex-entry]


  2. Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Registration. In J.P.W. Pluim, B. Likar, and F.A. Gerritsen, editors, Proceedings of the Third International Workshop on Biomedical Image Registration (WBIR'06), volume 4057 of LNCS, Utrecht, The Netherlands, pages 120-127, 9 - 11 July 2006. Springer. Keyword(s): Polyaffine transformations, Diffeomorphisms, Non-rigid registration, Multi-affine registration, Lie groups, Log-Euclidean metrics, Magnetic Resonance Imaging. [bibtex-entry]


  3. Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. Statistics on Diffeomorphisms in A Log-Euclidean Framework. In X. Pennec and S. Joshi, editors, Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2006), pages 16-17, 1st of October 2006. Keyword(s): Non-rigid registration, Lie groups, Diffeomorphisms, Log-Euclidean metrics, Magnetic Resonance Imaging. [bibtex-entry]


  4. Olivier Commowick, Vincent Arsigny, Jimena Costa, Nicholas Ayache, and Grégoire Malandain. An Efficient Locally Affine Framework for the Registration of Anatomical Structures. In Proceedings of the Third IEEE International Symposium on Biomedical Imaging (ISBI 2006), Crystal Gateway Marriott, Arlington, Virginia, USA, pages 478-481, April 2006. Keyword(s): Non-rigid registration, Multi-affine registration, Magnetic Resonance Imaging, Polyaffine transformations, Log-Euclidean metrics, Diffeomorphisms. [bibtex-entry]


  5. Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Clinical DT-MRI estimation, smoothing and fiber tracking with log-Euclidean metrics. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI 2006), Crystal Gateway Marriott, Arlington, Virginia, USA, pages 786-789, April 2006. Keyword(s): DT-MRI, tensor estimation, Riemannian geometry, Log-Euclidean metrics. [bibtex-entry]


  6. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and Simple Calculus on Tensors in the Log-Euclidean Framework. In J. Duncan and G. Gerig, editors, Proceedings of the 8th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005, Part I, volume 3749 of LNCS, Palm Springs, CA, USA, October 26-29, pages 115-122, 2005. Springer. Keyword(s): DT-MRI, Magnetic Resonance Imaging, Tensors, brain, Riemannian geometry, Lie group, regularization, interpolation, Log-Euclidean metrics. [bibtex-entry]


  7. Olivier Commowick, Radu Stefanescu, Pierre Fillard, Vincent Arsigny, Nicholas Ayache, Xavier Pennec, and Grégoire Malandain. Incorporating Statistical Measures of Anatomical Variability in Atlas-to-Subject Registration for Conformal Brain Radiotherapy. In J. Duncan and G. Gerig, editors, Proceedings of the 8th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005, Part II, volume 3750 of LNCS, Palm Springs, CA, USA, October 26-29, pages 927-934, 2005. Springer. Keyword(s): registration, brain, Brain Stem, statistics, validation, Tensors. [Annotation] [bibtex-entry]


  8. Pierre Fillard, Vincent Arsigny, Nicholas Ayache, and Xavier Pennec. A Riemannian Framework for the Processing of Tensor-Valued Images. In Ole Fogh Olsen, Luc Florak, and Arjan Kuijper, editors, Deep Structure, Singularities, and Computer Vision (DSSCV), LNCS, pages 112-123, June 2005. Springer. Keyword(s): Tensors, Riemannian geometry, Structure tensors, regularization. [bibtex-entry]


  9. Pierre Fillard, Vincent Arsigny, Xavier Pennec, Paul M. Thompson, and Nicholas Ayache. Extrapolation of Sparse Tensor Fields: Application to the Modeling of Brain Variability. In Gary Christensen and Milan Sonka, editors, Proc. of Information Processing in Medical Imaging 2005 (IPMI'05), volume 3565 of LNCS, Glenwood springs, Colorado, USA, pages 27-38, July 2005. Springer. Keyword(s): Sucal lines, Riemannian geometry, brain, Modeling of anatomical variability, Tensors. [bibtex-entry]


  10. Xavier Pennec, Radu Stefanescu, Vincent Arsigny, Pierre Fillard, and Nicholas Ayache. Riemannian Elasticity: A statistical regularization framework for non-linear registration. In J. Duncan and G. Gerig, editors, Proceedings of the 8th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005, Part II, volume 3750 of LNCS, Palm Springs, CA, USA, October 26-29, pages 943-950, 2005. Springer. Keyword(s): registration, statistics, Tensors, Riemannian geometry, brain. [bibtex-entry]


  11. Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Polyrigid and Polyaffine Transformations: A New Class of Diffeomorphisms for Locally Rigid or Affine Registration. In Randy E. Ellis and Terry M. Peters, editors, Proc. of MICCAI'03, Part II, volume 2879 of LNCS, Montreal, pages 829-837, November 2003. Springer. Note: MICCAI 2003 Best Student Award in Image Processing and Visualization. PMID: 15948656. [bibtex-entry]


Internal reports

  1. Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A Fast and Log-Euclidean Polyaffine Framework for Locally Affine Registration. Research report RR-5865, INRIA Sophia-Antipolis, March 2006. Keyword(s): Polyaffine transformations, Diffeomorphisms, Non-rigid registration, Multi-affine registration, Lie groups, Log-Euclidean metrics, Magnetic Resonance Imaging. [bibtex-entry]


  2. Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Bi-invariant Means in Lie Groups. Application to Left-invariant Polyaffine Transformations. Research report RR-5885, INRIA Sophia-Antipolis, April 2006. Keyword(s): Bi-invariant means, Fréchet means, Statistics, Lie groups, Riemannian geometry, Polyaffine transformations, Diffeomorphisms. [bibtex-entry]


  3. Pierre Fillard, Vincent Arsigny, Xavier Pennec, Kiralee M. Hayashi, Paul M. Thompson, and Nicholas Ayache. Measuring Brain Variability by Extrapolating Sparse Tensor Fields Measured on Sulcal Lines. Research report RR-5887, INRIA, April 2006. [bibtex-entry]


  4. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and Simple Computations on Tensors with Log-Euclidean Metrics. Research report RR-5584, INRIA, Sophia-Antipolis, France, May 2005. Keyword(s): DT-MRI, Magnetic Resonance Imaging, Tensors, brain, Riemannian geometry, Lie group, regularization, extrapolation, interpolation. [bibtex-entry]


  5. Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Joint Estimation and Smoothing of Clinical DT-MRI with a Log-Euclidean Metric. Research report RR-5607, INRIA, Sophia-Antipolis, France, June 2005. Keyword(s): tensors, DT-MRI, DTI, estimation, regularization, fiber tracking, Log-Euclidean, Riemannian geometry. [bibtex-entry]


  6. Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. A novel family of geometrical transformations: Polyrigid transformations. Application to the registration of histological slices. Research report RR-4837, INRIA, 2003. Keyword(s): registration, matching, histology. [bibtex-entry]


Patents, standards

  1. Vincent Arsigny, Xavier Pennec, Pierre Fillard, and Nicholas Ayache. Device for processing raw images or tensor images. US patent US 2008/0170802 (filed 07.04.2006, published 17.07.2008, July 2006. [bibtex-entry]


  2. Vincent Arsigny, Xavier Pennec, Pierre Fillard, and Nicholas Ayache. Dispositif perfectionné de traitement ou de production d'images de tenseurs. French patent filing number 0503483, April 2005. Note: International application number PCT/FR2006/000774 published 12.10.2006. [bibtex-entry]



BACK TO INDEX

Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Last modified: Fri Aug 7 12:30:04 2020
Author: epione-publi.

This document was translated from BibTEX by bibtex2html