
Log-Euclidean Metrics for Fast and Simple Calculus
on Diffusion Tensors1.

Vincent Arsigny 2, Pierre Fillard 3, Xavier Pennec 4 and Nicholas Ayache 5.

June 7, 2006

1This is a prepint version of an article to appear in Magnetic Resonance in Medicine,
published by Wiley-Liss Inc. All rights reserved, including copyright. Running heading: Log-
Euclidean metrics on diffusion tensors. Total word count: 6400.

2Corresponding Author. INRIA Sophia - Epidaure Research Project, BP 93, 06902 Sophia An-
tipolis Cedex, France. Tel: (+) 33 4 92 38 71 59, Fax: (+) 33 4 92 38 76 69 , e-mail:
Vincent.Arsigny@Polytechnique.org.

3INRIA Sophia-Antipolis, Epidaure Project. E-mail: Pierre.Fillard@Sophia.inria.fr
4INRIA Sophia-Antipolis, Epidaure Project. E-mail: Xavier.Pennec@Sophia.inria.fr
5INRIA Sophia-Antipolis, Epidaure Project. E-mail: Nicholas.Ayache@Sophia.inria.fr



Abstract

Diffusion tensor imaging (DT-MRI or DTI) is an emerging imaging modality whose importance has been
growing considerably. However, the processing of this type of data (i.e. symmetric positive-definite matri-
ces), called ‘tensors’ here, has proved difficult in recent years. Usual Euclidean operations on matrices suffer
from many defects on tensors, which have led to the use of many ad hoc methods. Recently, affine-invariant
Riemannian metrics have been proposed as a rigorous and general framework in which these defects are
corrected. These metrics have excellent theoretical properties and provide powerful processing tools, but
also lead in practice to complex and slow algorithms. To remedy this limitation, a new family of Riemannian
metrics called Log-Euclidean is proposed in this article. They also have excellent theoretical properties and
yield similar results in practice, but with much simpler and faster computations. This new approach is based
on a novel vector space structure for tensors. In this framework, Riemannian computations can be converted
into Euclidean ones once tensors have been transformed into their matrix logarithms. Theoretical aspects are
presented and the Euclidean, affine-invariant and Log-Euclidean frameworks are compared experimentally.
The comparison is carried out on interpolation and regularization tasks on synthetic and clinical 3D DTI
data.
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INTRODUCTION

Diffusion tensor imaging (DT-MRI or DTI or equivalently DT imaging) (1) is an emerging imaging modality
whose importance has been growing considerably. In particular, most attempts to reconstruct non-invasively
the connectivity of the brain are based on DTI (see (2–7) and references within for classical fiber tracking
algorithms). Other applications of DT-MRI also include the study of diseases such as stroke, multiple
sclerosis, dyslexia and schizophrenia (8).

The diffusion tensor is a simple and powerful model used to analyze the content of Diffusion-Weighted
images (DW-MRIs). It is based on the assumption that the motion of water molecules can be well approx-
imated by a Brownian motion in each voxel of the image. This Brownian motion is entirely characterized
by a symmetric and positive-definite matrix, called the ‘diffusion tensor’ (1). In this article, we restrict the
term ‘tensor’ to mean a symmetric and positive-definite matrix.

With the increasing use of DT-MRI, there has been a growing need to generalize to the tensor case many
usual vector processing tools. In particular, regularization techniques are required to denoise them. Further-
more, classical tasks like interpolation also need to be generalized to resample DT images, for example to
work with isotropic voxels, as recommended in (6). It would also be very valuable to generalize to tensors
classical vector statistical tools, in order to analyze the variability of tensors or model the noise that corrupts
them. Previous attempts to do so are only partially satisfactory: for example, it was proposed in (9) to define
a Gaussian distribution on tensors as a Gaussian distribution on symmetric matrices, without taking into
account the positive-definiteness constraint. This becomes problematic with Gaussians whose covariance is
large: in this case, non-positive eigenvalues do appear with a significant probability.

Many ad hoc approaches have already been proposed in the literature to process tensors (see (10, 11)
and references within). But in order to fully generalize to tensors the usual PDEs or statistical tools used on
scalars or vectors, one needs to define a consistent operational framework. The framework of Riemannian
metrics (12, 13) has recently emerged as particularly adapted to this task (14–17).

The Defects of Euclidean Calculus

The simplest Riemannian structures are the Euclidean ones. Let S1 and S2 be two tensors. An example of
Euclidean structure is given by the so-called ‘Frobenius distance’: dist2(S1,S2) = (Trace((S1 − S2)2)).
This straightforward metric leads a priori to simple computations. Unfortunately, though Euclidean dis-
tances are well-adapted to general square matrices, they are unsatisfactory for tensors, which are very spe-
cific matrices. Typically, symmetric matrices with null or negative eigenvalues appear on clinical data as
soon as we perform on tensors Euclidean operations which are non-convex. Example of such situations
are the estimation of tensors from diffusion-weighted images, the regularization of tensors fields, etc. The
noise in the data is at the source of this problem. To avoid obtaining non-positive eigenvalues, which are
difficult to interpret physically, it has been proposed to regularize only features extracted from tensors, like
first eigenvectors (18) or orientations (11). This is only partly satisfactory, since such approaches do not
take into account all the information carried by tensors.

After a diffusion time ∆, we know with a confidence say of 95% that a water molecule is located
within a region called a confidence region, which is the multidimensional equivalent of a confidence in-
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terval. The larger the volume of these regions, the larger is the dispersion of the random displacement of
water molecules. In the case of Brownian motion, the random displacement is Gaussian, and confidence
regions are therefore ellipsoids. The volumes of these ellipsoids are proportional to the square root of the
determinant of the covariance matrix of the displacement. In DT-MRI, this covariance matrix is equal to
the diffusion tensor multiplied by 2∆ (1). The value of the determinant of the diffusion tensor is therefore a
direct measure of the dispersion of the local diffusion process. But the Euclidean averaging of tensors gen-
erally leads to a tensor swelling effect (11,19,20): the determinant (and thus the dispersion) of the Euclidean
mean of tensors can be larger than the determinants of the original tensors! Introducing more dispersion in
computations amounts to introducing more diffusion, which is physically unrealistic.

Riemannian Metrics

To fully circumvent these difficulties, affine-invariant Riemannian metrics have been recently proposed for
tensors by several teams. The application of these metrics to the averaging of tensors and the definition
of a Riemannian anisotropy measure were presented (15, 21). The generalization of principal component
analysis (PCA) to tensors was given in (17). The affine-invariant statistical framework and its application
to the segmentation of DT-MRI was presented in (16). PDEs within the affine-invariant framework were
studied in (14) with applications to the interpolation, extrapolation and regularization of tensor fields.

With affine-invariant metrics, symmetric matrices with negative and null eigenvalues are at an infinite
distance from any tensor and the swelling effect disappears. Practically, this prevents the appearance of
non-positive eigenvalues, which is particularly difficult to avoid in Euclidean algorithms. But the price paid
for this success is a high computational burden, essentially due to the curvature induced on the tensor space.
This substantial computational cost can be seen directly from the formula giving the distance between two
tensors S1 and S2 (14):

dist(S1,S2) =
∥

∥

∥
log
(

S1
−

1

2 .S2.S1
−

1

2

)∥

∥

∥
, [1]

where ‖.‖ is a Euclidean norm on symmetric matrices. In general, affine-invariant computations involve an
intensive use of matrix inverses, square roots, logarithms and exponentials.

We present in this article a new Riemannian framework to fully overcome these computational limi-
tations while preserving excellent theoretical properties. Moreover, we obtain this result without any un-
necessary complexity, since all computations on tensors are converted into computations on vectors. This
framework is based on a new family of metrics named Log-Euclidean, which are particularly simple to use.
They result in classical Euclidean computations in the domain of matrix logarithms. In the next section, we
present the theory of Log-Euclidean metrics (more details on this theory can be found in a research report,
see (22)). In the Methods section, we describe the adaptation of classical processing tools to the Log-
Euclidean framework for interpolation and regularization tasks. We also present a highly useful tool for the
visualization of difference between tensors: the absolute value of a symmetric matrix. Then, we show that
the affine-invariant and Log-Euclidean frameworks perform better than the Euclidean one for the interpola-
tion and regularization of our synthetic and clinical 3D DT-MRI data. Affine-invariant and Log-Euclidean
results are very similar, but computations are simpler and experimentally much faster in the Log-Euclidean
than in the affine-invariant framework.
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THEORY

Matrix Exponential, Logarithm and Powers

The notions of matrix logarithm and exponential are central in the theoretical framework presented here.
For any matrix M, its exponential is given by: exp(M) =

∑

∞

k=0 M
k/k!. As in the scalar case, the matrix

logarithm is defined as the inverse of the exponential. One should note that for general matrices, neither the
uniqueness nor the existence of a logarithm is guaranteed for a given invertible matrix (23,24). However, the
important point here is that the logarithm of a tensor is well-defined and is a symmetric matrix. Conversely,
the exponential of any symmetric matrix yields a tensor. This means that under the matrix exponentiation
operation, there is a one-to-one correspondence between symmetric matrices and tensors.

This one-to-one correspondence can be seen quite intuitively thanks to the simple spectral decomposition
of these matrices. Indeed, the matrix logarithm L of a tensor S can be calculated in three steps:

1. perform a diagonalization of S, which provides a rotation matrix R and a diagonal matrix D with the
eigenvalues of S in its diagonal, with the equality: S = R

T .D.R.

2. transform each diagonal element of D (which is necessarily positive, since it is an eigenvalue of S) into
its natural logarithm in order to obtain a new diagonal matrix D̃.

3. recompose D̃ and R to obtain the logarithm with the formula L = log(S) = R
T .D̃.R.

Conversely, the matrix exponential S is obtained by replacing the natural logarithm with the scalar expo-
nential. One also generalizes of the notion of powers (and in particular square roots) to tensors by replacing
their eigenvalues by the corresponding scalar power (for example by their square roots).

Definition of Log-Euclidean Metrics

Based on the specific properties of the matrix exponential and logarithm on tensors that we presented above,
we can now define a novel vector space structure on tensors. This is quite a surprising result: in the sense
of this new algebraic structure, tensors can be also looked upon as vectors! As will be shown in the rest of
this article, this novel viewpoint provides a particularly powerful and simple-to-use framework to process
tensors.

Since there is a one-to-one mapping between the tensor space and the vector space of symmetric ma-
trices, one can transfer to tensors the standard algebraic operations (addition “+” and scalar multiplication
“.”) with the matrix exponential. This defines on tensors a logarithmic multiplication � and a logarithmic

scalar multiplication ~, given by:






S1 � S2

def
= exp (log(S1) + log(S2))

λ ~ S
def
= exp (λ. log(S)) = S

λ.

The logarithmic multiplication is commutative and coincides with matrix multiplication whenever the two
tensors S1 and S2 commute in the matrix sense. With � and ~, the tensor space has by construction a vector
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space structure, which is not the usual structure directly derived from addition and scalar multiplication on
matrices.

When one considers only the multiplication � on the tensor space, one has a Lie group structure (13),
i.e. a space which is both a smooth manifold and a group in which multiplication and inversion are smooth

mappings. This type of mathematical tool is for example particularly useful in theoretical physics (25).
Here, the smoothness of � comes from the fact that both the exponential and the logarithm mappings are
smooth (22). Among Riemannian metrics in Lie groups, the most convenient in practice are bi-invariant

metrics, i.e. metrics that are invariant by multiplication and inversion. When they exist, these metrics are
used in differential geometry to generalize to Lie groups a notion of mean which is completely consis-
tent with multiplication and inversion. This approach applies particularly well in the case of the group of
rotations (26–28). However, such metrics do not always exist, as in the case of the groups of Euclidean
motions (29, 30) and affine transformations. It is remarkable that bi-invariant metrics exist in our tensor Lie
group. Moreover, they are particularly simple. Their existence simply results from the commutativity of
logarithmic multiplication between tensors. We have named such metrics Log-Euclidean metrics, since they
correspond to Euclidean metrics in the domain of logarithms. From a Euclidean norm ‖.‖ on symmetric
matrices, they can be written:

dist(S1,S2) = ‖ log(S1) − log(S2)‖. [2]

From Eq. [2], it is clear that Log-Euclidean metrics are also Euclidean distances for the vector space struc-
ture we defined earlier. We did not define them directly from the latter algebraic structure to emphasize the
fact that they are also Riemannian metrics, like affine-invariant metrics.

As one can see, the Log-Euclidean distance is much simpler than the equivalent affine-invariant distance
given by Eq. [1], where matrix multiplications, square roots and inverses are used before taking the norm
of the logarithm. The greater simplicity of Log-Euclidean metrics can also be seen from Log-Euclidean
geodesics in the tensor space. In the Log-Euclidean case, the shortest path γLE(t) going from the tensor S1

at time 0 to the tensor S2 at time 1 is a straight line in the domain of logarithms. This geodesic is given by:

γLE(t) = exp ((1 − t) log(S1) + t log(S2)) .

Its affine-invariant equivalent γAff(t) involves the use of square roots and inverses and takes the following
form:

γAff(t) = S1

1

2 . exp
(

t log
(

S1
−

1

2 .S2.S1
−

1

2

))

.S1

1

2 .

Contrary to the classical Euclidean framework on tensors, one can see from Eq. [2] that symmetric
matrices with null or negative eigenvalues are at an infinite distance from any tensor and therefore will not
appear in practical computations. The same property holds for affine-invariant metrics (14).

Invariance Properties of Log-Euclidean Metrics

Log-Euclidean metrics satisfy a number of invariance properties, i.e. are left unchanged by several op-
erations on tensors. First, distances are not changed by inversion, since taking the inverse of a system of
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matrices only results in the multiplication by −1 of their logarithms, which does not change the value of the
distance given by Eq. [2]. Also, Log-Euclidean metrics are by construction invariant with respect to any
logarithmic multiplication, i.e. are invariant by any translation in the domain of logarithms. However, there
is more. Although Log-Euclidean metrics do not yield full affine-invariance as the affine-invariant metrics
defined in (14), a number of them are invariant by similarity (orthogonal transformation and scaling) (22).
This means that computations on tensors using these metrics will be invariant with respect to a change of
coordinates obtained by a similarity. In this work, we use the simplest similarity-invariant Log-Euclidean
metric, which is given by:

dist(S1,S2) =
(

Trace
(

{log(S1) − log(S2)}2
))

1

2 .

Log-Euclidean Computations on Tensors

From a practical point of view, one would like operations such as averaging, filtering, etc. to be as simple
as possible. In the affine-invariant case, such operations rely on an intensive use of matrix exponentials,
logarithms, inverses and square roots. In our case, the space of tensors with a Log-Euclidean metric is
in fact isomorphic (the algebraic structure of vector space is conserved) and isometric (distances are con-
served) with the corresponding Euclidean space of symmetric matrices. As a consequence, the Riemannian
framework for statistics and analysis is extremely simplified. To illustrate this, let us recall the notion of
Fréchet mean (12, 31), which is the Riemannian equivalent of the Euclidean (or arithmetic) mean. Given a
Riemannian metric, the associated Fréchet mean of N tensors S1,..., SN with arbitrary positive weights w1,
..., wN is defined as the point E(S1, ...,SN) minimizing the following metric dispersion:

E(S1, ...,SN) = arg min
S

N
∑

i=1

wi dist2(S,Si),

where dist(., .) is the distance associated to the metric. The Log-Euclidean Fréchet mean is a direct gener-
alization of the geometric mean of positive numbers and is given explicitly by:

ELE(S1, ...,SN) = exp

(

N
∑

i=1

wi log(Si)

)

. [3]

The closed form given by Eq. [3] makes the computation of Log-Euclidean means straightforward. On the
contrary, there is no closed form for affine-invariant means EAff(S1, ...,SN) as soon as N > 2 (21). The
affine-invariant is only implicitly defined through the following barycentric equation:

N
∑

i=1

wi log
(

EAff(S1, ...,SN)−1/2.Si.EAff(S1, ...,SN)−1/2
)

= 0. [4]

In the literature, this equation is solved iteratively, for instance using a Gauss-Newton method as detailed
in (14, 16, 17). This optimization method has the advantage of having quite a fast convergence speed, like
all Newton methods.

Contrary to the affine-invariant case, the processing of tensors in the Log-Euclidean framework is simply

Euclidean in the logarithmic domain. Tensors can be transformed first into symmetric matrices (i.e. vectors)
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using the matrix logarithm. Then, to simplify even more computations, these matrices with 6 degrees of
freedom can be represented by 6D vectors in the following way:

log(S) ' ~S =
(

log(S)1,1 , log(S)2,2 , log(S)3,3 ,
√

2. log(S)1,2 ,
√

2. log(S)1,3 ,
√

2. log(S)2,3

)T
,

where log(S)i,j is the coefficient of log(S) placed in the (i, j) position. With this representation, the classical
Euclidean norm between such 6D vectors is equal to a Log-Euclidean similarity-invariant distance between
the tensors they represent. Note that this is true only for the particular similarity-invariant distance used in
this work. To deal with another Log-Euclidean distance, one should adapt the 6D vector representation to
the metric by changing adequately the relative weights of the matrix coefficients.

Once tensors have been transformed into symmetric matrices or 6D vectors, classical vector processing
tools can be used directly on these 6D representations. Finally, results obtained on logarithms are mapped
back to the tensor domain with the exponential. Hence, vector statistical tools or PDEs are readily general-
ized to tensors in this framework.

Comparison of the Affine-Invariant and Log-Euclidean Frameworks

As will be shown experimentally in the Results section, Log-Euclidean computations provide results very
similar to their affine-invariant equivalent, presented in (14). The reason behind this is the following: the
two families of metrics provide two different generalizations to tensors of the geometric mean of positive
numbers. By this we mean that the determinants of both Log-Euclidean and affine-invariant means of
tensors are exactly equal to the scalar geometric mean of the determinants of the data (22). This explains
the absence of swelling effect in both cases, since the interpolation of tensors along geodesics yields in both
cases the same monotonic interpolation of determinants.

The two Riemannian means are even identical in a number of cases, in particular when averaged tensors
commute in the sense of matrix multiplication. Yet, the two means are different in general, as shown
theoretically in (22) (the trace of the Log-Euclidean mean is always larger (or equal) than the trace of the
affine-invariant mean) and experimentally in the Results section. More precisely, Log-Euclidean means are
generally more anisotropic than their affine-invariant equivalent. We observed that this resemblance between
the two means extends to general computations which involve averaging, such as regularization procedures,
as is shown in the Results section.

METHODS

Interpolation

Voxels in clinical DT images are often quite anisotropic. Algorithms tracking white matter tracts can be bi-
ased by this anisotropy, and it is therefore recommended (e.g. see (6)) to use isotropic voxels. A preliminary
resampling step with an adequate interpolation method is therefore important for such algorithms. Adequate
interpolation methods are also required to generalize to the tensor case usual registration techniques used on
scalar or vector images. The framework of Riemannian metrics allows a direct generalization of classical
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resampling methods, by re-interpreting them as computing weighted means of the original data. Then the
idea is to replace the Euclidean mean by its Riemannian counterpart, i.e. the Fréchet mean. See (14) for a
more detailed discussion of this topic. This way one can generalize the classical linear, bilinear and trilinear
interpolations to tensors with a Riemannian metric. For both metrics mentioned in this work, this entails in
one case using directly Eq. [3] and in the other case iteratively solving Eq. [4].

Regularization

DT images are corrupted by noise, and regularizing them can be a crucial preliminary step for DTI-based
algorithms that reconstruct the white matter connectivity. As shown in (14), Riemannian metrics provide a
general framework to regularize to tensors usual vector regularization tools.

Practically, an anisotropic regularization is very valuable, since it allows a substantial reduction of the
noise level while sharp contours and structures are mostly preserved. We focus here on a simple and typical
Riemannian criterion for the anisotropic regularization of tensor fields, which is based on Φ-functions (11,
32). In this context, the regularization is obtained by the minimization of a Φ-functional Reg(S) given by:

Reg(S) =

∫

Ω
Φ
(

‖∇S‖S(x)(x)
)

dx,

where Ω is the spatial domain of the image and Φ(s) a function penalizing large values of the norm of the
spatial gradient ∇S of the tensor field S(x). The spatial gradient is defined here as ∇S = ( ∂S

∂x1
, ∂S

∂x2
, ∂S

∂x3
),

where x1, x2 and x3 are the three spatial coordinates, and where ∂S

∂xi

is the matrix describing how S(x)

linearly varies near x in the ith spatial direction. Note that ∂S

∂xi

is only symmetric and not necessarily
positive definite because it is given by an infinitesimal difference between two tensors, which is a non-
convex operation. For more details on how spatial gradients can be practically computed, see (14) Section
5.

Here, we use the classical function Φ(s) = 2
√

1 + s2/κ2 − 2 (11). We would like to emphasize that
contrary to the Euclidean case, the norm of ∇S depends explicitly on the current point S(x) (see (14, 22)
for more details) and is given by:

‖∇S‖2
S(x) =

3
∑

i=1

∥

∥

∥

∥

∂S

∂xi
(x)

∥

∥

∥

∥

2

S(x)

.

In general, this dependence on the current point leads to complex resolution methods. Thus, in the affine-
invariant case, these methods rely on an intensive use of matrix inverses, square roots, exponentials and
logarithms (14). However, in the Log-Euclidean framework the general Riemannian formulation is ex-
tremely simplified. The reason is that the dependence on the current tensor disappears on the logarithms of
tensors (22), so that the norm of the gradient is given by:

‖∇S‖S(x) = (< ∇S,∇S >S(x))
1

2 = ‖∇ log(S)‖Id,

where Id is the identity matrix. This means that only the scalar product at the identity needs to be used.
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The transformation of tensors into their matrix logarithms transforms Riemannian computations at S(x) into
Euclidean computations at Id. As a consequence, the energy functional can be minimized directly on the

vector field of logarithms. The regularized tensor field is given in a final step by the matrix exponential of
regularized logarithms.

In the regularization experiments of this article, the minimization method used is a first-order gradient
descent with a fixed time step dt. We use an explicit finite difference scheme on logarithms in the Log-
Euclidean case (see (33) for details about numerical schemes and others aspects of the implementation) and
the geodesic marching scheme described in (14) in the affine-invariant case. In the Euclidean framework,
we also use affine-invariant geodesic marching rather than a classical explicit scheme to limit the appearance
of non-positive eigenvalues, proceeding similarly as in (11). Homogeneous Neumann boundary conditions
are used, parameters were empirically chosen to be κ = 0.05, dt = 0.1, and 100 iterations are performed in
the results shown in Fig. 5 and 50 iterations for those shown in Fig. 6.

Absolute Value of a Symmetric Matrix

When several variants of an algorithm are used to process tensors images, visualization tools are quite
valuable to inspect the results. A simple solution is to visualize an image of the norm of the (Euclidean)
difference between tensors. Regrettably, all information about orientation is lost in this case.

To visualize simultaneously the magnitude and the orientation of differences, one can use the absolute

value of a symmetric matrix. Similarly to the exponential or square root, it is defined as the symmetric
positive semi-definite matrix obtained by replacing the eigenvalues of the original matrix by their absolute
values. Thus, this absolute value retains all the information about the magnitude and the orientation of
any symmetric matrix, and can still be visualized directly with the usual ellipsoid representation. As a
consequence, this mathematical tool is very useful to visualize the difference between two tensors, as can
be seen in the Results section. We first introduced this tool in (34).

Materials

The experiments in this study are carried out partly on synthetic tensor images, and partly on a clinical DTI
volume. The clinical scan of the brain was acquired with a 1.5-T MR imaging system (Siemens Sonata)
with actively shielded magnetic field gradients (G maximum, 40 mT/m). A sagittal spin-echo single shot
echo-planar parallel Grappa diffusion-weighted imaging sequence with acceleration factor two and six non
collinear gradient directions was applied with two b values (b=0 and 1000s.mm−2. Field of view: 24.0 ×
24.0 cm; image matrix: 128×128 voxels; 30 sections with a thickness of 4mm; nominal voxel size: 1.875×
1.875 × 4mm3. TR/TE= 4600/73 ms. The gradient directions used were as follows: [(1/

√
2, 0, 1/

√
2);

(−1/
√

2, 0, 1/
√

2); (0, 1/
√

2, 1/
√

2); (0, 1/
√

2,−1/
√

2); (1/
√

2, 1/
√

2, 0); (−1/
√

2, 1/
√

2, 0)] providing
the best accuracy in tensor components when six directions are used (35). The acquisition time of diffusion-
weighted imaging was 5 minutes and 35 seconds. Image analysis was performed on a voxel-by-voxel basis
by using dedicated software (DPTools, http://fmritools.hd.free.fr). Before performing the
tensor estimation, an unwarping algorithm was applied to the DTI data set to reduce distortions related to
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eddy currents induced by the large diffusion-sensitizing gradients. This algorithm relies on a three-parameter
distortion model including scale, shear, and linear translation in the phase-encoding direction (36). The
optimal parameters were assessed independently for each section relative to the T2-weighted corresponding
image by the maximization of the mutual information. However, due to the low signal-to-noise ratio in these
images, part of the distortions remained. The tensors were estimated using the method described in (33),
with a small regularization. The parameters of this estimation were set to λ = 0.25 and κ = 0.1. 50
iterations were used.

Figure 1: Geodesic interpolation of two tensors. Left: interpolated tensors. Right: graphs of the de-
terminants of the interpolated tensors. Top: linear interpolation on coefficients. Middle: affine-invariant
interpolation. Bottom: Log-Euclidean interpolation. The coloring of ellipsoids is based on the direction of
dominant eigenvectors, and was only added to enhance the contrast of tensor images. Note the characteristic
swelling effect observed in the Euclidean case due to a parabolic interpolation of determinants. This effect
is not present in both Riemannian frameworks since determinants are monotonically interpolated. Note also
that Log-Euclidean means are more anisotropic their affine-invariant counterparts.

RESULTS

Interpolation

Results of the (geodesic) linear interpolation of two synthetic tensors are presented in Fig. 1. One can clearly
see the swelling effect characteristic of the Euclidean interpolation, which has no physical interpretation.
On the contrary, a monotonic (and identical) interpolation of determinants is obtained in both Riemannian
frameworks. The larger anisotropy in Log-Euclidean means is also clearly visible in this figure.

Fig. 2 shows the results obtained for the bilinear interpolation of four synthetic tensors with three
methods: Euclidean (linear interpolation of coefficients), affine-invariant and Log-Euclidean. Again, there
is a pronounced swelling effect in the Euclidean case, which does not appear in both Riemannian cases.
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Figure 2: Bilinear interpolation of 4 tensors at the corners of a grid. Left: Euclidean reconstruc-
tion. Middle: affine-invariant reconstruction. Right: Log-Euclidean interpolation. Note the characteristic
swelling effect observed in the Euclidean case, which is not present in both Riemannian frameworks. Note
also that Log-Euclidean means are slightly more anisotropic than their affine-invariant counterparts.

Also, there is a slightly larger anisotropy in Log-Euclidean means. One should note that the computation
of the affine-invariant mean here is iterative, since the number of averaged tensor is greater than 2 (we use
the Gauss-Newton method described in (14)), whereas the closed form given by Eq. [3] is used directly in
the Log-Euclidean case. This has a large impact on computation times: 0.003s (Euclidean), 0.009s (Log-
Euclidean) and 1s (affine-invariant) for a 5× 5 grid on a Pentium M 2 GHz. Computations were carried out
in the Matlab™framework, which explains the poor computational performance. A C++ implementation
would yield much lower computation times, but the ratio would be comparable. This clearly demonstrate
that Log-Euclidean metrics combine greater simplicity and performance, as compared to affine-invariant
metrics, at least in terms of interpolation tasks.

Figure 3: Bilinear interpolation in a real DTI slice. Left: Original DTI slice, before down-sampling.
Middle: Euclidean interpolation. Right: Log-Euclidean interpolation. Half the columns and lines of the
original DTI slice were removed before reconstruction with a bilinear interpolation. The slice is taken in the
mid-sagittal plane and displayed in perspective. Again, the coloring of ellipsoids is based on the direction of
dominant eigenvectors, and was only added to enhance the contrast of tensor images. Note how the tensors
corresponding to the Corpus Callosum (in red, above the large and round tensors corresponding to a part of
the ventricles) are better reconstructed (more anisotropic) in the Log-Euclidean case.
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From a numerical point of view, one should note that the computation of Log-Euclidean means is more
stable than in the affine-invariant case. On synthetic examples, we noticed that for large anisotropies (for in-
stance with the dominant eigenvalue larger than 500 times the smallest), large numerical instabilities appear,
essentially due to limited numerical accuracy of the logarithm computations (even with double precision).
This can complicate greatly the computation of affine-invariant means. In the case of our clinical DTI data,
this type of phenomenon also occurs, although to a lesser degree. We observed that the computation of the
affine-invariant mean can in this case be 5 to 10 times longer than usual at times, when the averaged data
presents a substantial inhomogeneity. On the contrary, the computation of Log-Euclidean means is much
more stable since the logarithm and exponential are taken only once and thus even very large anisotropies
can be dealt with. Of course, on clinical DT images anisotropies are not so pronounced and drastic insta-
bilities will not appear. But for the processing of other types of tensors with much higher anisotropies, this
could be crucial.

Similarity Measure Euclidean interpol. Affine-invariant interpol. Log-Euclidean interpol.
Mean Euclidean Error 0.2659 0.2614 0.2611

Mean Affine-invariant Error 0.2703 0.2586 0.2584
Log-Euclidean Error 0.2694 0.2577 0.2575

Table 1: Mean reconstruction errors for the clinical slice reconstruction experiment. The three inter-
polation results are quite close. However, both Riemannian frameworks perform slightly better than the
Euclidean one, independently of the similarity measure considered. This is essentially due to the better
Riemannian reconstruction of the Corpus Callosum.

To compare the Euclidean and Riemannian bilinear interpolations on clinical data, we have reconstructed
by bilinear interpolation a down-sampled DTI slice. One column out of two and one line out of two were
removed. The slice was chosen in the mid-sagittal plane where strong variations are present in the DT image.
The results in Fig. 3 show that the tensors corresponding to the corpus callosum are better reconstructed in
the Log-Euclidean case. Affine-invariant results are very similar to Log-Euclidean ones and not shown here.
In other regions, the differences between the interpolations are much smaller. The mean reconstruction
errors for all three frameworks are shown in Tab. 1. We assessed the reconstruction errors with three
similarity measures: with our Euclidean, Log-Euclidean and affine-invariant metrics, we computed the mean
distance between original and reconstructed tensors. As can be seen in this table, Log-Euclidean and affine-
invariant results are quantitatively slightly better than Euclidean results, independently of the similarity
measure considered. This is essentially due to the better reconstruction of the Corpus Callosum in both
Riemannian cases.

Regularization

To compare the Euclidean, affine-invariant and Log-Euclidean frameworks, let us begin with a simple ex-
ample where we restored a noisy synthetic image of tensors. The eigenvalues of the original tensors were
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Figure 4: Regularization of a synthetic DTI slice. Left: original synthetic data. Middle Left: noisy
data. Middle Right: Euclidean regularization. Right: Log-Euclidean regularization. The original data
is correctly reconstructed in the Log-Euclidean case, as opposed to the Euclidean case where the result is
marred by the swelling effect.

set to (2, 1, 1). We added some isotropic Gaussian white noise of variance 0.5 on the b0 image and each
of the 6 synthetic diffusion-weighted images, and tensors were estimated with the method presented in (33)
with parameters λ = 0.25 and κ = 0.1 (the regularization was small). Results are shown in Fig. 4: surpris-
ingly, although no anisotropic filtering other than the one described in the Methods Section was used, the
boundaries between the two regions are kept perfectly distinct, thanks to the strong gradients in this area.
Furthermore, the impact of the Euclidean swelling effect is clearly visible. On the contrary, both Rieman-
nian frameworks yield very good results, the only extremely small difference being as predicted slightly
more anisotropy for Log-Euclidean results. Affine-invariant results are not shown here because they are
very close to the Log-Euclidean ones. Like in the interpolation reconstruction experiment, we assessed the
reconstruction errors with the Euclidean, Log-Euclidean and affine-invariant metrics. For each metric, we
computed the mean distance between original and reconstructed tensors. The quantitative results are shown
in Tab. 2: as expected affine-invariant and Log-Euclidean results are close and yield much better results than
in the Euclidean case, regardless of the similarity measure used.

Similarity Measure Euclidean regul. Affine-invariant regul. Log-Euclidean regul.
Mean Euclidean Error 0.228 0.080 0.051

Mean Affine-invariant Error 0.533 0.142 0.119
Log-Euclidean Error 0.532 0.135 0.111

Table 2: Mean reconstruction errors for the synthetic regularization experiment. Both Riemannian
results are much better than the Euclidean one, independently of the similarity measure considered. This is
due to the absence of swelling effect in both Riemannian cases.

Let us now turn to a clinical DTI volume, which presents a substantial level of noise. A quantita-
tive evaluation or validation of the restoration results presented here remains to be done, and this general
problem will be the subject of future work. However, as shown in Fig. 5, both Riemannian results are
qualitatively satisfactory: the smoothing is done without blurring the edges in both Riemannian cases, con-
trary to the Euclidean results which are marred by a pronounced swelling effect, especially in the regions
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of high anisotropy. Also note that to a lesser degree, this swelling effect is present in regions with much
less anisotropy, in fact almost everywhere except in the ventricles. The affine-invariant and Log-Euclidean
results are very similar to each other, with only slightly more anisotropy in the Log-Euclidean case.

To highlight this similarity, we display in Fig. 5 the absolute values of the (Euclidean) differences
between affine-invariant and Log-Euclidean results. The definition of the absolute value of a symmetric
matrix is given in the Methods section, and this mathematical tool is much useful to visualize the difference
between two tensors. We can see in Fig. 5 that the differences are mainly concentrated along the dominant
directions of diffusion, which is explained by the larger anisotropy in Log-Euclidean means. However, this
relative difference is very small, of the order of less than 1%.

A regularization of DT images should not only correctly regularize the determinants of tensors, but
also adequately regularize other scalar measures associated to tensors. In Fig. 6, the effect of the Log-
Euclidean regularization on the fractional anisotropy (FA) and on the norm of the gradient are shown. In
this experiment, only half of the regularization used to obtain the results of Fig. 5 is kept. As one can see, the
regularization, which is performed directly on the tensors, induces a regularization of the FA and gradient
norm. Qualitatively, major anisotropic structures have been preserved, including for example the internal
capsule, while the noise has been substantially reduced.

As in the case of interpolation, the simpler Log-Euclidean computations are also significantly faster: our
current implementation in C++ requires for 100 iterations 30 minutes in the Log-Euclidean case instead of
122 minutes for affine-invariant results on a Pentium Xeon 2.8 GHz with 1 Go of RAM. Our implementation
has not been optimized yet and will be improved in the near future. Consequently, the values given here are
only upper bounds of what can be achieved. However, the difference in computation times is typical and
Log-Euclidean computations can even be 6 or 7 times faster than their affine-invariant equivalent (22).
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Figure 5: Regularization of a clinical DTI volume (3D). Top Left: close-up on a slice containing part
of the left ventricle and nearby. Top Right: Euclidean regularization. Bottom Left: Log-Euclidean regu-
larization. Bottom Right: highly magnified view (×100) of the absolute value of the difference between
Log-Euclidean and affine-invariant results. The absolute value of tensors is taken to allow the simultaneous
visualization of the amplitude and orientation of the differences. See the Methods section for a definition of
the absolute value. Note that there is no tensor swelling in the Riemannian cases. On the contrary, in the
Euclidean case, a swelling effect occurs almost everywhere (except maybe in the ventricles), in particular
in regions of high anisotropy. Last but not least, the difference between Log-Euclidean and affine-invariant
results is very small. Log-Euclidean results are only slightly more anisotropic than their affine-invariant
counterparts.
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Figure 6: Log-Euclidean regularization of a clinical DTI volume (3D): typical effect on FA and gra-
dient. Top left: FA before Log-Euclidean regularization. Top right: FA after regularization. Bottom
left: Log-Euclidean norm of the gradient before regularization. Bottom right: Log-Euclidean norm of the
gradient after regularization. The effect of the Log-Euclidean regularization on scalar measures like FA and
the norm of the gradient is qualitatively satisfactory: the noise has been reduced while most structures are
preserved.
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DISCUSSION AND CONCLUSIONS

The Defects of Euclidean Calculus

As shown in the Results section, Log-Euclidean metrics correct the defects of the classical Euclidean frame-
work (20): the positive-definiteness is preserved and determinants are monotonically (geometrically, in fact)
interpolated along geodesics. Log-Euclidean results are very similar to those obtained in the affine-invariant
framework, only recently introduced for diffusion tensor calculus (14–17). This is not surprising: we have
shown that the two families of metrics are very close, since their respective Fréchet means are both gener-
alizations to tensors of the geometric mean of positive numbers. Yet, these two metrics are different, and
it is striking that this similarity in results is obtained with much simpler and faster algorithms in the Log-
Euclidean case. This comes from the fact that all Log-Euclidean computations on tensors are equivalent to
Euclidean computations on the logarithms of tensors, which are simple vectors.

Of course, this large simplification is obtained at the cost of affine-invariance, which is replaced by
similarity-invariance for a number of Log-Euclidean metrics, like the one used in this study. This means that
affine-invariant results cannot be biased by the coordinate system chosen, whereas Log-Euclidean results
potentially can. However, invariance by similarity is already a strong property, since it guarantees that
computations are not biased neither by the spatial orientation nor by the spatial scale chosen. Moreover, the
very large similarity between the Log-Euclidean and affine-invariant results on typical clinical DT images
show that this loss of invariance does not result in any significant loss of quality. One would have to change
the system of coordinates very anisotropically, for instance rescaling one coordinate by a factor of 20 and
leaving the other two unchanged, to substantially bias Log-Euclidean results. But such situations do not
occur in medical imaging, where the usual changes of coordinates (e.g. changing current coordinates to
Talairach coordinates) are not anisotropic enough to induce such a bias.

In terms of regularization, the Log-Euclidean framework also has the advantage of taking into account
simultaneously all the information carried by tensors, like the affine-invariant one. This is not the case
in methods based on the regularization of features extracted from tensors, like their dominant direction
of diffusion (18) or their orientation (11). An alternative representation of tensors are Cholesky factors,
which are used in (37). However, with this representation, tensors can leave the set of positive definite
matrices during iterated computations, and the positive-definiteness is not easily maintained, as mentioned
in (37). Also, it is unclear how the smoothing of Cholesky factors affect tensors, whereas the smoothing of
tensor logarithms can be interpreted as a geometric regularization of tensors which geometrically smoothes
determinants.

In this article, we have presented results obtained only with one particular Log-Euclidean metric, in-
spired from the classical Frobenius norm on matrices. The relevance of this particular choice will be in-
vestigated in future work. This is necessary, because it has been shown (38) that the choice of Euclidean
metric on tensors can substantially influence the registration of DT images. This should also be the case in
the Log-Euclidean framework.

Last but not least, in this work, we have assumed that diffusion tensors are positive-definite. This
assumption is consistent with the choice of Brownian motion to model the motion of water molecules. It
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could be argued that our framework does not apply to diffusion tensors which have been estimated without
taking into account this constraint, and can therefore have non-positive eigenvalues. But these non-positive
eigenvalues are difficult to interpret from a physical point of view, and are essentially due to the noise
corrupting DW-MRIs! The problem lies therefore in the estimation method and not in our framework.
Non-positive eigenvalues can be avoided for example by using a simultaneous estimation and smoothing of
tensors, which relies on spatial correlations between tensors to reduce the amount of noise. In this work, we
have used the method described in (33), which was inspired by the approach developed in (37).

Conclusions and Perspectives

In this work, we have presented a particularly simple and efficient Riemannian framework for diffusion ten-
sor calculus. Based on Log-Euclidean metrics on the tensor space, this framework transforms Riemannian
computations on tensors into Euclidean computations on vectors in the domain of matrix logarithms. As
a consequence, classical statistical tools and PDEs usually reserved to vectors are simply and efficiently
generalized to tensors in the Log-Euclidean framework.

In this article, we only focus on two important tasks: the interpolation and the regularization of tensors.
But this metric approach can be effectively used in all situations where diffusion tensors are processed. In-
deed, efficient Log-Euclidean extrapolation techniques are presented in (22), as well as the Log-Euclidean
statistical framework for tensors. In this framework, for instance, a Gaussian distribution of random ten-
sors is given by the exponential of a classical Gaussian in the vector space of symmetric matrices. An-
other important task is the estimation of tensors from DW-MRIs. Adapting ideas from (37) to the Log-
Euclidean framework, we have completed a joint estimation and regularization of diffusion tensors directly
from the Stejskal-Tanner equations (33). This joint estimation and smoothing is largely facilitated by the
Log-Euclidean framework because all computations are carried out in a vector space.

In future work, we will study in further detail the restoration of noisy DT images. In particular, we plan to
quantify the impact of the regularization on the tracking of fibers in the white matter of the human nervous
system. We also intend to use these new tools to model and reconstruct better the anatomical variability
of the human brain with tensors as we began to do in (34). Last but not least, the generalization of our
approach to more sophisticated models of diffusion like generalized diffusion tensors (39) or Q-balls (40) is
a challenging task we plan to investigate.
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