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Abstract. Computations on tensors have become common with the use
of DT-MRI. But the classical Euclidean framework has many defects,
and affine-invariant Riemannian metrics have been proposed to correct
them. These metrics have excellent theoretical properties but lead to
complex and slow algorithms. To remedy this limitation, we propose new
metrics called Log-Euclidean. They also have excellent theoretical prop-
erties and yield similar results in practice, but with much simpler and
faster computations. Indeed, Log-Euclidean computations are Euclidean
computations in the domain of matrix logarithms. Theoretical aspects
are presented and experimental results for multilinear interpolation and
regularization of tensor fields are shown on synthetic and real DTI data.

1 Introduction: Calculus on Tensors

Tensors, i.e. symmetric positive-definite matrices in medical imaging, appear
in many contexts: Diffusion Tensor MRI (DT-MRI or DTI) [2], modeling of
anatomical variability [7], etc. They are also a general tool in image analysis,
especially for segmentation, motion and texture analysis (see [1] for references
on this subject). Many approaches have been proposed in the literature to pro-
cess tensors [13, 15, 14, 4, 5]. But in order to carry out general computations on
these objects, one needs a consistent operational framework. This is necessary to
completely generalize to tensors statistical tools and Partial Differential Equa-
tions (PDEs). The framework of Riemannian metrics has recently emerged as
particularly adapted to this task [11].

One can directly use a Euclidean structure on square matrices to define a met-
ric on the tensor space, for instance with the following distance: dist2(S1, S2) =
(Trace((S1 − S2)2)). This is straightforward and leads a priori to simple com-
putations. But this framework is practically and theoretically unsatisfactory for
three main reasons. First, symmetric matrices with null or negative eigenval-
ues appear during Euclidean computations. And from a physical point of view,
in DTI, a diffusion exactly equal to zero is impossible: above 0°Kelvin, water
molecules will move in all directions. Even worse, a negative diffusion is mean-
ingless. This occurs during iterated Euclidean computations, for instance during
the estimation of tensors from diffusion-weighted images, the regularization of
tensors fields, etc. To avoid going out of the tensor space, it has been proposed
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to regularize only features extracted from tensors, like first eigenvectors [5] or
orientations [4]. The regularization is propagated to tensors in a second step.
This is not completely satisfactory, since it would be preferable to regularize
tensors directly in order to take into account all the information they carry.

Second, a tensor corresponds typically to a covariance matrix. The value of
its determinant is a direct measure of the dispersion of the associated multivari-
ate Gaussian. The reason is that the volume of associated confidence regions are
proportional to the square root of the covariance determinant. But the Euclidean
averaging of tensors leads very often to a tensor swelling effect: the determinant
(and thus the dispersion) of the Euclidean mean can be larger than the original
determinants! In DTI, diffusion tensors are assumed to be covariance matrices
of the local Brownian motion of water molecules. Introducing more dispersion
in computations amounts to introducing more diffusion, which is physically un-
acceptable. For illustrations of this effect, see [4].

Third, the Euclidean metric is unsatisfactory in terms of symmetry with
respect to matrix inversion. The Euclidean mean for tensors is an arithmetic
mean which does not yield the identity for a tensor and its matrix inverse. When
tensors model variability, one would rather have in many cases a geometric mean.

To fully circumvent these difficulties, affine-invariant Riemannian metrics
have been recently proposed for tensors in [12, 8–10]. With them, negative and
null eigenvalues are at an infinite distance, the swelling effect disappears and the
symmetry with respect to inversion is respected. The price paid for this success
is a high computational burden, essentially due to the curvature induced on the
tensor space. Practically, this yields slow and hard to implement algorithms.

We propose a new Riemannian framework to fully overcome these computa-
tional limitations while preserving excellent theoretical properties. It is based on
new metrics named Log-Euclidean, which are particularly simple to use. They
result in classical Euclidean computations in the domain of matrix logarithms. In
Section 2, we give an overview of the theory of Log-Euclidean metrics, detailed in
[1]. In particular, we briefly compare these new metrics to affine-invariant met-
rics. In Section 3, we highlight the differences between the three frameworks with
experimental results on synthetic and real DT-MRI data in interpolation and
regularization. Computations are very simple and experimentally much faster in
the Log-Euclidean than in the affine-invariant framework.

2 Presentation of the Log-Euclidean Framework

Complete proofs for all the results presented in this Section are given in [1].

Existence and Uniqueness of the Logarithm A tensor S has a unique
symmetric matrix logarithm L = log(S). It verifies S = exp(L) where exp is the
matrix exponential. Conversely, each symmetric matrix is associated to a tensor
by the exponential. L is obtained from S by changing its eigenvalues into their
natural logarithms, which can be done easily in an orthonormal basis in which
S (and L) is diagonal.
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A Vector Space Structure on Tensors Since there is a one-to-one mapping
between the tensor space and the vector space of symmetric matrices, one can
transfer to tensors the addition “+” and the scalar multiplication “.” with the
matrix exponential. This defines on tensors the logarithmic multiplication � and
the logarithmic scalar multiplication ~, given by:{

S1 � S2
def
= exp (log(S1) + log(S2))

λ ~ S
def
= exp (λ. log(S)) = Sλ.

(1)

The logarithmic multiplication is commutative and coincides with matrix mul-
tiplication whenever the two tensors S1 and S2 commute in the matrix sense.
With � and ~, the tensor space has by construction a vector space structure,
which is not the usual structure directly inherited from square matrices.

Log-Euclidean Metrics When one considers only the multiplication � on the
tensor space, one has a Lie group structure [11], i.e. a space which is both a
smooth manifold and a group in which algebraic operations are smooth map-
pings. Among Riemannian metrics in Lie groups, the most convenient in prac-
tice, when they exist, are bi-invariant metrics, i.e. distances that are invariant by
multiplication and inversion. For the tensor Lie group, bi-invariant metrics exist
and are particularly simple. We have named such metrics Log-Euclidean metrics,
since they correspond to Euclidean metrics in the domain of logarithms. From a
Euclidean norm ‖.‖ on symmetric matrices, they can be written:

dist(S1, S2) = ‖ log(S1)− log(S2)‖. (2)

Boundary Problems and Symmetry Contrary to the classical Euclidean
framework on tensors, one can clearly see from Eq. (2) that matrices with null or
negative eigenvalues are at an infinite distance from tensors and will not appear
in practical computations. Moreover, distances are not changed by inversion.

Invariance by Similarity Log-Euclidean metrics are not affine-invariant. How-
ever, some of them are invariant by similarity (orthogonal transformation and
scaling). This means that if tensors are covariance matrices, computations on
tensors using these metrics will be invariant with respect to a change of coor-
dinates obtained by a similarity. The similarity-invariant Log-Euclidean metric
used throughout this article is given by:

dist(S1, S2) =
(
Trace

(
{log(S1)− log(S2)}2

)) 1
2 . (3)

Euclidean Calculus in the Logarithmic Domain The tensor vector space
with a Log-Euclidean metric is in fact isomorphic (the algebraic structure of
vector space is conserved) and isometric (distances are conserved) with the
corresponding Euclidean space of symmetric matrices. As a consequence, the
Riemannian framework for statistics and analysis is extremely simplified [1]. In
particular, the Log-Euclidean mean of N tensors with arbitrary positive weights
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(wi)N
i=1 such that

∑N
i=1 wi = 1 is a direct generalization of the geometric mean

of positive numbers and is given explicitly by:

ELE(S1, ..., SN ) = exp

(
N∑

i=1

wi log(Si)

)
. (4)

This is remarkable: in this framework, the processing of tensors is simply Eu-
clidean in the logarithmic domain. Final results obtained on logarithms are mapped
back to the tensor domain with the exponential. Hence, statistical tools or PDEs
are readily generalized to tensors in this framework.

Comparison with Affine-Invariant Metrics As shown experimentally in
Section 3, Log-Euclidean computations provide results similar to their affine-
invariant equivalent, presented in [12]. The reason is the two families of metrics
provide two generalizations of the geometric mean of positive numbers on ten-
sors. Contrary to the Log-Euclidean mean, there is in general no closed form
for the affine-invariant mean but rather a barycentric equation. Nevertheless, the
determinants of the two means are both equal to the scalar geometric mean of
the determinants of the averaged tensors [1]. This explains their likeness and
the absence of swelling effect in both cases. This resemblance between the two
means propagates to general computations which involve averaging, such as in-
terpolation, extrapolation and regularization. The two means are even identical
in a number of cases, in particular when averaged tensors commute. Yet they
are not equal in general: Log-Euclidean means are slightly more anisotropic.

3 Experimental Results

3.1 Bilinear and Trilinear Interpolation

Often, voxels in clinical DT images are quite anisotropic. But algorithms tracking
white matter fascicles are more efficient with isotropic voxels [3]. An adequate
interpolation method is therefore important for such algorithms.

Fig. 1 shows the results obtained for the bilinear interpolation of four ten-
sors with three methods: Euclidean (linear interpolation of coefficients), affine-
invariant and Log-Euclidean bilinear interpolations. There is a pronounced swel-
ling effect in the Euclidean case, which is not physically acceptable. On the
contrary, both Riemannian interpolations provide the same geometric interpo-
lation of determinants. There is a slightly larger anisotropy in Log-Euclidean
means, which is a general effect discussed in [1]. The computation of the affine-
invariant mean is iterative (we use the Gauss-Newton method described in [12]),
whereas the closed form given by Eq. (4) is used directly in the Log-Euclidean
case. This has a large impact on computation times: 0.003s (Euclidean), 0.009s
(Log-Euclidean) and 1s (affine-invariant) for a 5×5 grid on a Pentium M 2 GHz.

To compare the Euclidean and Riemannian bilinear interpolations on real
data, we have reconstructed by bilinear interpolation a down-sampled DTI slice.
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Fig. 1. Bilinear interpolation of 4 tensors at the corners of a grid. Left:
Euclidean interpolation. Middle: affine-invariant interpolation. Right: Log-Euclidean
interpolation. Note the characteristic swelling effect observed in the Euclidean case,
which is not present in both Riemannian frameworks. Note also that Log-Euclidean
means are slightly more anisotropic than their affine-invariant counterparts. The col-
oring of ellipsoids is based on the direction of dominant eigenvectors.

Fig. 2. Bilinear interpolation in a real DTI slice. Left: Original DTI slice, before
down-sampling. Middle: Euclidean interpolation. Right: Log-Euclidean interpolation.
Half the columns and lines of the original DTI slice were removed before reconstruction
with a bilinear interpolation. The slice is taken in the mid-sagittal plane and displayed
in perspective. Note how the tensors corresponding to the corpus callosum (in red,
above the large and round tensors corresponding to a part of the ventricles) are better
reconstructed (more anisotropic) in the Log-Euclidean case.

One column out of two and one line out of two were removed. The slice was
chosen in the mid-sagittal plane where strong variations are present in the DT
image. The results in Fig. 2 show that the tensors corresponding to the corpus
callosum are better reconstructed in the Log-Euclidean case. Affine-invariant
results are very close to Log-Euclidean results and not shown here.

3.2 Regularization of Tensor Fields

DT images are corrupted by noise, and regularizing them can be a crucial pre-
liminary step for DTI-based algorithms that reconstruct the white matter con-
nectivity. As shown in [12], Riemannian metrics provide a general framework
to provide such a regularization. We focus here on a typical Riemannian crite-
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rion for the regularization of tensor fields. An anisotropic regularization can be
obtained by the minimization of a Φ-functional [4] Reg(S) given by:

Reg(S) =
∫
Image

Φ(‖∇S‖S(x)(x))dx. (5)

Φ(s) is a function penalizing large values of the norm of the spatial gradient ∇S
of the image. Here, we use Φ(s) =

√
1 + s2/κ2. Contrary to the Euclidean case,

the norm of ∇S depends explicitly on the current point S(x) and is given by:

‖∇S‖2S(x) =
d∑

i=1

∥∥∥∥ ∂S

∂xi
(x)
∥∥∥∥2

S(x)

. (6)

In general and in particular in the affine-invariant case, this dependence on the
current point leads to complex resolution methods. Practically, this implies in
the affine-invariant case an intensive use of matrix inverses, square roots, expo-
nentials and logarithms [12]. But in the Log-Euclidean framework, the general
Riemannian formulation is extremely simplified. The reason is that the depen-
dence on the current tensor disappears on logarithms [1]:

‖∇S‖S(x) = ‖∇ log(S)‖. (7)

Consequently, the energy functional can be minimized directly on the vector field
of logarithms. The regularized tensor field is given in a final step by the matrix
exponential of regularized logarithms. Interestingly, mathematical issues such as
existence and uniqueness of PDEs on tensors in the Log-Euclidean framework are
simply particular cases of the classical theory of PDEs on vector-valued images.

In the following experiments, the minimization method used is a first-order
gradient descent with a fixed time step dt. We use an explicit finite difference
scheme on logarithms in the Log-Euclidean case and the geodesic marching
scheme described in [12] in the affine-invariant case. In the Euclidean framework,
we also use affine-invariant geodesic marching rather than a classical explicit
scheme to limit the appearance of non-positive eigenvalues, proceeding simi-
larly as in [4]. Homogeneous Neumann boundary conditions are used, κ = 0.05,
dt = 0.1 and 100 iterations are performed.

As a first example, we restore a noisy synthetic image of tensors. Results are
shown in Fig. 3: the negative impact of the Euclidean swelling effect is clearly
visible. On the contrary, both Riemannian frameworks yield proper results, the
only (small) difference being slightly more anisotropy for Log-Euclidean results.

Let us now turn to a real DTI volume of the brain with 128×128×30 voxels
with spatial dimensions of 1.875×1.875×4mm3. The b-value is 1000s.mm−2. As
shown in Fig. 4, both Riemannian results are qualitatively very satisfactory: the
smoothing is done without blurring the edges. They are also very similar to each
other, with only slightly more anisotropy in the Log-Euclidean case. As before,
the Euclidean results are marred by a pronounced swelling effect. Computations
are much faster in the Log-Euclidean case: 30 minutes instead of 122 minutes
for affine-invariant results on a Pentium Xeon 2.8 GHz with 1 Go of RAM.
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Fig. 3. Regularization of a synthetic DTI slice. Left: original synthetic data.
Middle Left: noisy data. Middle Right: Euclidean regularization. Right: Log-
Euclidean regularization. The original data is properly reconstructed in the Log-
Euclidean case, as opposed to the Euclidean case where the result is marred by the
swelling effect.

Fig. 4. Regularization of a real DTI volume. Left: close-up on the top right
ventricle and nearby. Middle Left: Euclidean regularization. Middle Right: Log-
Euclidean regularization. Right: highly magnified view (×100) of the absolute value
(the absolute value of eigenvalues is taken) of the difference between Log-Euclidean and
affine-invariant results. Note that there is no tensor swelling in the Riemannian cases,
contrary to the Euclidean case. Log-Euclidean and affine-invariant results are very
similar, the only difference being slightly more anisotropy in Log-Euclidean results.

4 Discussion and Perspectives

In this work, we have presented a particularly simple and efficient Riemannian
framework for tensor calculus, called Log-Euclidean. As in the affine-invariant
case, the defects of the Euclidean framework are corrected with Log-Euclidean
metrics, but without any unnecessary technicality. Indeed, Riemannian compu-
tations on tensors are converted into Euclidean computations on vectors in this
novel framework. In practice, classical statistical tools and PDEs for vectors
can be directly used on the matrix logarithms of tensors, which are simple vec-
tors. Moreover, all usual operations on tensors can be efficiently carried out in
this framework, like the joint estimation and smoothing of DTI from diffusion-
weighted images, as shown in [6].

In future work, we will study in further details the restoration of noisy DT
images. In particular, we plan to quantify the impact of the regularization on
the tracking of fibers in the white matter of the human nervous system. We also
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intend to use this new framework to better model and reconstruct the anatomical
variability of the human brain with tensors [7].
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