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ABSTRACT

Diffusion tensor MRI is an imaging modality that is gaining
importance in clinical applications. However, in a clinical
environment, data have to be acquired rapidly, often at the
detriment of the image quality. We propose a new variational
framework that specifically targets low quality DT-MRI. The
Rician nature of the noise on the images leads us to a maxi-
mum likelihood strategy to estimate the tensor field. To fur-
ther reduce the noise, we optimally exploit the spatial correla-
tion by adding to the estimation an anisotropic regularization
term. This criterion is easily optimized thanks to the use of
recently introduced Log-Euclidean metrics. Results on real
clinical data show promising improvements of fiber tracking
in the brain and the spinal cord.

1. INTRODUCTION

Diffusion tensor Imaging (DTI) [1] is a unique tool to assess
in vivo oriented structures within tissues via the directional
measure of water diffusion. However, using such an imaging
modality in a clinical environment is difficult: data must be
acquired in a short amount of time due to pathologies that of-
ten prevent the patient to stay in a static position for too long.
This results in acquisitions with a limited number of encod-
ing gradients and low signal-to-noise ratios (SNR). The esti-
mation of the diffusion tensor field from diffusion weighted
images (DWI) is noise-sensitive and thus clinical DTI is often
not suitable for fiber tracking. For these reasons, there has
been a growing interest in the regularization of tensor images.

The Stejskal-Tanner diffusion equation [1] relates the dif-
fusion tensorD to each noise-free DWI withSi = S0 exp(−b
gT

i Dgi), whereSi is the original DWI corresponding to the
encoding gradientgi, S0 an image with a null gradient, andb
the diffusion factor. To get a linear system, one usually takes
the logarithm [2] of the DWI. Solving the system in a least
square (LS) sense leads to the minimization of a quadratic cri-
terion with algebraic methods. Doing this implicitly assumes
a Gaussian noise on the images logarithm, which is justified
for high SNR. Also for high SNR, the MRI noise is well ap-
proximated by a Gaussian on images directly. However, when
working with clinical DTI, SNR is very low. In that case, the

real nature of the noise in the images is Rician. Wang et al.
[3] proposed an estimation criterion on the complex DWI sig-
nal that is adapted to a Rician noise. However, one generally
cannot access the full complex signal but only its magnitude.
To overcome this limitation, we propose a maximum likeli-
hood (ML) strategy which exploits the a priori knowledge on
the probability density function (pdf) of the Rician noise. We
will show that considering such a noise leads to an unbiased
estimator that corrects for theshrinking effect: tensors tend
to be smaller when estimated on the signal directly when the
noise is Rician. However, solving this non-linear criterion re-
quires an adapted framework to work with tensors.

For the ultimate application targeted in this paper, i.e. fiber
tracking, the tensor field needs to be regularized without blur-
ring the transitions between distinct tracts, which delimit ana-
tomical and functional brain regions. Most of the regular-
ization methods proposed so far rely on a feature of tensors
that belong to a vector space: [4] uses the spectral decompo-
sition of tensors to independently regularize their eigenvec-
tors and eigenvalues, while [3] smooths the Cholesky factors
of tensors. In this paper, we propose to use Log-Euclidean
(LE) metrics for tensors [5], that have excellent theoretical
and practical properties for tensor processing.

Affine-invariant Riemannian metrics [6, 7, 8] overcome
the limitations of the Euclidean calculus on tensors, like the
appearance of negative eigenvalues and the swelling effect as
described in [5]. With these metrics, tensor space is turned
into a regular manifold where matrices with null and negative
eigenvalues are at an infinite distance of any tensor. However,
computations with these metrics are time-consuming since
they extensively use the matrix exponential, logarithm, square
root and inverse. A novel family of metrics, called Log-Eucli-
dean, detailed in [5], combines most of the properties of the
affine-invariant family with a computational cost close to the
Euclidean case, and thus are more suitable for tensor process-
ing. To a tensorD is associated a uniquelogarithmL which
is symmetric. It verifiesD = exp(L) whereexp is the matrix
exponential. Conversely, a symmetric matrix is associated to
a tensor thanks to the exponential map.L is obtained by tak-
ing the scalar logarithm ofD eigenvalues. Since their is a
one-to-one mapping between the tensor space and the space
of symmetric matrices, one can give the tensor space avec-



tor space structureby transporting the addition and the scalar
multiplication onto the space of symmetric matrices with the
exponential. Practically, the use of LE metrics consists in tak-
ing the matrix logarithm of tensors, running computations on
these vectors, and mapping the result back to the tensor space
with the matrix exponential.

The rest of the paper is organized as follows. In Sec. 2,
we detail the variational method of the joint estimation and
smoothing of DTI. In Sec. 3, we present very promising re-
sults on a brain dataset, and the first successful reconstruction
of a spinal cord tract.

2. JOINT ESTIMATION AND SMOOTHING OF DTI

The joint estimation and regularization of DTI can be tackled
by a variational formulation :

E(L) =
1
2

Sim(L) +
λ

2
Reg(L), (1)

with Sim(.) being the data attachment term (estimation from
the DWIs), Reg(.) being the regularization term, andλ a nor-
malization factor. To use the LE framework, we work on the
tensor logarithmL = log(D). Next, we first present the esti-
mation term, then the regularization term.

2.1. Two Criteria for Tensor Estimation

2.1.1. A LS Criterion on the DWI signal

Generally, the noise is supposed to be Gaussian on the DWI
signal. The maximum likelihood (ML) estimator is the LS:

Simsig(L) =
N∑

i=0

(
Ŝi − S0 exp(−bgT

i exp(L)gi)
)2

. (2)

For more clarity, we denote bySi(L) = S0 exp(−bgT
i exp(L)

gi) the noise-free DWI signal with parameterL and byŜi the
measured one. Traditionally, one usesS0 = Ŝ0. Experiments
to re-estimateS0 in our ML framework show no significant
difference. Energy 2 is minimized with a simple first order
gradient descent. Then, one needs to differentiate it. Rely-
ing on the property that Trace(A∂B exp) = Trace(B∂A exp),
we obtain:∇Simsig(L) = 2b

∑N
i=0(Ŝi − Si)∂S/∂L, with

∂S/∂L = Si∂gigT
i

exp(L). A practical implementation of
the directional derivatives∂G exp(L) is given in [9].

2.1.2. A Maximum Likelihood Estimator

If we assume a Rician noise of varianceσ2 on the data, the
pdf of the measured signal̂S knowing the expected signalS
is [10]:

p(Ŝ/S) =
Ŝ

σ2
exp

(
− Ŝ

2 + S2

2σ2

)
I0

(
SŜ

σ2

)
, (3)

whereI0 is the modified 0th order Bessel function of the first
kind. Such a noise induces a bias on the DWI signal. In-
deed, one can show that in this case the DWI signal is shifted
by approximativelyσ2/(2S) [10]. Thus, the DWI signal is
greater than it should be, and tensors when estimated without
correcting for this bias will be smaller than they actually are
(a higher signal means a lower diffusion). To correct for this
shrinking effect, we propose the ML estimator for the pdf 3:

SimML(L) = −
N∑

i=0

log
(
p(Ŝi/Si)

)
. (4)

The differentiation of equation 4 in the LE framework gives:
∇SimML(L) = −1/σ2

∑N
0=1(Si − αŜi)∂S/∂L, with α =

I ′0/I0(ŜiSi/σ
2). The formulation is similar to the gradient

of Eq. 2, except that a correcting factor depending on the
signal and the noise variance appears. A simple estimator of
the noise variance is based on the following. MRI includes
an empty region outside the patient. Considering the fact that
the square magnitude of such region is null, taking its mean
gives us an estimation of2σ2.

To reduce the influence of potential outliers, one could use
M-Estimators: they consist in replacing the residuals(Ŝi−Si)
of Eq. 2 and(Si−αŜi) of Eq. 4 by a function of these resid-
uals, which zeroes out the influence of one measure if it is
aberrant. In practice, we did not observe outliers justifying
the use of M-Estimators. We now investigate the regulariza-
tion term of the global criterion.

2.2. An Anisotropic Regularization Term

The anisotropic regularization of the tensor field can be han-
dled through the minimization of aφ-functional: Reg(L) =∫
Ω
φ (‖∇L‖). Theφ-function will give an anisotropic behav-

ior to the regularization, i.e. it will preserve the edges of the
tensor field while smoothing homogeneous regions. Similarly
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(d) (e) (f) (g)

Fig. 1. Estimations of a synthetic dataset. (a):the original
field. (b): a DWI (g = (−0.22, 0.85, 0.49)T ). (c): the classic
estimation (non-displayed tensors are not positive).(d): the
SigGD,(e): the SigGD+Reg,(f): the ML, (g): the ML+Reg.



to criteria 2 and 4, one has to differentiate the regularization
energy to minimize it by gradient descent:

∇Reg(L) = −2ψ (‖∇L‖) ∆L−2∇T (ψ (‖∇L‖))∇L, (5)

with ψ(s) = φ′(s)/s. Directional derivatives, gradient and
Laplacian are estimated with a finite differences scheme like
with a scalar image (see [9] for details). For the experiments,
we usedψ(s) = (1 + s2/κ2)−1/2 as in [4]. κ is a normal-
ization factor for the gradient. Finally, by combining the gra-
dient of Eq. 2 or 4 with gradient 5, one obtains the evolu-
tion equation of the joint estimation and smoothing of DTI:
Lt+1 = Lt − dt/2(∇Sim(Lt) + λ∇Reg(Lt)). Of course,
one has to exponentiate the solution to obtain a tensor.

Implementation: We used a quasi Newton (BFGS) opti-
mization strategy for the minimization [11]. The integration
step was adapted at each iteration with the Wolfe linear re-
search [11]. The initialization was done by the classical esti-
mation where non-positive tensors were replaced by the mean
of positive neighbors. A threshold on the norm of the full cri-
terion gradient was set to determine the convergence.

3. RESULTS ON SYNTHETIC AND CLINICAL DATA

3.1. Synthetic Data

We synthetically generated a 16x16x16 tensor field contain-
ing two homogeneous regions with anisotropic tensors (Fig.
1 a), like in [3]. The DWI are artificially produced using the
Stejskal-Tanner equation and 25 diffusion gradients (b0=10.0).
A Rician noise of varianceσn = 1.5 is finally added to each
DWI including theb0 (Fig. 1 b). We compared 5 estimations:
a classic estimation with an algebraic resolution (Classic), a
gradient descent on the DWI signal with a Gaussian noise (Eq.
2) (SigGD) and with our ML framework on the Rician noise.
(Eq. 4) (ML). These two similarity criteria are also com-
bined with an anisotropic regularization term (κ = 0.1 and
λ = 1.0). To quantitatively evaluate the benefits, we com-
puted the number of non-positive tensors (NPT), the mean,
minimum and maximum error between each estimation and
the original data with the LE metric. The shrinking effect
is highlighted with the ratio of the mean tensor volume after
estimation and the mean tensor volume of the original data.
Results are summarized below.

NPT Mean Min Max Vol. ratio
Classic 224 ∞ 0.131 ∞ 0.82
SigGD 0 0.520 0.136 1.193 0.70

SigGD+Reg 0 0.223 0.112 0.442 0.73
ML 0 0.481 0.116 1.113 0.96

ML+Reg 0 0.056 0.030 0.09 0.99

Since non positive tensors appear with a classic estimation
(fig. 1 c), the LE metric gives an infinite error. On the con-
trary, our ML estimator (fig. 1 f) insures a positive definite
result and corrects for the shrinking effect visible in Fig. 1 d
and e. Finally, the regularization term smooths the field while

Fig. 2. Tensor field estimation of a brain (top row) and
spinal cord (bottom row) datasets. Left: A slice of theb0
image.Middle: The classic estimation of the green square re-
gion. Missing tensors in the splenium region are non-positive.
Right: The ML + Reg estimation of the same region.

preserving the boundary between the 2 distinct regions (fig. 1
g). Note that no tensor swelling effect occurs.

We have verified with these experiments that using our
ML estimator corrects for the shrinking effect caused by the
Rician noise, which makes our estimator suitable for clinical
datasets with low SNR.

3.2. Clinical Data

We tested our ML method on 2 clinical datasets of medium
and low quality. First, we used a brain dataset (Fig. 2 top)
acquired with 7 encoding gradients (Basser sequence [1], b-
value of 1000 s.mm−2) on a 1.5T scanner. Second, we used
an experimental acquisition of the spinal cord on a 1.5T scan-
ner (Fig. 2 bottom) obtained with 25 encoding gradients and
the same b-value as previously (acquisition is coronal). This
new type of acquisition is currently actively investigated in
clinical research.The parameters used for the processing are:
λ = 1.0, κ = 0.1 for the brain dataset andλ = 2.0, κ = 0.1
for the spinal cord.

Figures 2 middle and right show a closeup of the splenium
region and around the middle of the spinal cord. We clearly
see that missing tensors of a classic estimation (Fig. 2 mid-
dle) are replaced by correct ellipsoids using our ML frame-
work (fig. 2 right). The regularization perfectly smooths ho-
mogeneous regions like the ventricle or within the spinal cord
without blurring the transitions with nearby structures like the
splenium tract in the brain dataset. Moreover, one notices a
slightly higher anisotropy when using the ML estimator but
this effect should be further investigated. Finally, we observed
an increase of about 30% of the tensor volume in the spinal
cord dataset, and about 10% in the brain dataset, compared to
the classic estimation.



Fig. 3. Improvement of fiber reconstruction. Top: The
corticospinal tract reconstructed after a classic estimation
(middle) and our ML framework (right).Bottom: The spinal
cord reconstruction after the same estimations. Left images
show the region of interests where the tracking is initiated.

3.3. Improvement of Tractography

At the very end of the DTI processing pipeline resides the
tractography. Among the numerous available methods for
fiber tracking, we choose a relatively fast and easy to imple-
ment method [12] to exemplify how the tracking is improved
by our joint estimation and regularization. Prior to the track-
ing, tensor fields are resampled so that voxels are isotropic
(interpolation method is described in [5]). We tracked the
fibers from the previous estimations. Results of tracking in
the brain and the spinal cord are shown in Fig. 3. With
our estimation, the tracking is qualitatively much smoother in
both cases and shows less dispersion. The overall number of
fibers reconstructed is also larger. The smoothness of the ten-
sor field indeed leads to more regular and longer fibers: tracts
that were stopped due to the noise are now fully reconstructed.
However, a more quantitative analysis of the influence of the
method on the tracking result would be necessary.

4. CONCLUSION

This paper presents a new methodology to process noisy DT-
MRI typical of clinical applications. The estimation, which
assumes for the first time a Rician noise, is achieved with
a ML strategy. Solving this non-linear criterion requires an
adapted tool to process tensors, and Log-Euclidean metrics
are a perfect candidate. The ML estimator has the advantage
to correct for the bias in the DWI images which causes ten-
sors to shrink if estimated from the images directly. We have
shown that adding an anisotropic regularization term to the
estimation smooths homogeneous regions while preserving
boundaries with fiber tracts. Finally, the promising improve-
ment of the fiber reconstruction on 2 clinical datasets shows
that even clinical DTI can be used for tractography.

In the future, the questions of validation and reproducibil-
ity need to be answered. We could think of repeating scans of
the same patient in various orientations and scanners to esti-
mate the reliability of our methodology. One also could think
of using histological data and phantoms as in [13]. Finally, the
impact on the tracking must be quantified. We are currently
working on developing a dispersion measure of the fibers for
that purpose.
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