ISRN INRIA/RR--5865--FR+ENG

ISSN 0249-6399

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Fast and Log-Euclidean Polyaffine Framework for
Locally Affine Registration

Vincent Arsigny — Olivier Commowick — Xavier Pennec — Nicholas Ayache

N° 5865
March, 2006

Théme BIO

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

A Fast and Log-Euclidean Polyaffine Framework for
Locally Affine Registration

Vincent Arsigny, Olivier Commowick , Xavier Pennec , Nicholas Ayache

Théme BIO — Systémes biologiques
Projet Asclepios

Rapport de recherche n° 5865 — March, 2006 — 46 pages

Abstract: In this article, we focus on the parameterization of non-rigid geometrical defor-
mations with a small number of flexible degrees of freedom . In previous work, we proposed
a general framework called polyaffine to parameterize deformations with a finite number
of rigid or affine components, while guaranteeing the invertibility of global deformations.
However, this framework lacks some important properties: the inverse of a polyaffine trans-
formation is not polyaffine in general, and the polyaffine fusion of affine components is not
invariant with respect to a change of coordinate system. We present here a novel general
framework, called Log-Fuclidean polyaffine, which overcomes these defects.

We also detail a simple algorithm, the Fast Polyaffine Transform, which allows to com-
pute very efficiently Log-Euclidean polyaffine transformations and their inverses on regular
grids. The results presented here on real 3D locally affine registration suggest that our novel
framework provides a general and efficient way of fusing local rigid or affine deformations
into a global invertible transformation without introducing artifacts, independently of the
way local deformations are first estimated.

Last but not least, we show in this article that the Log-Euclidean polyaffine framework is
implicitely based on a Log-Euclidean framework for rigid and affine transformations, which
generalizes to linear transformations the Log-Euclidean framework recently proposed for
tensors. We detail in the Appendix of this article the properties of this novel framework,
which allows a straightforward and efficient generalization to linear transformations of clas-
sical vectorial tools, with excellent theoretical properties. In particular, we propose here a
simple generalization to locally rigid or affine deformations of a visco-elastic regularization
energy used for dense transformations.

Key-words: Locally affine transformations, medical imaging, ODE, diffeomorphisms,
polyaffine transformations, Log-Euclidean, non-rigid registration

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Un cadre polyaffine rapide et log-euclidien pour le
recalage localement affine.

Résumé : Dans cet article, nous nous concentrons sur la paramétrisation des déformations
géométriques réguliéres par un nombre restreint de degrés de liberté flexibles. Précédem-
ment, nous avions proposé un cadre général appelé polyaffine pour paramétrer des défor-
mations avec un nombre fini de composantes rigides ou pour affines, tout en garantissant
Iinversibilité des déformations globales. Cependant, plusieurs propriétés importantes font
défaut a ce cadre : linverse d’une transformation polyaffine n’est pas polyaffine en géné-
ral, et la fusion polyaffine n’est pas invariante par changement de systéme de coordonnées.
Nous présentons ici un nouveau cadre général, appelé polyaffine log-euclidien, qui corrige
ces défauts.

Nous détaillons également un algorithme simple, la Transformée Polyaffine rapide, qui
permet de calculer trés efficacement les transformations log-euclidiennes polyaffines et leurs
inverses sur une grille réguliére. Les résultats de recalage localement affines 3D présentés
ici suggérent que notre nouveau cadre fournit une maniére générale et efficace de fusionner
des déformations localement rigides ou affines en une transformation inversible globale sans
introduire d’artefact, indépendamment de la maniére dont les déformations locales sont
préalablement estimées.

Enfin, nous montrons dans cet article que le cadre log-euclidien polyaffine est impli-
citement basé sur un cadre log-euclidien pour les transformations rigides et affines, qui
généralise aux transformations linéaires le cadre log-euclidien récemment proposé pour les
tenseurs. Nous détaillons dans "appendice de cet article les propriétés de ce nouveau cadre,
qui permet une généralisation directe et efficace des outils vectoriels classiques aux transfor-
mations linéaires, avec d’excellentes propriétés théoriques. En particulier, nous proposons
ici une généralisation simple aux déformations localement rigides ou affines d’une énergie de
régularité visco-élastique utilisée pour des transformations denses.

Mots-clés : Transformations localement affines, imagerie médicale, EDO, difféomor-
phismes, transformations polyaffines, log-euclidien, recalage non-rigide.

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 3
Contents
1 Introduction 4
2 A Log-Euclidean Polyaffine Framework 4
2.1 Previous Polyaffine Framework 4
2.2 Simpler Speed Vectors for Affine Transformations 10
2.3 Log-Euclidean Polyaffine Transformations 13
3 Fast Polyaffine Transform 15
3.1 Matrix Exponential and the ‘Scaling and Squaring’ Method 20
3.2 A ‘Scaling and Squaring’ Method for LEPTs 20
3.3 2D Synthetic Experimentso 23
34 3DMRIExample e e e 34
4 Conclusion and Perspectives 37
A A Log-Euclidean Framework for Rigid and Affine Transformations 38
A1 Log-Euclidean Metrics 38
A.2 Invariance Properties L 40
A.3 Log-Euclidean Regularization for Locally Rigid or Affine Registration 41
A.4 Numerical Implementation of Matrix Logarithm. 44

RR n° 5865

4 V. Arsigny et al.

1 Introduction

The registration of medical images is in general a difficult problem, and numerous methods
and tools have been already devised to address this task [1]. Still currently, much effort con-
tinues to be devoted to finding adequate measures of similarity, relevant parameterizations
of geometrical deformations, efficient optimization methods, or realistic mechanical models
of deformations, depending on the precise type of registration considered.

In this article, we focus on the parameterization of non-rigid geometrical deformations
with a small number of flexible degrees of freedom . This type of parameterization is
particularly well-adapted for example to the registration of articulated structures [2] and to
the registration of histological slices [3, 4]. After a global affine (or rigid) alignment, this sort
of parameterization also allows a finer local registration with very smooth transformations
[5, 6, 7, 8]

In [4], we parameterized deformations with a small number of rigid or affine compo-
nents, which can model smoothly a large variety of local deformations. We provided a
general framework to fuse these components into a global transformation, called polyrigid or
polyaffine, whose invertibility is guaranteed. However, this framework lacks some important
properties: the inverse of a polyaffine transformation is not polyaffine in general, and the
polyaffine fusion of affine components is not invariant with respect to a change of coordinate
system (i.e. is not affine-invariant). Here, we present a novel general framework to fuse
rigid or affine components, called Log-Fuclidean polyaffine, which overcomes these defects
and yields transformations which can be very efficiently computed.

The sequel of this article is organized as follows. In Section 2, we present the Log-
Euclidean polyaffine framework and its intuitive properties. Then, we present the Fast
Polyaffine Transform (FPT), which allows to compute very efficiently Log-Euclidean polyaffine
transformations (LEPTs) and their inverses on a regular grid. Afterward, we apply the FPT
to a real 3D example, where affine components are estimated with the algorithm of [5].
Without introducing artifacts, our novel fusion ensures the invertibility of the global trans-
formation. Last but not least, we present in an appendix the properties of the Log-Euclidean
framework for rigid and affine transformations on which our polyaffine Log-Euclidean frame-
work is implicitely based. This Log-Euclidean framework is the analoguous of the framework
we presented in [9] for tensors.

2 A Log-Euclidean Polyaffine Framework

2.1 Previous Polyaffine Framework

Before presenting our novel polyaffine framework let us briefly recall the original polyaffine
framework, described in [4].

The idea is to define transformations that exhibit a locally affine behavior, with nice
invertibility properties. Following the seminal work of [10], we model here such transforma-
tions by a finite number N of affine components. Precisely, each component ¢ consists of

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 5

an affine transformation 7T; and of a non-negative weight function w;(x) which models its
spatial extension: the influence of the i*® component at point x is proportional to w;(z).
Furthermore, we assume that for all x, Zivzl w;(z) =1, i.e. the weights are normalized.

Fusion of Displacements. In order to obtain a global transformation from several weighted
components, the classical approach to fuse the N components, given in [11], simply consists
in averaging the associated displacements according to the weights:

N
T(x) = Z wi(x)Ti (). (1)

The transformation obtained using (1) is smooth, but this approach has one major drawback:
although each component is invertible, the resulting global transformation is not invertible
in general. To remedy this, it was proposed in [4] to rely on the averaging of some in-
finitesimal displacements associated to each affine component instead. The resulting global
transformation is obtained by integrating an Ordinary Differential Equation (ODE), which
is computationally more expensive but guarantees its invertibility and also yields a simple
form for its inverse. The nice invertibility properties of this approach are illustrated by Fig.
1.

Polyaffine Framework. The polyaffine approach can be decomposed into three steps.
They are given below:

e Step 1: Associating Speed Vectors to Affine Transformations. The idea
behind the polyaffine framework is essentially the following: for each component i,
one can define a family of speed vector fields V;(.,s) parameterized by s, which is a
time parameter varying continuously between 0 and 1. V;(.,s) satisfy a consistency
property with 7;: when integrated between time 0 and 1, they should give back the
transformation 7'. Hence the following definition:

Definition 1. The family of vector fields V (., s), where s belongs to [0, 1], is consistent
with the transformation T if and only if its integration between time 0 and 1 gives back
the transformation T':

1. for any initial condition xo one can integrate between 0 and 1 the differential
equation & = V(x,s) so that x(1) exists.

2. x(1) is equal to T(xo).

Several possible choices exist to associate speed vector to affine transformations. One
of the main contributions of this work is precisely to propose a novel choice for such
speed vectors. Interestingly, we do not know at present how many other choices exist
and whether they might have even better properties than the ones we have found so
far.

RR n° 5865

V. Arsigny et al.

4‘4‘&4&44&&4”0 S
RS
S
RS

o

NN#Q ---
s L
W

y
il
i

i

0

oty

(X0

il wmw»ﬁ%?

i,
o

G0 5“5

Ss 00,
B

i
[0 Uy 00, %0, 20 200, %,

2%
TS RN

il

regular grid

In red

101.

ility with infinitesimal fus

i

deformed by the fusion of two affine transformations, using the direct averaging of displace-

t

mver

Figure 1: Guaranteeing

In blue: regular grid deformed by the infinitesimal fusion of the transformations

ments.

two rotations

two translations are fused. Bottom

of opposite angles are fused. Note how the regions of overlap disappear when infinitesimal

in the polyaffine framework. On top

(—1.5,3)T,

and the two rotations of opposite angles of magnitude 0.63 radians where centered on (—2,0)

and to

T

1)

)

3

(

fusion is used. The translations used were the following: #;

given here in unnormal-
+2 and o = 5 (smooth

(

The fusion was carried out with the following weights

and (+2,0).

, C2

-2

(v1 — ¢;)/0)?), where c;

transition between the two components).

1/(1+ (

)

T

(

ized form): w;

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 7

e Step 2: Fusing Speed Vectors instead of Displacements. The idea is then to
average the vector fields V;(., s) according to the weight functions w;(z) to define an
ODE fusing the N components. Weight functions are very important and model the
influence in space of each component. They controls in particular the sharpness of
transitions between the fused affine transformations. Also, they can take into account
the geometry of anatomical regions of interest, as will be the case in the experimental
results on 3D MRI data given in the sequel.

The Polyaffine ODE fusing speed vectors according to weights functions is the infinites-
imal analogous of (1) and writes:

& =V(e,s) Y > wile)Vil, 5) (2)

o Step3: Integration of the Polyaffine ODE. In this infinitesimal framework, the
value at point zq of the global transformation T fusing the N components is obtained
via the integration of Eq. (2) between 0 and 1, with the initial condition z(0) = x¢.
This principle is illustrated by Fig. 2.

T(xzo) = x(1): position at time 1
%%/j%&§§§&
///Z/ SN
///////:ﬁ\\\\\\ N
A\\\\\\\
x(s): position at time s f %/ AN \ \ X‘ \\\/\

AR
\\\\ S
SNS—

\\\\) ///////

\\\\\ //////
////////
//// //

Figure 2: Integration of speed vector fields. Left: integration of a vector field between
time 0 and time 1. The value at a point x¢ of the global transformation 7" is given by z(1).
Right: example of a single rotation. Speed vectors are displayed in blue. The magenta

point corresponds to the initial condition and the green point is the position reached at time
3 (not time 1 so that the trajectory be longer and thus more visible).

z=V(z,s)

xo: position at time O

RR n° 5865

8 V. Arsigny et al.

What Speed Vectors for Affine Transformations at Step 1?7 Let us take an affine
transformations T = (M, t), where M is the linear part and ¢ the translation. To define a
family of speed vector fields consistent with T', it was proposed in [4] to rely on the matriz
logarithm of the linear part M of T'. More precisely, let L be the principal matrix logarithm
of M. The family of speed vector fields V (., s) we associated to T writes:

V(z,s) =t+ L(z — st) for s € [0,1]. (3)

Well-Definedness of the Principal Logarithm. One should note that using principal
logarithms of the linear part of affine transformations at the first step of the polyaffine
framework is not always possible.

The theoretical limitation implied by this particular choice of speed vectors is the follow-
ing: principal logarithms are not always well-defined. More precisely, the principal logarithm
of an invertible matrix M is well-defined if and only if the (complex) eigenvalues of M do
not lie on the (closed) half-line of negative real numbers [12].

For rotations, this means quite intuitively that the amount of (local) rotation present in
each of the components should be strictly below 7 radians in magnitude. This can be clearly
seen in the domain of matrix logarithms, where this constraint corresponds to imposing that
the imaginary part of eigenvalues be less then 7 in magnitude. Fig. 3 illustrates this general
situation, which is not specific to rotations.

For general invertible linear transformations with positive determinant, the interpreta-
tion of this constraint on eigenvalues is not so clear, since rotational and non-rotational
deformations are intertwined. However, one should note the closed half-line of negative
number is a set of null (Lebesgue) measure in the complex plane, which indicates that very
few linear transformations with positive determinant (corresponding to extremely large de-
formations) will not have a principal matrix logarithm. From a practical point of view,
one can anyway just check whether the constraint is satisfied by computing numerically the
eigenvalues of M, which only amounts to solving a third degree polynomial equation for 3D
affine transformations.

In the context of medical image registration, we do not believe this restriction to be
problematic, since a global affine alignment of the images to be registered is always per-
formed first. This factors out the largest rotations and it would be very surprising from an
anatomical point of view to observe very large deformations (e.g., local rotations close to
180 degrees) of an anatomical structure from one individual to another after the anatomies
of these individuals have already been affinely aligned.

Heavy Computational Burden at Step 3. Now, from a practical point of view, inte-
grating the ODE given by Eq. (2) with the speed vectors of Eq. (3) is quite computationally
expensive, especially when one wishes to do this for all the points of a 3D regular grid, for
example a 256 x 256 x 100 grid, which is commonly in the case for T}-weighted MR images.
We will see in the rest of this section how one can drastically reduce this complexity by
slightly modifying the speed vectors of Eq. (3).

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 9

]) Imaginary part of eigenvalues
Imaginary part of eigenvalues

Domain oa logarithms

Forbiden domain: imagingry part larger than or equal to 7

+7

Domain of affine transformations

Forbiden domain: closed half-line of negative numbers

0

— .
Real part of eigenvalues Real part of eigenvalues

Figure 3: Constraint imposed on affine transformations by the use of the principal
matrix logarithm. Left: only affine transformations whose (complex) eigenvalues do not
lie on the (closed) half-line of negative real numbers have a principal logarithm and can be
handled by our framework. Simplifying things a bit, this corresponds intuitively to imposing
that (local) rotations be smaller in magnitude than 7 radians. This can be seen more clearly
on the principal logarithms of these admissible affine transformations: the imaginary part
of their eigenvalues must be smaller than 7 in magnitude. This is illustrated on the right
on this figure. A more detailed discussion of this constraint is given in Subsection 2.1.

RR n° 5865

10 V. Arsigny et al.

2.2 Simpler Speed Vectors for Affine Transformations

We will see now how one can define much simpler speed vectors for affine transformations
than the ones given in Eq. (3). The basic idea is to rely on the logarithms of the transforma-
tions themselves, and not only on the logarithms of their linear parts. These logarithms can
be defined in an abstract way in the context of the theory of Lie groups [13], but for more
simplicity we will define them here via the representation with homogeneous coordinates
of affine transformations. Homogeneous coordinates also provide a very convenient way to
compute these logarithms in practice.

Details about our numerical implementation of the matrix logarithm are given in the
Subsection A.4 of the Appendix.

Homogeneous Coordinates. Homogeneous coordinates are a classical tool in Computer
Vision. They are widely used to represent any n-dimensional affine transformation 7" by
(n +1) x (n + 1) matrix, written here 7. Such a representation is called by mathemati-
cians ‘faithful’ (in the sense of representation theory), which means that there is no loss of
information in this representation. T takes the following form:

~def (Mt

where M is the linear part of T (n x n matrix) and ¢ its translation. In this setting, points
x of the ambient space are represented by n + 1-dimensional vectors Z, adding an extra ‘1’
after their coordinates:
~ dif x
st (7).

This way, the action of the affine transformation on a point x can be obtained simply in
terms of matrix multiplication and is given by 7'.%.

Principal Logarithms of Affine Transformations. Using homogeneous coordinates,
the principal logarithm of the affine transformations themselves can be defined and computed
in a simple way (i.e. without using abstract Lie groups theory).

The main point here is that the principal logarithm of an affine transformation T is
represented in homogeneous coordinates by the matrix logarithm of its representation 7.
This matrix logarithm takes the following form:

()= 1)

where log stands for the principal matrix logarithm. L is an n x n matrix and v an n-
dimensional vector. Exactly as in the former subsection, L is the principal matrix logarithm
of M. But v is not equal in general to the translation ¢t. Actually, the difference between
our novel approach and the previous one resides essentially in this v.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 11

Interestingly, the well-definedness of the principal logarithm of an affine transformation
T is equivalent to the well-definedness of the principal logarithm of its linear part M. The
reason for this is that the principal matrix logarithm of an invertible matrix is well-defined
if and only if the imaginary parts of its (complex) eigenvalues of M do not lie on the (closed)
half-line of negative real numbers [12], as mentioned before. Because of the form taken by T
(see Eq. (4)), the spectrum of T is exactly that of its linear part M plus an extra eigenvalue
equal to 1. Hence the equivalence of the existence of both principal logarithms.

Simpler Speed Vectors for Affine Transformations at Step 1 of the Polyaffine
Framework. Using now principal logarithms of affine transformations instead of the prin-
cipal logarithms of their linear parts, one can now associate to an affine transformation 7" a
simpler family of speed vector fields than in Eq. (3) in the following way:

V(z,s) =V(x) =v+ L.x for s € [0, 1]. (5)

What is remarkable here is that the speed vector field at time s associated to T does not
depend on s! To prove the consistence of this speed vector with T', let us write the associated
ODE:

t=v+ L.z (6)

While the mathematical form taken by (6) might seem unfamiliar, it is much simpler (and
more familiar) when expressed in homogeneous coordinates. It simply writes:

& = log(T).%, (7)

which is this time a linear ODE. It is well-known from the theory of linear ODEs [14] that
Eq. (7) can be solved analytically and that its solutions are well-defined for all time. With
an initial condition z(at time 0, the value x(s) of the unique mapping z(.) satisfying Eq.
(6) is given in terms of matrix exponential by:

Z(s) = exp (s. log (T)) Zo- (8)

By letting s be equal to 1, we thus see that our new speed vector is truly consistent with
the transformation 7.

The ODE of Eq. (6) is called autonomous (or equivalently stationary). Such ODEs have
some very nice mathematical properties, which can be expressed in terms of one-parameter
subgroups of transformations. The next paragraph presents these general properties, which
will be detailed afterward in our particular case.

Autonomous ODEs and One-Parameter Subgroups. Let us write our ODE in the
following way: & = V(x). To simplify the discussion, we will assume in the sequel that the
stationary speed vector V() is differentiable (C') and that the solutions of this ODE are
well-defined for all time, regardless of initial conditions.

First of all, a very important notion associated to ODE is that of its flow. We have the
following definition:

RR n° 5865

12 V. Arsigny et al.

Definition 2. The flow associated to an autonomous ODE is the family of mappings ®(., s) :
R™ — R™ parameterized by a time parameter s € R, such that for a fized xq, s — P(xg, s)
is the unique solution of © = V(x) with initial condition xy at time 0.

Intuitively, for a fixed s, the mapping x — ®(z,s) gives the way the ambient space
is deformed by the integration of the ODE during s units of time. It is always a diffeo-
morphism, i.e. a differentiable one-to-one mapping between the ambient space and itself,
whose inverse is also differentiable. This invertibility property simply comes from the fact
that all deformations induced by the ODE are reversible since one can go back in time by
simply multiplying the speed vector V(z) by —1! The smoothness of the flow comes from
the smoothness of V(z).

Now, let us define one-parameter subgroups:

Definition 3. Let (G,.) be a group (i.e., the multiplication ‘.’ is associative and there ezists

a neutral element e and each element of G has a unique inverse). Then a family of elements
9(8) of G parameterized by s € R is called a one-parameter subgroup of G if and only if:

1. g(0) = e, i.e. the neutral element of G
2. for all s,t in R: g(s).g(t) = g(s +1).

Furthermore, if one knows how to differentiate functions valued in G (e.g., G is a Lie
group), and if g(s) is differentiable at 0, then %(0) is called the infinitesimal generator of
the subgroup.

Interestingly, the infinitesimal generator of a one-parameter subgroup contains all the
information about the subgroup, and can generate it entirely, which explains its name. See
for example [15] for more details on this topic in the case of Lie groups.

We have the following result: the flow ®(.,s) is a one-parameter subgroup of the group
of diffeomorphisms! In other words: ®(.,s) o ®(.,t) = ®(.,s + t). This implies in particular
that the deformations of space given at time 1 by ®(., 1) are twice that observed at time 0.5
via ®(.,0.5). Last but not least, the infinitesimal generator of the flow is simply V' (z). This
is not surprising since it is quite clear how V(z) infinitesimally generates the flow: this is
done precisely by integrating the associated ODE!

One-Parameter Subgroups of Affine Transformations. Now that we have recalled
the general properties of autonomous ODEs, let us go back to Eq. (6). From the explicit
form taken by the solutions of this ODE (see Eq. (8)), we can see that the associated flow
is simply the family of affine transformations (7%(.)), where T is the affine transformation
represented by exp(s.log(T)), i.e. the s™ power of 7.

From the general properties of flows associated to autonomous ODEs, we know that the
family of transformations (7°(.)) is a one-parameter subgroup of diffeomorphisms. From
this point of view, its infinitesimal generator is the vector field V(z) = v + L.z. From the
viewpoint of the affine group (in contrast to diffeomorphisms), (7°) is also a one-parameter
subgroups of affine transformations, whose infinitesimal generator is this time the principal

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 13

logarithm of T'. Interestingly, it can be shown with the classical tools of Lie groups theory
that all continuous one-parameter subgroups of affine transformations are of this form [13].

2.3 Log-Euclidean Polyaffine Transformations

An Autonomous ODE for Polyaffine Transformations. With the speed vectors de-
fined by Eq. (5), one can define a novel type of polyaffine transformations using the steps
2 and 3 of the Polyaffine framework. In the sequel, we will refer to these new polyaffine
transformations as Log-Euclidean polyaffine transformations (or LEPTs). This name comes
from our work on diffusion tensors [9, 16], where we have already used principal logarithms
to process this other type of data.

More precisely, let (M;, t;) be N affine transformations, and let (L;,v;) be their respective
principal logarithms. Then one can fuse them according to the weights w;(x) with the
following ODE, which is this time autonomous, i.e. without any influence of the time
parameter s in the second member of the equation:

T = Z w;(x) (v; + L) . 9)

Exactly as in the case of the non-autonomous polyaffine ODE based on Eq. (3), solutions to
this novel ODE are well-defined for all time s (i.e. never go infinitely far in a finite time, do
not ‘blow up’), regardless of the initial condition. The proof is extremely similar (although
simpler, in fact) to that given in [4] for the previous polyaffine framework.

Now, we know from the general properties of stationary ODEs (which where presented
above) that the flow T'(s, .) of this ODE forms a one-parameter subgroup of diffeomorphisms:
T(0,.) is the identity and T'(r,.) o T'(s,.) =T (r + s, .).

One-Parameter Subgroups of LEPTs. Exactly like in the affine case, the ODE given
by (9) defines not only a one-parameter subgroup of diffeomorphisms, it also yields a one-
parameter subgroup of Log-Fuclidean polyaffine transformations. More precisely, a simple
change of variable (s — 3) shows that the flow at time %, written here T(%, .), corresponds
to a polyaffine transformation whose parameters are the same weights as the original ones,
but where the affine transformations have been transformed into their square roots (i.e. their
logarithms have been multiplied by 1). Similarly, the flow at time s, T'(s,.) corresponds to
a polyaffine transformations with identical weights but with the s*" power of the original
affine transformations.

As a consequence, T'(s,.) can be interpreted as the s** power of the Log-Euclidean
polyaffine transformation defined by 7'(1,.). In particular, the inverse of T'(1,.) (resp. its
square root) is given simply by T(—1,.) (resp. T7'(1/2,.)), which is the polyaffine transfor-
mation with identical weights but whose affine transformations have been inverted (resp.
have been transformed into their square roots).

One should note that our previous polyaffine transformations did not have the same

remarkable algebraic properties as Log-Euclidean polyaffine transformations. In our previous

t

RR n° 5865

14 V. Arsigny et al.

framework, the inverse of a polyaffine transformation was not even in general a polyaffine
transformation. LEPTs have very intuitive and satisfactory properties, because they are
based on a fusion of speed vectors much better adapted to the algebraic properties of affine
transformations than the speed vectors we previously used.

In the next Section, we will see how this specific algebraic property of our novel frame-
work can be used to alleviate drastically the computational cost of Step 3 of the polyaffine
framework (i.e. the cost of the integration of the polyaffine ODE).

Affine-Invariance of LEPTs. Contrary to the previous polyaffine framework, our novel
Log-Euclidean framework has another sound mathematical property: affine-invariance. This
means the Log-Euclidean polyaffine fusion of affine transformations is invariant with respect
to any affine change of coordinate system. This type of fusion is therefore intrinsic: it truly
is a fusion between geometric transformations since it does not depend at all on the arbitrary
choice of coordinate system chosen to represent them.

To see why this is so, let us see how the various ingredients of our framework are affected
by a change of coordinate system induced by an affine transformation A. In homogeneous
coordinates, these changes are the following;:

e a point & becomes A.7
e a weight function & — w;(#) becomes § — w;(A~1.7)
e an affine transformation T; becomes A.T;. A~ 1.

In our new coordinate system, the Log-Euclidean polyaffine ODE writes in homogeneous
coordinates:

j= Z wi(A71.9) log (A.Ti.A_l) . (10)

Then, using the property log (A.Ti.fl_l) = A.log (Tl) A1 the simple change of variable

§j — A.Z shows that a mapping s — Z(s) is a solution of the Log-Euclidean polyaffine ODE
(9) if and only if s — A.Z(s) is a solution of (10). This means that the solutions of the
Log-Euclidean polyaffine ODE in the new coordinate system are exactly the same as in the
original coordinate system: our novel polyaffine framework is therefore not influenced by
the choice of a coordinate system. Our previous polyaffine framework does not have this
property, because it does not take sufficiently into account the algebraic properties of affine
transformations.

Another Reason Why our Novel Polyaffine Framework Is Called Log-Euclidean.
In the special case where all the weight functions w;(z) do not depend on z, the Log-
Euclidean polyaffine fusion of the affine transformations 7; simply yields an affine transfor-
mations 7', which is given by the following Log-FEuclidean mean:

T =exp(}_ wilog(Ty)).

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 15

This is another reason why we refer to our novel polyaffine framework as Log-Euclidean.
Indeed, the use of a generalization to affine transformations of our Log-Euclidean framework
for tensors is implicit in this novel framework. More details on the affine Log-Euclidean
framework are presented in the Appendix of this article.

Synthetic Examples. Examples of 2D LEPTs are shown in Figs. 4, 5 and 6. In these
examples, one can see how antagonistic affine transformations (i.e. transformations whose
direct fusion results in local singularities) can be globally fused into a regular and invertible
polyaffine transformation.

Extreme Closeness to Previous Polyaffine Framework. Interestingly, we have ob-
served in our experiments that the Log-Euclidean and the previous polyaffine frameworks
provide extremely similar results. Fig. 7 illustrates the striking closeness between both
frameworks. Notable differences only appear when very large deformations are fused.

Therefore, the advantage of our Log-Euclidean polyaffine framework over the previous
one does not reside in the quality of its results, which are very close to those of the previous
one. Rather, it resides in its much better and more intuitive mathematical properties, which
allow for much faster computations, as will be shown in the next Section. This situation
is somehow comparable to the closeness between the affine-invariant and Log-Euclidean
Riemannian frameworks used to process diffusion tensors [9]. They also yield very similar
results, but in a simpler and faster way in the Log-Euclidean case.

Limitation of this Approach. This novel approach is based on the notion of principal
logarithm of an affine transformation. As pointed out before, this logarithm is well-defined
if and only if the principal logarithm of the linear part of this affine transformation is well-
defined. As a consequence, our new approach has exactly the same limitation as the previous
one: to simplify, the amount of rotation in the affine transformation considered should not
be too close to 180 degrees. For more precisions on this topic, please refer to Subsection 2.1.

3 Fast Polyaffine Transform

As will be shown in this section, the specific algebraic properties of the Log-Euclidean
polyaffine framework allow for fast computations of LEPTs. In particular, we propose an
efficient algorithm to evaluate a Log-Euclidean polyaffine transformations on a regular grid.
If N is the number of intermediate points chosen to discretize the continuous trajectory
of each point, we present here an algorithm only requiring log,(N) steps to integrate our
autonomous polyaffine ODE, provided that the trajectories of all the points of the regular
grid are computed simultaneously. This drastic drop in complexity is somehow comparable
to that achieved by the ‘Fast Fourier Transform’ in its domain.

Surprisingly, the key to this approach lies in the generalization to the non-linear case of
a classical method used in the linear case, one that is widely used to compute numerically
the exponential of a square matrix.

RR n° 5865

16 V. Arsigny et al.

—— \ .

.
-6 -4 -2 0 2 4 6 -6 -4 -2 0
T

| ==\ ||

\
AN

o
o

IS

~
~

o
o

~

A

of \\\\ 1 ok

Nl

L L L L L L L L L L L L L L
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Figure 4: Fusing speed vectors of two translations. Red and Green: Log-Euclidean
polyaffine speed vectors (with the novel framework) of two affine transformations to be
fused. In blue: on the left, fused speed vectors, and on the right, regular grid deformed after
integration of the autonomous ODE. Note how the antagonism between the two translations
results in a progressive compression along the boundary between the two components. The
fusion was carried out with two functions of the first coordinate as weights, as in Fig. 1.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 17

Figure 5: Fusing speed vectors of two rotations. Red and Green: Log-Euclidean
polyaffine speed vectors (with the novel framework) of two affine transformations to be fused.
In blue: on the left, fused speed vectors, and on the right, regular grid deformed after
integration of the autonomous ODE. Note how regular and invertible the fused polyaffine
transformation, however antagonistic the two fused rotations are locally. The fusion was
carried out with two radial functions of the first coordinate as weights, as in Fig. 1.

RR n° 5865

18

V. Arsigny et al.

1 o

= NN
= //H\\\
e e

= \\\\\Tf////// i
=117
==
WL\\\\\T //ZZ/%
] """ L
=z
=
= s
1 72 - /j/j;; /AN
= [N

.
-4

W%///% 1
B
W/////
fffﬁ%
p ///W
e ==

TS —— A N |
B e NV PP X R

[A=

===\, //
g-—ﬁs-EsEsESEsEBEs!sséh//// ’/// J AT
Eessnsssan 777711 ARNS
/////mx\

HHH

1

[
Ani‘ [

M
]
[
[T

[T

HH

L
-6

6

L
-6

.
-4

-2

L L L L
0 2 4 6

Figure 6: Fusing speed vectors of a translation and an anisotropic swelling. Red
and Green: Log-Euclidean polyaffine speed vectors (with the novel framework) of two
affine transformations to be fused. In blue: on the left, fused speed vectors, and on the
right, regular grid deformed after integration of the autonomous ODE. Again, note how
locally antagonistic displacements are invertibly fused, resulting in compressions or swelling
at the boundary between the two components. The fusion was carried out with two radial
functions of the first coordinate as weights, as in Fig. 1.

INRIA

19

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations

RuRERET

TR
TR
R

TR
!
i

st

Figure 7: Extreme closeness between the Log-Euclidean polyaffine framework and
the previous polyaffine framework. Superimposed deformed grids in both cases. Top:

whole grid and bottom: close-up. The blue grid corresponds to Log-Euclidean results and
the green one to the previous framework (on top of the blue grid), in the case of the fusion

of two rotations presented in Fig. 5.

RR n° 5865

20 V. Arsigny et al.

3.1 DMatrix Exponential and the ‘Scaling and Squaring’ Method

The matrix exponential of a square matrix can be computed numerically in a large number
of ways, with more or less efficiency [17]. One of the most popular of these numerical recipes
is called the ‘Scaling and Squaring’ method, which is for example used by Matlab ™ to
compute matrix exponentials [18]. Fundamentally, this method is very efficient because it
takes advantage of the very specific algebraic properties of matrix exponential, which are in
fact quite simple, as we shall see now. For any square matrix M, we have:

a1 o (1) s () xp () an

This comes from the fact that M commutes with itself in the sense of matrix multiplication.
Tterating this equality, we get for any positive integer N:

2N

exp(M) = exp <2%N) , (12)

Then, the key idea is to realize that the matrix exponential is much simpler to compute
for matrices close to zero. In this situation, one can for example use just a few terms of the
infinite series of exponential, since high-order terms will be completely negligible. An even
better idea is to use Padé approximants, which provide excellent approximations by rational
fractions of the exponential around zero with very few terms. For more (and recent) details
on this topic, see [18].

The ‘Scaling and Squaring’ Method for computing the matrix exponential of a square
matrix M can be sketched as follows:

1. Scaling step: divide M by a factor 2%V, so that QMN is close enough to zero (according
to some criterion based on the level of accuracy desired: see [18] for more details).

2. Exponentiation step: exp (QI”—A[,) is computed with a high precision using for example
a Padé approximant.

3. Squaring step: using Eq. (12), exp (2%) is squared N times (only N matrix multi-
plications are required.) to obtain a very accurate estimation of exp(M).

In the rest of this Section, we will see how one can generalize this method to compute
with an excellent accuracy polyaffine transformations based on autonomous ODEs.

3.2 A ‘Scaling and Squaring’ Method for LEPTs

Goal of the Method. We would like to compute efficiently and with a good accuracy the
values of a Log-Euclidean polyaffine transformation at the vertices of a regular n-dimensional
(well, 2D or 3D in practice) grid. The method described below will be referred to as the
‘Fast Polyaffine Transform’ (or FPT) in the rest of this paper.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 21

Algebraic Properties of Log-Euclidean Polyaffine Transformations Revisited.
Let T'(s,.) be the flow associated to the autonomous polyaffine ODE (9), as in Subsec-
tion 2.3. As mentioned before, this flow is a one-parameter subgroup of LEPTs:

T(0,.)=1d andforallr,s: T(r,.)oT (s,.) =T (r+s,.).

As a consequence, Exactly as Eq. (11) for the matrix exponential, we obtain for r = s = 1:

ra=r(b)er(L)=r (L)

Tterating this equality, we get for any positive integer N:
2N

T(1,.)T<QLN,.) . (13)

Intuitively, Eq. (13) means that what the deformation observed at time 1 results of 2V
times the repetition of the small deformations observed at time QLN The total deformation
is entirely determined by the initial (and small) deformations occurring just at the begin-
ning of the integration of our ODE (which is a well-known and general phenomenon with
autonomous ODEs).

Fast Polyaffine Transform. We can now generalize the ‘Scaling and Squaring’ Method
to the Log-Euclidean polyaffine case. This method, called the ‘Fast Polyaffine Transform’,
follows the usual three steps:
1. Scaling step: divide V(z) (the field of speed vectors) by a factor 2%, so that VQ(J?) is
close enough to zero (according to the level of accuracy desired).

2. Exponentiation step: T (5, .) is computed using an adequate numerical scheme.

3. Squaring step: using Eq. (13), T (5k,.) is squared N times (in the sense of the
composition of transformations; only N compositions are required.) to obtain an
accurate estimation of 7' (1,.), i.e. of the polyaffine transformation to be computed.

From a practical (or numerical) point of view, two points remain to be clarified. First
what numerical scheme can be used to compute T’ (QLN,) with a good precision during the
‘exponentiation step’? Second, how should the composition (which is the multiplication
operator for transformations) be performed during the ‘squaring step’?

Exponentiation Step. Exactly as in the matrix exponential case, integrating an ODE
during a very short interval of time (short with respect to the smoothness of the solution) is
quite easy. We can use any of the methods classically used to integrate ODEs during short
periods of times, like explicit schemes or Runge-Kutta methods, which are based on various

RR n° 5865

22 V. Arsigny et al.

uses of the Taylor development to compute solutions of ODEs (see [19] for more details on
these methods).

The simplest of these schemes is undoubtedly the first-order explicit scheme. In our case,
it simply consists in computing the following value:

First Order Explicit Exponentiation Scheme (E.S):

1 def 1
E.S.

Generalizing the ideas already developed in [4] for the previous polyaffine framework, we can
also use a second-order scheme which takes into account the affine nature of all components,
and which is ezact in the case of a single component. We will refer to this scheme as the
affine exponentiation scheme in the following. It writes:

Second Order Affine Exponentiation Scheme (A.S):

N
1 def 5K
T (2—N~"E> =Y wi@). T (),
AS. i=1

1
where T;2" is the 2Vth root of the affine transformation 7;. We will see later in this Section
that the accuracy of this numerical scheme adapted to the affine nature of the components
is slightly better than that of the explicit scheme.

Composing Discrete Transformations. In this work, we are evaluating our transfor-
mation at a finite number of vertices of a regular grid. Practically, one has to resort to some
kind of interpolation/extrapolation technique to calculate the value of such a transformation
at any spatial position. Numerous possibilities exist in this domain, such a nearest-neighbor
interpolation, bi- or tri-linear interpolation, continuous representations via the use of a basis
of smooth functions like wavelets, radial basis functions... In the following, we use bi- and
tri-linear interpolations, which are simple tools guaranteeing a continuous interpolation of
our transformation. The best type of interpolation technique for the purposes of our Fast
Polyaffine Transform remains to be determined and will be the subject of future work.

Algorithmic Complexity. Note that to compute polyaffine transformations using the
FPT, the weight functions need only be evaluated once per voxel, instead of evaluating
them at every step of the integration of the ODE, as was done in [4]. In the case where
weight functions are stored in the computer memory as 3D scalar images, this offers the
opportunity of removing them from the computer RAM after the exponentiation step. This
could be particularly useful when a large number of affine components are used on high-
resolution images.

Furthermore, the equivalent of 2% intermediary points is achieved in only N steps, in
contrast with the 2% steps required by a traditional method. Last but not least, after the

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 23

2Nth 1ot has been computed, only N compositions between transformations need to be

computed, which is an operation based on interpolation techniques and therefore not very
computationally expensive. Let Nyox be the number of voxels and let Nps be the number
of intermediary points chosen to integrate the polyaffine ODE. The complexity of our new
algorithm is thus O(Nyox.1ogy(Npts)), whereas the complexity of traditional methods of
integration of this ODE is O(Nyox.Npts)-

Computing the Inverse of a Polyaffine Transformation. As pointed out in Sub-
section 2.3, in our new framework the inverse of a polyaffine transformation is simply the
polyaffine transformation associated with the opposite vector field (i.e. the polyaffine trans-
formation with the same weights but inverted affine components). As a consequence, the
inverse of a polyaffine transformation can be also computed using the Fast Polyaffine Trans-
form. Actually, any power (square root, etc.) a polyaffine transformation can be computed
this way.

3.3 2D Synthetic Experiments

Throughout this results Section, we measure the accuracy of our results by computing the
relative difference of the results with respect to accurate estimations of the real (continuous)
transformations. These reference transformations are obtained by a classical integration
(i-e., a fixed time step was used) of the Log-Euclidean polyaffine ODE for each of the pixels
of the grid, using a small time step: 275.

One should note that several parameters influence the accuracy of the results:

e the scaling 2V

e the geometry of the regular grid
e the interpolation method

e the extrapolation method.

Thus, compared to the classical estimation method with a fixed time step, our fast transform
possesses three new sources of numerical errors: the geometry of the regular grid (the trans-
formation is evaluated only at a finite number of points, the more points the more precise
the result will be), the interpolation method and the fact that regardless of the extrapolation
method, some part of the information about what happens outside of the regular grid is lost.
It is therefore important to check that the accuracy of the results obtained with the FPT
are not marred by these new sources of error.

A Typical FPT. Figs. 8 and 9 display the results of a typical Fast Polyaffine Transform,
using two rotations of opposite angles, and a scaling of 26 (and therefore 6 squarings). The
regular grid chosen to sample the transformation is of 50 x 40 pixels. The affine exponenti-
ation scheme is used.

RR n° 5865

24 V. Arsigny et al.

On average, the results are quite good: the average relative error is approximately equal
to 0.6%. However, much higher errors (around 11%) are obtained at the boundary, which
comes from the fact that the bi-linear interpolation we use here does not take into account
the rotational behavior of the transformation outside of the grid.

Using Bounding Boxes to Correct Boundary Effects. The numerical errors stem-
ming from the loss of information at the boundary of the regular grid can be drastically
reduced for example by enlarging the regular grid used. A simple idea consists in adding to
the regular grid some extra points so that it contains the points of boundary deformed by
Euclidean fusion of the affine components. This is illustrated by Fig. 10.

Fig. 11 presents the accuracy of the results given by the FPT, this time using a regular
grid extended in the way described just above. This time, errors are much lower: the relative
accuracy of the resulting estimation of the polyaffine transformation is on average of 0.21%
(instead of approximately 0.6% without an enlarged grid), and the maximal relative error is
below 3.2% (instead of 11% without an enlarged grid). This simple and efficient technique,
which drastically reduces the effect of boundary effects on the FPT, is used systematically
in the rest of this article.

Influence of Scaling. What scaling should be chosen when the FPT is used? Of course,
this depends on the quantity of high frequencies present in the polyaffine transformations.
The more sharp changes, the smaller the scaling should be and the finer the sampling grid
should also be.

Fig. 12 displays the performance in accuracy of the FPT when the number of iterations N
varies. In this experiment, we use the same fusion of rotations as in the previous experiment.
In this case, the optimal scaling is 2°. Larger scalings do not result in better accuracy,
essentially because of the missing information at the boundary.

We observed in the experiments on real 3D medical images described in the sequel of this
article that even much smaller scalings (typically 23 or 22) could be used without sacrificing
the accuracy of the result. In short, introducing even a small number of intermediary points
substantially regularizes the fused transformation with respect to the direct fusion, since
this suffices to remove singularities in practice. Using more intermediary points, i.e. 5 or
more squarings, offers the possibilities to be very close to the ideal polyaffine transformation,
which provides a simple way to compute the inverse of the fused transformation with an
excellent accuracy, as will be shown in this subsection.

Last but not least, one should also note from Fig. 12 that our Fast Polyaffine Transform
is very stable: using unnecessary iterations (or equivalently a very large scaling) does not
result in numerical instabilities. The result is mostly independent of N for N > 6.

Comparison between Numerical Schemes. Here, we compare the explicit affine expo-
nentiation schemes. We perform this comparison on our three favorite examples: the fusion
of two rotations, the fusion of two antagonistic translations as in Fig. 4, and the fusion

INRIA

25

2

Deformed grid at iteration i

4
6

1

Deformed grid at iteration i

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations

Note how the deformation

and increases exponentially. The accuracy of the FPT results was

Deformed grid at iteration i
Deformed grid at iteration i

3
5

intermediary points. The relative error of the resulting estimation

)

and there are therefore 6 squaring steps.

)

Deformed grid at iteration i
Deformed grid at iteration i

of the polyaffine transformation is below 0.6% on average and the maximal relative error,

measured with respect to the results given by a classical integration (voxel by voxel) of the
as expected, is made at the boundary and is below 11%.

Figure 8: Fast polyaffine transform for two rotations. A scaling factor of 2° was used
polyaffine ODE with 28

in this experiment
is initially very small

RR n° 5865

26

V. Arsigny et al.

Image of FPT error at iteration i=6

Figure 9: Fast polyaffine transform for two rotations:

Accuracy of FPT

0.8f N 1
0.6} N]
\
\
\
0.4f T
\
\
\

0.2t \

——mean error \
——maximal error

O T L L L
1 2 3 4 5 6

errors localization ans

evolution. Left: the errors at the vertices of our 50 x 40 regular grid are displayed as an
image, after a FPT with 6 squarings. Note how the maximal relative errors are concentrated
on the boundary of our grid. This is due to the inaccuracy of our extrapolation technique,
which is only bi-linear and does not deal very precisely with the affine nature of the polyaffine
transformation. Right: the evolution of errors along squarings is displayed. The relative
error of the resulting estimation of the polyaffine transformation is below 0.6% on average
and the maximal relative error is below 11%.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 27

Bounding box
T

B e i

B i e e e i il S A 2 S S A

T

R T e
B e i T e i i i i

B S e S S S S S S S e S i S

4
B S e S i it S S S S N S R R S S
Il

+
e
+
+
+
+
+
+
+
+
.
"
+
+
+
+
+
+
+
+
4

+

Figure 10: Enmnlarging the original regular grid with a bounding box. In red:
the original regular grid used to sample the Log-Euclidean polyaffine fusion between two
rotations. In green: grid deformed by direct fusion of the two rotations, which can be
computed at a very low computational cost. In blue: regular grid extended so that it now
contains the green points. This enlarging procedure considerably reduces the impact on the
Fast Polyaffine Transform of the loss of information beyond the boundaries of the regular
grid , as shown in this Section.

RR n° 5865

28 V. Arsigny et al.

Image of FPT error at iteration i=6 L Accuracy of FPT

——mean error
——maximal error
o1 2 3 4 5 6

Figure 11: Using an enlarged sampling grid: impact on errors localization and
evolution for the fast polyaffine transform for two rotations. Left: the errors at
the vertices of our 50 x 40 regular grid are displayed as an image, after a FPT with 6
squarings. Note how the maximal errors are concentrated this time on the region of highest
compression. Right: the evolution of errors along squarings is displayed. This time, errors
are much lower: the relative error of the resulting estimation of the polyaffine transformation
is on average below 0.21% (instead of below 0.6% without an enlarged grid), and the maximal
relative error is below 3.2% (instead of 11% wihtout an enlarged grid).

INRIA

29

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations

Reconstructed deformed grid for N=4

Reconstructed deformed grid for N=2

=1

Reconstructed deformed grid for N

=15

Reconstructed deformed grid for N

[[l
I LA
T T Nttt ettt
R st
————%ﬁ——%—————o———%————4—————————————————— 9—4————4——————5————»—————%————————%—————%
uiitsiutioiustiiios sttt
sttt ittt
stigaisusisisinting ustiaesusicitiatist
RO T anstgistpetiigettiynt
iyt ¥y
i jus
3 z
A fn g8
leopttey gty 53
lergtioy iy I ° 2
L fogy Ly Yoaghey, c E
DU AT 3
st i 3
ig ottt trgtor Aty z rytragtisgbtagdtonsteipttng
Utggirg ettt et 5| AR
I | S| iy |
iy A b ettty ooty ooy tin o
Qe ettt S0 R
i 7 | E Ul >
i = 2 N g
sl ey 5] T N s
UM ° AN RA R, 3
SR S IRty gt
I S TR
ittt 3 ittt
e s ittt
ittt g ittt
iyttt o} Rttt
S i3 sttt
—————5——-——-‘— Junstuienniygs! -
sttt s sttt _
———p—‘—%—- -«———‘-———
)) i i ;) ° i ! wn < wn (3] wn ~N 2} - wn
S 5 ® g5 N o o o 29
o o o o o

(TR RS
_______—____—_____—__,_._.__.......,_,.......,...,....%n..,
It
—4—4———ﬁa———————4———%——————————6—_—%————4——
ittt
s
hustiutiis
st
st

Reconstructed deformed grid for N=6

ust D
WISy sA

RO
R

TS
%-—'—‘—-—'——
sttt
us

15

10

. Above:

ing

influence of scali

ons:

Fast polyaffine transform for two rotat
regular grids deformed by polyaffine transformations obtained with the FPT using different

Figure 12

210 and

24, 26,
N is larger or equal to

)

22

21

ing factor. The scaling factors are the following

Note how close the results are when the number of squar
7. Below: accuracy of the estimations when N varies. The results are extremely stable for

values of the scal

215

ings

However,

idered here
our FPT is very stable. The

in the example cons

is unnecessary to use larger scalings
remarkably, using larger scalings does not change the results

t

i

N >6

relative error of the resulting estimation of the polyaffine transformation converges toward

0.2% on average and the maximal relat

residual maximal error

and the use of an

for large Ns. The

ive error converges toward 2%
tially due to the sampling of the transformat

interpolation method between the points of the gr

d is used to drastically reduce errors at the boundary of the gr

id
tended

ion on a gr

1S essen

since an ex

’

i

i

gri

RR n° 5865

30 V. Arsigny et al.

between a translation and an anisotropic swelling as in Fig. 6. The accuracy of the FPT
using both numerical schemes is compared in all three cases. Fig. 13 shows the results.

Both numerical schemes make the FPT converge toward the same accuracy as the number
of squarings increases, but the convergence is slightly faster in the affine exponentiation case:
the average error is 40% smaller in the affine case for scalings smaller than 2°. Interestingly,
the two numerical schemes are identical for the fusion of the two translations, because the
linear parts of these two affine translations are equal to the identity.

Inverting Polyaffine Transformations with the FPT. As pointed out previously,
in our novel framework, the inverse of a polyaffine transformation is simply (and quite
intuitively) the polyaffine transformation with the same weights and with inverted affine
components. This inverse can also be computed using the Fast Polyaffine Transform, and
in this experiment we tested the accuracy of the inversion obtained this way. The affine
exponentiation scheme was used for exponentiation along with a 50 x 40 grid.

Fig. 14 presents with deformed grids the evolution of the accuracy of inversion when
the number of squarings varies, in our example of fusion between two rotations. Fig. 15
presents the quantitative results in the three cases of fusion used in the previous experiment.
We thus see that an excellent quality of inversion can be achieved using a small number of
squarings, typically 6.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations

31

Accuracy of FPT - Fusion of two rotations

Accuracy of FPT - Fusion of two translations

0.45 : 0.12 :
——mean error A.S. ——mean error A.S.
0.4r —maximal error A.S. fj —maximal error A.S.
mean error E.S. 0.1r mean error E.S.
0.35¢ ——maximal error E.S. || ——maximal error E.S.
0.3f 1 0.08f
0.25f i
0ol \\ | 0.06
. \
0.15¢ A\ 1 0.04f
\
\
0.1 \ 1
AN 0.02f
0.05r A 4
00 5 10 15 00

Accuracy of FPT - Fusion of a translation and an anisotropic swelling

0.8

0.7

0.61

0.5r

0.4r

0.3f

0.2

0.1r

0

——mean error A.S.

mean error E.S.

—maximal error A.S. ||

——maximal error E.S. ||

0

10

Figure 13: Comparison between numerical schemes. From left to right and then
from top to bottom: fusion between two rotations, two translation and finally a transla-
tion and an anisotropic swelling. A.S. stands for ‘affine exponentiation scheme’ and E.S. for
‘explicit exponentiation scheme’. Interestingly, the two numerical schemes are identical for
the fusion of the two translations, because the linear parts of these two affine translations
are equal to the identity. Both numerical schemes make the FPT converge toward the same
accuracy as the number of squarings increases, but the convergence is substantially faster in
the case of the affine exponentiation scheme: in the two cases where the schemes yield dif-
ferent results, the average relative error is 40% smaller in the affine case for scalings smaller

than 26.

RR n° 5865

32

V. Arsigny et al.

Approximation of identity for N=2

Approximation of identity for N=1

M

-4 -2 0 2 4

-4 -2 0 2 4

-6

i

T

|

|
e

|

[T

T

|

-4 -2 0 2 4

-4 -2 0 2 4

Approximation of identity for N=15

Figure 14: Inverting a polyaffine transformation with the FPT. From left to right
and then from top to bottom: our regular grid is deformed by the composition between
the FPT of the fusion between two rotations and the FPT of its inverse, for different numbers
of squarings N. One can see that an excellent accuracy of inversion is already achieved with

6 squarings.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 33

Accuracy of Inversion with FPT - Fusion of two rotations Accuracy of Inversion with FPT - Fusion of two translations
0.9 ; 0.25 ;
\ ——mean error ——mean error
0.8¢ ——maximal error — maximal error
0.7+ “‘ i 0.2r |\ R
0.6f \
\ 0.15- |
0.5f \ \
04\]
\ 0.1+ \
0.3f \ i \
\ \
\ \
0.2f \ 1 o0.0sf \
0.1f o 1 ~
O0 5 10 15 00 5 10 15

Accuracy of Inversion with FPT - translation and swelling
4 T T
\ ——mean error
\ ——maximal error
12r |

1t

0.8} \
““\
0.61 \
\
\
L \
0.4 \
0.2 \
o
0 5 10 15

Figure 15: Inverting a polyaffine transformation with the FPT: quantitative re-
sults. From left to right and then from top to bottom: fusion between two rotations,
two translation and finally a translation and an anisotropic swelling. The composition be-
tween the FPT of the transformation of the FPT of its inverse is carried out, for different
numbers of squarings. The errors displayed are relative with respect the polyaffine trans-
formation considered: the displacements are expected to be close to zero (i.e. the resulting
transformation is expected to be close to the identity), and the errors are measured with
respect to the displacements observed originally. One can see that an excellent accuracy
of inversion is already achieved with 6 squarings. As expected, the maximal errors are ob-
served at the boundary of the grid, which can be fixed for example by using a larger grid to
compute the FPT.

RR n° 5865

34 V. Arsigny et al.

3.4 3D MRI Example

Let us now consider a real 3D example of locally affine registration, between an atlas of
216 x 180 x 180 voxels and a 7T;-weighted MR image, with the multi-resolution and robust
block-matching algorithm described in [5], without regularization. 7 structures of interest
are considered: eyes (1 affine component each), cerebellum (2 components), brain stem (2
components), optic chiasm (1 component), 1 supplementary component (set to the iden-
tity) elsewhere. Weight functions are defined in the atlas geometry using mathematical
morphology and a smoothing kernel in a preliminary step [5].

Philosophy of our Locally Affine Algorithm. Here, the idea is to use a registration
procedure capable of registering finely a number of fixed structures of interest, with very
smooth transformations. In contrast, many registration algorithms are able to register finely
the intensities of the images of two anatomies, but this is done in most cases at the cost
of the regularity of the resulting spatial transformation. This lack of smoothness leads to
serious doubts regarding the anatomical likelihood of such transformations.

Fig. 16 provides a comparison between the typical smoothness of dense transforma-
tion and locally affine registration results. Interestingly, much smoother deformations are
obtained in the locally affine case with an accuracy in the structures of interest which is
comparable to the dense transformation case of [20].

LEPTs as a Post-Processing Tool. To obtain short computation times (typically 10
minutes), our locally affine registration algorithm estimates affine components using the
direct fusion. The FPT is used in a final step to ensure the invertibility of the final trans-
formation, as well as to compute its inverse.

Here, the scaling used in 2% and the FPT is computed in 40s on a Pentium4 Xeon™2.8
GHz on a 216 x 180 x 180 regular grid. As shown by Fig. 17, the direct fusion of components
estimated by [5] can lead to singularities, which is not the case when the FPT is used.
Remarkably, both fusions are very close outside of regions with singularities. This means
that no artifacts are introduced by the FPT, which justifies a posteriori the estimation of
affine components with the (faster) direct fusion.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 35

Figure 16: Locally affine vs. dense-transformation: smoothness of deformations.
The contours of our structures of interest (eyes, brain stem, cerebellum, optic chiasm) are
displayed on the subject and are obtained by deforming those of the atlas using the dense
transformation of [20] and using our locally affine framework. From left to right: dense
and then locally affine deformations (top: axial slice, bottom: sagittal slice). Note how
smoother contours are in the locally affine case, although both accuracies are comparable.

RR n° 5865

36 V. Arsigny et al.

Figure 17: Singularity removal with LEPTs. A 3D regular grid is deformed with the
locally affine transformation obtained with the algorithm of [5], two slices are displayed.
From left to right: polyaffine fusion and direct fusion (two axial slices are displayed: one
on top, one at the bottom). Note how the singularities of the direct fusion disappear with
LEPTs. Remarkably, this is obtained without introducing any artifacts: outside singularities,
both fusions yield very close results.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 37

4 Conclusion and Perspectives

In this work, we have presented a novel framework to fuse rigid or affine components into a
global transformation, called Log-Fuclidean polyaffine. Similarly to the previous polyaffine
framework of [4], it guarantees the énvertibility of the result. However, contrary to the
previous framework, this is achieved with very intuitive properties: for example the inverse
of a LEPT is a LEPT with identical weights and inverted affine components. Moreover, this
novel fusion is affine-invariant, i.e. does not depend on the choice of coordinate system.
We have also shown that remarkably, and contrary to previous polyaffine transformations,
the specific properties of LEPTs allow their fast computations on regular grids, with an
algorithm called the ‘Fast Polyaffine Transform’, whose efficiency is somehow comparable to
that of the Fast Fourier Transform.

In the example of locally affine 3D registration presented here, we use LEPTs in a final
step to fuse the affine components estimated during the algorithm of [5]. With the FPT,
this is done very efficiently. Remarkably, the novel fusion is very close to the direct fusion in
regions without singularities. This suggests that our novel framework provides a general and
efficient way of fusing local rigid or affine deformations into a global invertible transformation
without introducing artifacts, independently of the way local affine deformations are first
estimated.

We have also presented in this article a Log-Euclidean framework for rigid and affine
transformations, which generalizes to linear transformations the Log-Euclidean framework
we described in [9] for tensors. It allows a straightforward and efficient generalization to
linear transformations of classical vectorial tools, with excellent theoretical properties. In
particular, we have already used this framework in [5] to define a simple visco-elastic reg-
ularization energy for locally rigid or affine deformations. In future work, we are planning
to use this simple framework to compute statistics on rigid and affine local components of
deformations, which could help to better constraint non-rigid registration algorithms, as
some of us begun to do in [21] and [22] with (local) statistics on strain tensors.

RR n° 5865

38 V. Arsigny et al.

A A Log-Euclidean Framework for Rigid and Affine Trans-
formations

Similarly to the Log-Euclidean framework for tensors [9], the rigid and affine Log-Euclidean
frameworks are simple and have excellent theoretical properties. First, they is invariant with
respect to inversion (of affine transformations).

Second, the Log-Euclidean mean of rigid or affine transformations (which is always a
rigid or affine transformation) has very nice properties: it is affine-invariant, i.e. does not
depend on the system of coordinates chosen. Furthermore, the determinant of the Log-
Euclidean mean is equal to the geometric mean of the determinants of the data. This
implies for instance that the Log-Euclidean mean of several contractions (resp. dilations)
is still a contraction (resp. dilation). This is a great advantage compared to the Euclidean
computations on affine transformations, which are also fast and simple , but do not take into
account the group structure of the affine group. In particular, the arithmetic mean (in the
sense of homogeneous coordinates) of several affine transformation is also affine-invariant
but can perfectly be non-invertible, and the mean of several contractions can be a dilation
(very much like in the tensor case).

A.1 Log-Euclidean Metrics

As we have seen in the Subsection 2.2, homogeneous coordinates provide a simple way to
compute (and define!) the principal logarithm of affine transformations. We recall that
this logarithm is well-defined if and only if the eigenvalues of the homogeneous (matrix)
representation of the affine transformation do not lie on the (closed) half-line of negative
real numbers [12]. We will here call such transformations admissible. In the particular case
of rigid transformations this means that the amount of local rotation should not reach =
radians [23]. A more detailed discussion of this restriction is given in Subsection 2.1.

Details about our numerical implementation of the matrix logarithm are given in the
subsection A.4 of this Appendix.

Log-Euclidean Distances. Then, let 77 and 75 be two admissible affine transformations.
A Log-Euclidean distance (or metric) between the two transformations will be of the following
form:

dist (73, T2) = [|log(T1) — log(T2)||, (14)

where ||.|| is a Euclidean norm, for example the Frobenius norm, which is defined by

1
| M||prob = (Trace(M7T.M))2. This is the norm we will be using in the rest of this ar-
ticle.

Log-Euclidean Mean. Asin the tensor case, one can associate to Log-Euclidean distances
a generalization of the arithmetic mean, in the classical way, called the Fréchet mean. The

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 39

Log-Euclidean mean E(T1,...,T2)Lg of N admissible transformations T4, ...Tx with non-
negative weights wi,...,wy (such that) . w; = 1) is defined as the point minimizing the
following metric dispersion:

N
E(Ty, ... Ty)ie =arg min Y w; dist*(T,T).
=1

admissible T'

As in the tensor case, classical Euclidean geometry on the principal logarithms of the trans-
formations show that the Log-FEuclidean mean is indeed well-defined for transformations
close enough to a scaled version of the identity. In this case, it is simply given by exponen-
tial of the arithmetic mean of data:

E(T1, ..., Tn)LE = exp (Z wi.log(Ti)> .

=1

For admissible transformations very far away from the identity, it could be possible that
the arithmetic mean of their logarithms lies outside the logarithmic domain of admissible
transformations! To our knowledge, although the set of complex numbers whose imaginary
part lies in | — 7, 7] is obviously convex, the set of real matrices whose eigenvalues are all in
this domain is only open, and not convex. This set of matrices is only locally convex.

In practice, to check the well-definedness of the Log-Euclidean mean, it suffices to check
that the Euclidean mean of the logarithms is still admissible. However, having a simple and
general criterion on the T; ensuring that all convex combinations of their logarithms are
admissible would be very desirable, and this will be the subject of future work.

The Log-Euclidean Mean as a Geometric Mean. Exactly as in the tensor case, the
determinant of the homogeneous representation of the Log-Euclidean mean is equal to the
scalar geometric mean of the determinants of the data. In other words, we have:

det(E(Ty, ..., Ty)) = exp (Z w; In (det(Ti))> :

where In is the (scalar) natural logarithm.

This can be shown with the same techniques as for tensors (well, actually nothing more
than Jordan or Schur decompositions of matrices), see [16] for more details. The Log-
Euclidean mean is therefore a generalization of the scalar geometric mean to affine transfor-
mations. The determinant of affine transformations has a very simple physical interpretation:
it describes how volumes are changed by the affine transformation. Above 1, the transfor-
mation dilates volumes, and below 1, there is a contraction. The geometric interpolation of
the determinants of the data performed by Log-Euclidean averaging thus guarantees that
determinants are monotonically interpolated. This is not true for the arithmetic mean of
affine-transformation, since Euclidean operations do not take into account the group struc-
ture of affine transformations. The arithmetic mean of several affine transformations can for

RR n° 5865

40 V. Arsigny et al.

example introduce more dilation than there originally was in the data, which is the ‘swelling
effect” well-known in the tensor case [9)].

A.2 Invariance Properties

Invariance by Inversion. It can be easily seen that any Log-Euclidean distance on affine
transformations is invariant by inwversion: the principal logarithm of an inverted transfor-
mation is simply the logarithm of the original transformation multiplied by —1, which does
not change the value the distance (see Eq. (14)).

Rotational Invariance. A number of Log-Euclidean distances on affine transformations
are rotation-invariant. This means that when the coordinate system is changed by a rotation,
the Log-Euclidean distance between two affine transformations is unchanged. To see this,
let us recall how an affine change of coordinates affects affine transformations. Let T be
an affine transformation used to deformed locally the ambient space and let A be another
affine transformation, used this time to change the coordinate system. When the point z
is changed into A.z, then the affine transformation T is classically changed into A.T.A~".
The principal logarithm of A.T.A~! is simply A.log(T").A~!. Using this equation, we get in
homogeneous coordinates:

(15)

1 . _1
log(A.T.A7Y) ~ < M,.L.M, My.L.My bty + Ma.v) ,

0 0

where A = (My,t2) and where L and v are respectively the linear part and the translation
part of log(T). As consequence, when M5 is a rotation matrix R and when t5 is equal to
Zero, we get:

og(A.T.A™) [[Eron. = [|1R-L-R™ [[Eo. + [R-l[Euer. = [LlEron. + [1v]Euct. = I1108(T) [Eron.

which precisely means that this Log-Euclidean distance is rotation-invariant.

And Translation-Invariance? We have just shown that some Log-Euclidean distances
on affine transformations are rotation-invariant, which means that the orientation of the
current coordinate system does not influence computations with this type of metrics. What
about translation, i.e. how does the choice of the origin of the coordinate system have an
impact on Log-Euclidean metrics? To see this, let us re-write Eq. (15) in the case where
the affine change of coordinate system is a pure translation and writes A = (Id,t2). Then
Eq. (15) becomes:

log(A.T.A71) ~ (g _L'tg v) ,

which implies in turn that we have:

110g(A.T. A7) [Fvob. = [LFrob. + [1v = Lot2llEyer.,

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 41

which depends on ¢ and is not equal in general to | log(T)||3,p.- Changing the origin of
the coordinate system by a translation ¢, results in shifting by —L.t2 the translation part v
of the logarithm of the current affine transformation 7', which changes the norm of log(T)
in general.

The Frobenius Log-Euclidean distance is therefore not translation-invariant, and one
could wonder whether this biases the computations made with such a distance in the case
of multi-affine registration. Actually, this is not the case when one restricts oneself to using
only Log-FEuclidean means of affine transformations. This comes from the fact that this type
of Fréchet mean is completely affine-invariant, i.e. does not depend at all on the current
system of coordinates. The regularization strategy we propose in Subsection A.3 entirely
relies entirely on such means, which ensures its affine-invariance.

Affine-Invariance of the Log-Euclidean Mean. As announced in the previous para-
graph, the Log-Euclidean mean is affine-invariant: it is not biased by the current coor-
dinate system. To see this, let 73,...,7n be N affine transformations with logarithms
(L1,v1),...,(Ln,vN), and let wy,...,WWn N be N non-negative weights. Using Eq. (15),
we have:

log(E(A.Ty. AL ., ATN. A" LE) > wilog(AT; A- b
> wiA log(Ty). A1
A.log (E(Ty, ..., TN)) -1
= log (AE(Ty,....Tn).A7")

which implies the affine-invariance of the Log-Euclidean mean:

E(AT. A7 . AT A" E = A log(E(Ty, ..., Ty)LE). A~ .

A.3 Log-Euclidean Regularization for Locally Rigid or Affine Reg-
istration

One of the great advantages of the Log-Euclidean framework is that classical vector tools can
be readily recycled in this framework. Once affine-transformations have been transformed
into their principal logarithm, one can simply perform Euclidean operations on them. This
allows the direct generalization of classical wvectorial regularization tools to locally affine
deformations, which we have already begun to use in [5].

Elastic Regularization. In the context of locally rigid or affine registration, we propose
to use the following elastic regularity energy:

Reg Tz;wz - ZZPZ,]'

i=1 j#i

g (16)

log(T;) — log(T})|

RR n° 5865

42 V. Arsigny et al.

where the correlation weights p; ; between the components are defined in the following way:

o = ([ooy) /([wtaras)

where (2 is the (bounded) image domain chosen for the registration experiment. Thus, this
type of energy takes into account the spatial extensions of the components, and the various
correlations existing between them.

Elastic Regularization and Log-Euclidean Means. From a practical point of view,
to regularize the current locally affine transformation, we perform a gradient descent of the
elastic energy given in (16). The partial derivative of this energy writes:

Sy Res (T) = 3y (0g(T1) ~loB(73)).
J#k

As a consequence, performing a gradient descent of our elastic energy simply results in
replacing affine transformations 7; by Log-Euclidean means between all affine transforma-
tions, the weights depending on the correlation weights p; ; and on the time step used (which
should be small enough to ensure that the weights used are all non-negative). This guar-
antees the affine-invariance of our regularization approach, since performing Log-Euclidean
means of affine transformations is an affine-invariant operation. This was not obvious at all,
since the Log-Euclidean metric we use is only rotation-invariant, and not affine-invariant.

Extensions of this Approach. The principle behind the Log-Euclidean framework is the
following: the principal logarithm provides a simple way of mapping affine transformations
into a vector space, while conserving excellent theoretical properties which are consistent
with the group structure of these transformations. Once affine-transformations have been
transformed into vectors with the matrix logarithm, it is quite straightforward to generalize
to these transformations all classical variational approaches usually reserved to vectors.

Therefore, other types of regularization techniques, such as fluid regularization (i.e. elas-
tic regularization on the small modifications made to the components between the iterations
of the registration algorithm), can be generalized to locally affine transformations in the
same straightforward way as elastic regularization. In [5] for example, we use visco-elastic
regularization (i.e. elastic and fluid regularization), exactly as was done in [24] in the (vector)
dense-transformation case.

Synthetic 2D Experiment. Here, we regularize a polyaffine transformation using the
Log-Euclidean elastic regularization energy of Eq. (16). 9 components were regularly defined
on the grid, and their affine transformations were chosen randomly. A gradient descent on
the energy (16) was performed, and the result is shown in fig. 18. Note how the 9 components
all converge toward a Log-Euclidean mean of the original affine transformations as the degree
of regularization increases.

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 43

- I..===
LEniairmiiiamnamaes

Figure 18: Log-Euclidean regularization of a polyaffine transformation. From left
to right and then from top to bottom: regular grid deformed by original polyaffine
transformation (with 9 affine components), the same regular grid deformed by the increas-
ingly regularized polyaffine transformation. Note how the 9 components all converge toward
a Log-Euclidean mean of the original affine transformations as the regularization increases.

RR n° 5865

44 V. Arsigny et al.

A.4 Numerical Implementation of Matrix Logarithm.

In this work, we have used the ‘Inverse Scaling and Squaring’ method [12] to compute matrix
logarithms. It is the equivalent of the ‘Scaling and Squaring’ method for logarithms, and is
based on the idea that computing the logarithm of a matrix close to the identity is easier than
computing the logarithm of a general matrix. Like in the case of the matrix exponential,
this computation can be done very accurately and at a very small computational cost using
Padé approximants.

In order transform a given matrix into another one closer to the identity, the ‘Inverse
Scaling and Squaring’ method uses the computation of successive square roots. Once the
2NV 100t of a matrix M has been computed, one can use the following equality to compute
the logarithm of M:

log(M) = 2V . log (MTN) . (17)
Actually, (17) is nothing more than Eq. (12) in the domain of logarithms.

More details on how square roots can be iteratively computed and on the choice of the
level of squarings N can be found in [12].

INRIA

Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Deformations 45

References

[1] J.B.A. Maintz and M.A Viergever. A survey of medical registration. Medical image
analysis, 2(1):1-36, 1998.

[2] X. Papademetris, D.P. Dione, L.W. Dobrucki, L.H. Staib, and A.J. Sinusas. Articulated
rigid registration for serial lower-limb mouse imaging. In MICCAI’05 (2), pages 919—
926, 2005.

[3] A. Pitiot, E. Bardinet, P.M. Thompson, and G. Malandain. Piecewise affine registration
of biological images for volume reconstruction. MedIA, 2005. accepted for publication.

[4] V. Arsigny, X. Pennec, and N. Ayache. Polyrigid and polyaffine transformations: a novel
geometrical tool to deal with non-rigid deformations - application to the registration of
histological slices. Med. Im. Anal., 9(6):507—523, December 2005.

[5] O. Commowick, V. Arsigny, J. Costa, G. Malandain, and N. Ayache. An efficient
multi-affine framework for the registration of anatomical structures. In Proceedings of
ISBI’2006. TEEE, 2006. To appear.

[6] R. Narayanan, J.A. Fessler, H. Park, and C.R. Meyer. Diffeomorphic nonlinear transfor-
mations: A local parametric approach for image registration. In Proceedings of IPMI’05,
volume 3565 of LNCS, pages 174-185, 2005.

[7] A. Cuzol, P. Hellier, and E. Mémin. A novel parametric method for non-rigid image
registration. In Proc. of IPMI’05, number 3565 in LNCS, pages 456-467, 2005.

[8] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes.
Non-rigid registration using free-form deformations: Application to breast MR images.
IEEE Trans. Medecal Imaging, 18(8):712-721, 1999.

[9] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and simple
calculus on tensors in the log-Euclidean framework. In J. Duncan and G. Gerig, editors,
Proceedings of the 8th Int. Conf. on Medical Image Computing and Computer-Assisted
Intervention - MICCAI 2005, Part I, volume 3749 of LNCS, pages 115-122, Palm
Springs, CA, USA, October 26-29, 2005. Springer Verlag.

[10] J.A. Little, D.L.G. Hill, and D.J. Hawkes. Deformations incorpotationg rigid structures.
CVIU, 66(2):223-232, May 1996.

[11] D. Sheppard. A two-dimensionnal interpolation function for irregularly spaced data. In
238rd National Conference of the ACM, pages 517-524, 1968.

[12] S. Hun Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub. Approximating the
logarithm of a matrix to specified accuracy. SIAM J. Matriz Anal. Appl., 22(4):1112—
1125, 2001.

RR n° 5865

46 V. Arsigny et al.

[13] Shlomo Sternberg. Lectures on Differential Geometry. Prentice Hall Mathematics Se-
ries. Prentice Hall Inc., 1964.

[14] M. Tenenbaum and H. Pollard. Ordinary Differential Equations. Dover, 1985.

[15] Roger Godement. Introduction & la Théorie des Groupes de Lie. Publications Mathé-
matiques de I’Université Paris VII, 1982.

[16] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Fast and simple computations
on tensors with Log-Euclidean metrics. Research Report RR-5584, INRIA, Sophia-
Antipolis, France, May 2005.

[17] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential
of a matrix. SIAM jour. of Matr. Anal. and Appl., 20(4):801-836, October 1978.

[18] N. J. Higham. The scaling and squaring method for the matrix exponential revisited.
SIAM J. Matriz Anal. Appl., 26(4):1179-1193, 2005.

[19] J. D. Lambert. Numerical methods for ordinary differential systems: the initial value
problem. John Wiley & Sons, Inc., New York, NY, USA, 1991.

[20] R. Stefanescu, X. Pennec, and N. Ayache. Grid powered nonlinear image registration
with locally adaptive regularization. Med. Im. Anal., 8(3):325-342, September 2004.

[21] Xavier Pennec, Radu Stefanescu, Vincent Arsigny, Pierre Fillard, and Nicholas Ayache.
Riemannian elasticity: A statistical regularization framework for non-linear registra-
tion. In J. Duncan and G. Gerig, editors, Proceedings of the 8th Int. Conf. on Medical
Image Computing and Computer-Assisted Intervention - MICCAI 2005, Part II, vol-
ume 3750 of LNCS, pages 943-950, Palm Springs, CA, USA, October 26-29, 2005.
Springer Verlag.

[22] Olivier Commowick, Radu Stefanescu, Pierre Fillard, Vincent Arsigny, Nicholas Ay-
ache, Xavier Pennec, and Grégoire Malandain. Incorporating statistical measures of
anatomical variability in atlas-to-subject registration for conformal brain radiotherapy.
In J. Duncan and G. Gerig, editors, Proceedings of the 8th Int. Conf. on Medical Im-
age Computing and Computer-Assisted Intervention - MICCAI 2005, Part II, volume
3750 of LNCS, pages 927-934, Palm Springs, CA, USA, October 26-29, 2005. Springer
Verlag.

[23] R.P. Woods. Characterizing volume and surface deformations in an atlas framework:
theory, applications, and implementation. Neuroimage, 18(3), 2003.

[24] Radu Stefanescu. Parallel nonlinear registration of medical images with a priori infor-
mation on anatomy and pathology. PhD thesis, Université de Nice — Sophia-Antipolis,
March 2005.

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

