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Abstract. Modeling the variability of brain structures is a fundamental
problem in the neurosciences. In this paper, we start from a dataset of
precisely delineated anatomical structures in the cerebral cortex: a set of
72 sulcal lines in each of 98 healthy human subjects. We propose an orig-
inal method to compute the average sulcal curves, which constitute the
mean anatomy in this context. The second order moment of the sulcal
distribution is modeled as a sparse field of covariance tensors (symmet-
ric, positive definite matrices). To extrapolate this information to the
full brain, one has to overcome the limitations of the standard Euclidean
matrix calculus. We propose an affine-invariant Riemannian framework
to perform computations with tensors. In particular, we generalize ra-
dial basis function (RBF) interpolation and harmonic diffusion PDEs to
tensor fields. As a result, we obtain a dense 3D variability map which
proves to be in accordance with previously published results on smaller
samples subjects. Moreover, leave one (sulcus) out tests show that our
model is globally able to recover the missing information when there is a
consistent neighboring variability. Last but not least, we propose innova-
tive methods to analyze the asymmetry of brain variability. As expected,
the greatest asymmetries are found in regions that includes the primary
language areas. Interestingly, such an asymmetry in anatomical variance
could explain why there may be greater power to detect group activation
in one hemisphere than the other in fMRI studies.

1 Introduction

Brain structures differ greatly in shape and size even among normal subjects, and
these variations make it difficult to identify abnormal differences due to disease.
Understanding the degree and quality of brain variation is vital for distinguishing
signs of disease from normal variations. Geometric variability of anatomy also
makes the automated segmentation and labeling of brain structures difficult.
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Statistical information on brain variability would make this task easier, and could
be used in Bayesian approaches for nonlinear registration as well (which adjust
for anatomical variations across subjects). Finally, neuroscientists are interested
in identifying the causes of brain variability at a genetic or environmental level.
Measuring brain asymmetry (i.e. differences between hemispheres) is of special
interest as it sheds light on how the functions of the two hemispheres become
specialized. Improved modeling of the range of variations in brain structure could
make it easier to isolate specific effects of genetic polymorphisms on these normal
variations and asymmetries.

A major class of anatomical variations can be thought of as arising from
the smooth deformation of a reference anatomy, where the deformation is rep-
resented as a 3D displacement field, after affine (linear) differences are factored
out. Ideally, one could measure or model the joint variability of all pairs of points
to see how the displacement of one any point in a specific subject with respect to
the reference anatomy covaries with the displacement of neighboring or distant
points in the brain (e.g. symmetric ones in the opposite hemisphere). In this
article, we simply model the variability of each point independently. Assuming
that the mean deformation of the reference anatomy is null, the first moment of
the 3D displacement distribution is its covariance matrix, which will be called a
variability tensor3. Thus, our goal is to compute the field of variability tensors
within the brain, from information that may be sparsely distributed.

However, working with tensors is not so easy as the underlying space is a
manifold that is not a vector space. As tensors constitute a convex half-cone
in the vector space of matrices, many operations (like computing the mean) are
stable. Nonetheless, this Euclidean framework is not satisfactory as one can easily
reach the boundary of the space (singular symmetric matrices) with a classical
gradient descent. Moreover, the arithmetic mean of a tensor and its inverse is
not the identity matrix. This lack of symmetry is unsatisfactory: in many cases,
one would like the mean to be geometric.

In Sec. 2.1 we present a consistent Riemannian framework to compute with
tensors. Then, we show in Sec. 2.2 how to extend these tools to implement
harmonic diffusion PDEs and extrapolate tensors that are sparsely distributed
in space. Solving these PDEs is computer intensive, so in Sec. 2.3 we provide a
practical but efficient initialization by extending the radial basis functions (RBF)
concept to tensors. In Sec. 3, we consider low dimensional but anatomically very
readily defined and delineated features (sulcal lines) as a way to obtain mean-
ingful brain variability tensors. We show in Sec. 3.1 how to compute the mean
sulcal curve and its correspondence with the sulcal instances of each subject. To
extract only the relevant information and minimize the number of parameters,
we fit in Sec. 3.2 a parametric tensor model to these data. Then, we come back
to our original goal in 3.3 by extrapolating this sparse tensor model to the whole
brain. The validity of our extrapolated model is analyzed in Sec. 3.4. In Sec. 3.5

3 We follow here the terminology used in the Diffusion Tensor Imaging field: by tensor
we mean a positive definite symmetric matrix.



3

we generalize our statistical model to examine the correlation of the variations
observed at symmetric points in the brain.

2 A Mathematical Framework to Extrapolate Tensors

Much of the literature addresses tensor computing problems in the context of
diffusion tensor image (DTI) regularization. In these articles, the spectral de-
composition of the tensors is exploited. For instance, [1] anisotropically restores
the principal direction of the tensors, while [2] independently restores the eigen-
values and eigenvectors. This last approach requires an additional reorientation
step of the eigenvectors due to the non-uniqueness of the decomposition.

More recently, differential geometric approaches have been developed to gen-
eralize the PCA to tensor data [3], for statistical segmentation of tensor images
[4], for computing a geometric mean and an intrinsic anisotropy index [5], or as
the basis for a full framework for Riemannian tensor calculus [6]. In this last
work, we endowed the space of tensors with an affine invariant Riemannian met-
ric to obtain results that are independent of the choice of the spatial coordinate
system. In fact, this metric had already been proposed in statistics [7], and turns
out to be the basis of all the previous differential geometric approaches.

2.1 A Riemannian Framework for Tensor Calculus

The invariant metric provides a new framework in which the limitations of Eu-
clidean calculus are fully overcome: it endows the tensor space with a very regu-
lar structure where matrices with null or negative eigenvalues are at an infinite
distance from any positive definite matrix. Moreover, the geodesic between two
tensors is uniquely defined, leading to interesting properties such as the existence
and uniqueness of the (geometric) mean [6].

On Riemannian manifolds, geodesics realize a local diffeomorphism, called the
exponential map, from the tangent space at a given point to the manifold itself.
This allows us to (locally) identify points of the manifold with tangent vectors.
With the invariant metric on tensors, the geodesic starting at Σ and with tangent
vector W can be expressed simply with the classical matrix exponential and the
(Riemannian) exponential map realizes a global diffeomorphism [6]:
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These two diffeomorphisms are the key to the numerical implementation and
generalization to manifolds of numerous algorithms that work on a vector space.
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Likewise, the Euclidean gradient descent scheme Σt+1 = Σt − ε∇C(Σt), which
could easily lead to a non-positive matrix, is advantageously replaced by the
geodesic marching scheme Σt+1 = expΣt

(−ε∇C(Σt)).

2.2 Dense Extrapolation of Sparse Tensors

Let us consider a set of N measures Σi of a tensor field Σ(x) at spatial positions
xi ∈ Rd. To access the value of the tensor field at any point, one could think
of interpolating or approximating these measures. We proposed in [6] a least
square attachment term to the sparsely distributed tensors, combined with a
regularization term to perform an estimation of the extrapolated tensor: C(Σ) =
Sim(Σ) + Reg(Σ). In a continuous setting, the data attachment term is:

Sim (Σ) =
1
2

N∑
i=1

dist2 (Σ (xi) , Σi) =
1
2

∫
Ω

N∑
i=1

dist2 (Σ (x) , Σi) δ (x− xi) dx.

The Dirac distributions δ(x − xi) are problematic when numerically differenti-
ating the criterion. To regularize the problem, we consider them as the limit of
a Gaussian function Gσ when σ goes to zero. Practically, σ has to be of the
order of the spatial resolution of the grid on which Σ(x) is estimated, so that
each measure influences its immediate neighborhood. After differentiating the
criterion, one obtains: ∇Simσ (x) = −

∑
i Gσ (x− xi) logΣ(x)(Σi).

Basically, the attachment term prevents the tensor field from deviating too
much from the measures at the points xi. In between these points, we need to
add a regularization term that ensures a homogeneous result. The simplest cri-
terion is the harmonic regularization: Reg(Σ) = 1

2

∫
Ω
‖∇Σ(x)‖2Σ . We showed in

[6] that the gradient of this criterion is ∇Reg (Σ) (x) = −∆Σ(x), and we pro-
vided a practical implementation of this Laplace-Beltrami operator on a tensor
field. Using the geodesic marching scheme, we compute at each point x of our
estimation grid the following intrinsic gradient descent:

Σt+1(x) = expΣt(x) (−ε∇Sim(x)− ε∇Reg(x)) . (1)

Finally, we can evaluate the extrapolated field Σ at any point x by tri-linear
interpolation of the values at the grid nodes.

However, due to the large number of tensors and the large domain of diffu-
sion used here (see next section), this algorithm converges slowly, even with a
multi resolution implementation. To improve the initialization and enable faster
convergence, in this paper we develop a RBF interpolation.

2.3 Extending RBFs to Extrapolate Tensors

RBFs provide a family of methods to extrapolate sparsely defined observations
[8]. The extrapolated scalar field is expressed as a linear combination of trans-
lated versions of a single radial function called the basis. Thus, if (yi) is a set of
scalar measures of the field y(x) at points xi, we find a set of scalar coefficients
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(λi) such that y(x) =
∑

i λih(x−xi). To interpolate the data, we find the coeffi-
cients such that y(xi) = yi, by solving the linear system ∀j : yj =

∑
i λih(xj−xi).

To ensure a unique solution exists for any set of measurements at any set of spa-
tial positions, the symmetric matrix H generated by [H]i,j = h(xi − xj) must
always be positive definite.

Scalar RBF extrapolation can be extended to vectors by simply running the
extrapolation on each component independently. To apply this method to ten-
sors, we map all tensors into the tangent space TΣM of a reference tensor Σ. We
then run the RBF extrapolation on the vectors logΣ(Σi) and map the resulting
values back into tensor space by the inverse mapping expΣ . Among the many
possible choices for a common reference tensor, we chose the mean Σ̄ of all tensor
measurements. Also, rather than letting the extrapolated values explode at in-
finity as with Thin Plate Splines, we use an interpolating function that decreases
toward zero at infinity, namely from the family h(x) = 1/

(
1 + (‖x‖2/α2)γ

)
. This

way, we can chose a meaningful asymptotic value for the interpolation: the global
mean of the tensors.

3 Modeling Brain Variability from Sulcal Lines

To model the spatial pattern of variability in brain structure, we chose to focus
on anatomically well defined 3D curves that could be manually delineated by
neuroanatomists and considered as ground truth data. This choice naturally
led us to the primary anatomical landmarks on the cortex: the sulcal lines.
Over 70 sulcal curves consistently appear in all normal individuals and allow a
consistent subdivision of the cortex into major lobes and gyri [9]. In the absence
of individual functional imaging data, sulci also provide an approximate guide
to the functional subdivisions of the cortex, for all of the lobes.

We use a dataset of sulcal lines, or sulci, manually delineated in 98 subjects
by expert neuroanatomists according to a precise protocol4. We included the
maximal subset of all sulcal curves that consistently appear in all normal subjects
(72 in total), with formal rules governing the handling of branching patterns,
breaks in sulci, and doubling of specific sulci (e.g. the cingulate). By repeated
training on test sets of brain images, the maximum allowed inter- and intra-rater
error (reliability) was ensured to be 2mm everywhere, and in most regions less
than 1mm, far less than the intersubject anatomical variance. Delineations were
made in 3D on cortical surfaces extracted from MR images linearly aligned to
the ICBM stereotactic space, thus providing a common coordinate system for
all traced curves. Next, we determined the mean curve for each sulcal line by
modeling samples as deformations of a single average curve. Based on the mean
sulcal line, for each sulcus, and the mapping from this curve to its instance in
each subject image, we can easily compute the local covariance matrix to create
our second order statistical model of the sulcal line.

4 Reference undisclosed for the review
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3.1 Learning Local Variability from a Sulcal Lines Dataset

Statistical models have frequently been constructed for objects such as open
curves, closed curves, surfaces [10–12]. In each of these examples, the aperture
problem occurs: without more specific anatomical knowledge, it is not possible
to recover the exact correspondences between instances of a surface or a curve.
Point-to-point correspondences of two instances of a sulcus are intrinsically sub-
ject to error, with greater tangential than normal uncertainty. In the absence
of further information, we propose a one-to-one correspondence mapping that
minimizes the influence of this error.

First, we denoise the sample lines by approximating them with B-splines. In
this continuous formulation, the number of degrees of freedom can be adjusted
to increase robustness to noise while avoiding resampling problems, as in [13].
Typically, we reduce the number of control points to one third of the original
sampling points.

Many criteria have been proposed in the literature to evaluate the appropri-
ateness of one-to-one correspondences between geometric objects. They usually
invoke local differential characteristics such as the tangent space, curvature [14],
the local Frenet frame for a curve on a surface, regional shape information [15].
In our case, the variability is so large (see Fig. 1), that using such refined mea-
sures is meaningless. Therefore, we simply use the total variance of curve models
as a criterion. Minimizing this variance greatly reduces the variability due to
inadequate correspondences. Practically, we alternately improve the correspon-
dences between the mean curves and each sample by dynamic programming and
optimize the average curve position by a first-order gradient descent with an
adaptive step. This optimization strategy converges after a few iterations.

For each of the 72 sulci, we now have the mean curve position c̄(t), param-
eterized by B-splines, and a one-to-one mapping that gives the corresponding
point ci(t) in each instance. The variability tensor Σ(t) along the mean sulcus
is: Σ (t) =

∑n
i=1 [ci(t)− c̄(t)] [ci(t)− c̄(t)]>/(n − 1). An example set of covari-

ance tensors estimated along the Sylvian Fissure is shown in Fig. 1. Variability is
greater at the extremities of the sulci. These points should be landmarks as they
are precisely identifiable by neuro-anatomists. We believe that the main part of
their variability is due to a bias when we estimate the position of the end points
of the mean curve. To remain consistent, we chose in this paper to remove this
information from our model, and focussed only on the interior part of the sulci.

3.2 Model Simplification using Tensor Interpolation

In the interior part of the sulci, the tensors are highly regular in size and shape.
Some of this information is therefore redundant and could be simplified by select-
ing only a few tensors at specific points along the mean sulcus, and interpolating
in between them. We use interpolation along the geodesic joining 2 tensors, be-
cause it preserves the monotonic evolution of the determinant. This is crucial
when interpolating two probability densities and is in general not possible with
direct interpolation. For efficiency reasons, we also selected the tensor values
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among the observed data rather than optimizing them as free parameters. This
operation has been automated in an algorithm called tensor picking.

Let Σ(ti) be a set of N covariance tensors defined at parameter ti along a
mean sulcus. Riemannian interpolation between them gives the tensor: Σ̃(t) =
expΣ(ti)[(t − ti)/(ti+1 − ti) logΣ(ti) (Σ(ti+1))] for ti ≤ t < ti+1. As we are
working only on the interior of the sulcus, t takes its values between t2 and
tN − 1, so that the interpolated variability Σ̃(t) is always defined. The tensor
picking operation consists of finding the optimal ti such that the least-square
error between the observed and interpolated variability tensors is minimized:
C (Σ) =

∫ tN

t1
dist2

(
Σ(t), Σ̃(t)

)
dt. To minimize this criterion, N points (i.e. ten-

sors) are uniformly chosen along the mean curve. Then, an exhaustive search for
the optimal point positions is done. If the criterion value at the optimal set is be-
low a given threshold (0.7 in our experiments), the tensors are picked, otherwise
the number of chosen tensors N is increased and the search is repeated.

Results of this operation are presented in Fig. 2 (middle panel): by choosing
tensors at adequate positions, one can accurately reconstruct the full variability
of each sulcus using 4 to 10 matrices, depending on its length and shape. The
variability of all the major sulci can be represented by about 310 variability
tensors out of 2000 initially.

3.3 Extrapolating the Variability to the Full Brain

The next step consists of extrapolating these selected tensors to the full brain,
using the framework developed in Sec. 2.2. Fig. 2 presents the result of the
extrapolation of our 310 tensors on discrete grid of size 91× 109× 91 and with a
spacing of 2×2×2 mm3 (ICBM 305 space). We used the parameter values α = 20
and γ = 0.95 for the RBF interpolation and σ = 2 for the discretization of the
data attachment term in the extrapolation (Eq. (1)).

The spatial pattern of variability agrees with established neuroanatomical
data. For instance, [16] computed the variability of the cortex surface in an
independent normal sample (15 controls) using a non-linear surface registration
algorithm. Fig. 3 compares his variability map with ours. Our model of variability
presents the same high values in the temporo-parietal cortex (red area, marked
“b” in Fig. 3) and low values in the superior frontal gyrus (marked “a” in Fig. 3),

Fig. 1. Sulcal variability. Left: The Sylvian Fissure mean curve (in red) with traces
from 98 healthy normal individuals (in green and yellow). Right: 50 covariance matrices
(1 σ ellipsoids) are overlaid on the mean sulcus. Note that the very first and last tensors
are larger than the interior ones.
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Broca’s language area, and the lower limits of the primary sensorimotor cortices
in the central and precentral gyri. Phylogenetical older areas (e.g. orbitofrontal
cortex), and primary cortices that myelinate earliest (e.g. primary somatosensory
and auditory cortex) exhibit least variability. The planum parietale (marked “b”
in Fig. 3) consistently shows the highest variance of any cortical area, consistent
with the complex pattern of secondary fissures surrounding the supramarginal
and angular gyri (the perisylvian language cortex). It is also reasonable that the
temporo-parietal areas around the Sylvian fissures are the most variable: they
specialize and develop in different ways in each hemisphere, and are also the
most asymmetric in terms of gyral patterning and volumes.

3.4 Validation of the Variability Model

Validating our extrapolated variability model is a tough issue. Obviously, using
the information given by the sulci is not enough to infer the variability of the

Fig. 2. Accessing the full brain variability step by step. The color bar is the
same as in Fig. 3. Left: Covariance matrices calculated along the mean sulci. Middle:
Matrices selected by the tensor picking operation. Right: Result of the extrapolation.

Fig. 3. Comparison of two independent models of brain variability. The scalar
value mapped on the mean cortex is the trace of the tensors (the variance). Left: Cor-
tical variability map from [16]. Right: Extrapolation of our simplified sulci variability
model to the full brain (the display is restricted to the cortex). Note the similarity in
the superior frontal gyrus (a) and the temporo-parietal cortex [shown in red colors (b)].
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full brain, particularly within the brain (e.g. in the white matter, ventricles and
deep gray matter nuclei). Moreover, we have no ground truth in these areas to
validate the predicted variability. Thus, we restrict the evaluation of the predic-
tive power of our model to the places where we have enough data: on the cortex.
The first idea is to see how well our interpolation and extrapolation models fits
the observed variability along each sulcus. This yields a root mean square er-
ror (RMSe) assessing the fidelity of the approximation. Then, we can perform a
“leave one sulcus out” test to see if a group of sulci can correctly predict the vari-
ability of another sulcus in their neighborhood. This would mean that the model
can effectively find missing data (the measures are independent) and somehow
predict the variability of missing structures in our datasets.

Intra-Sulcus Variability Recovery We computed the “difference” or error
vector between the observed variability tensor and the reconstructed one with
our interpolation and extrapolation methods. We found that the mean errors
were not significantly different from zero (p-value of 0.25 at the Hotelling’s test).
Second, we found a standard deviation of σref = 0.15 for the interpolation error.
This value gives us a lower bound on the range of the reconstruction errors. The
slightly higher value of 0.21 for the extrapolation error could be attributed to
the aperture problem: in regions with orthogonal sulci, the normal component
of one tensor influences the tangential part of its perpendicular neighbors and
vice versa, which misleads the reconstruction. After removing these “outliers”,
the error distributions after interpolation and extrapolation are comparable.

Leave One Sulcus Out This test removes one sulcus and its variability tensors
from the model and extrapolates the rest of the data to the full brain. Then,
the prediction error made on this specific sulcus is compared to the interpolation
and extrapolation errors. As the measures are independent, an error below 3σref

is not significant and shows that our extrapolation model recovers the missing
variability information up to the intrinsic reconstruction uncertainty. However, a
RMSe larger than 3σref means that we do not recover a comparable variability
in at least one direction. We know that an uncertainty in the tangent of the
mean sulcus could be induced by the aperture problem. To remove this effect,
we “project” the error vector onto the plane perpendicular to the tangent of the
mean sulcus. Thus, the error component in this direction is zeroed out. We will
call this error the “partial error”.

This test is performed on 3 sulci: the Sylvian Fissure, the Superior Tem-
poral Sulcus Main Body and the Inferior Temporal Sulcus. Fig. 4 displays the
reconstructed sulci after extrapolation with and without their variability tensors
while Table 1 summarizes the global RMSe statistics. The prediction error with
missing sulci is globally 2 to 3 times larger than that incurred by interpolat-
ing or extrapolating the full model, but the difference is not high enough to be
significant. However, errors are locally significant. In some places, like for the
Sylvian Fissure, the prediction errors occur primarily in the tangential direction
to the mean sulcus. Such behavior was expected due to the aperture problem
and is confirmed by the “partial” error that is much lower than the standard
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Sulcus Sylvian Fiss. Sup. Temporal Inf. Temporal.

Interpolation 0.12 - 0.10∗ 0.17 - 0.15∗ 0.17 - 0.14∗

Extrapolation 0.18 - 0.13∗ 0.21 - 0.17∗ 0.17 - 0.15∗

Extrapolation w/o sulcus 0.43 - 0.27∗ 0.37 - 0.32∗ 0.27 - 0.22∗

Table 1. RMSe of reconstruction of 3 sulci with the interpolation, extrapolation and
leave one-sulcus out extrapolation methods. * indicates the “partial error” (Sec. 3.4).

error. By contrast, the variability of some sulci like the Central Sulcus cannot
be correctly recovered from neighboring sulci: the error is not only due to the
aperture problem but spatial correlations between adjacent sulci may be lower
in some brain regions, making variations more difficult to predict.

3.5 Analysis of the Asymmetry of Brain Variability

The study of asymmetry in brain variability is of great interest for neuroscien-
tists [17], and measures of structural and functional lateralization are of interest
in mapping brain development, and disorders such as dyslexia and schizophre-
nia. The two brain hemispheres develop according to slightly different genetic
programs, and the right hemisphere is torqued forward relative to the left, with
greatest volume asymmetries in the planum temporale and language cortex sur-
rounding the Sylvian fissures (typically larger in the left hemisphere). If the types
of variation in the two hemispheres could be differentiated, their genetic basis
would be easier to investigate. It could also help understand whether there is an
asymmetry in the power to detect group activation in functional brain imaging
studies, due to structural variance asymmetries.

We therefore measured the symmetry/asymmetry of brain variability using
our extrapolation model. The main principle is to compute the distance between
the variability tensor at one point and the (symmetrized) tensor at the symmet-
ric point in the brain. To define the symmetric point, we may simply use the 3D

Fig. 4. Result of the “leave one sulcus out” test. Left: Positions of the 3 tested
sulci in the ICBM305 space. Middle: variability of each sulcus after extrapolation
of the complete model. The color bar is the same as in Fig. 3. Right: extrapolated
variability from the neighboring sulci only. Top: the Sylvian Fissure, middle: the
Superior Temporal Sulcus main body, bottom: the Inferior Temporal Sulcus.
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Fig. 5. Maps of the asymmetry of the brain variability. Red to purple colors
indicate a significant asymmetry. Left: Asymmetry of the 3D extrapolation w.r.t. the
mid-sagittal plane. Middle: Difference vectors between left-right variability tensors.
Right: Extrapolation to the 3D volume of the “asymmetry vectors” of the previous
figure.

position that is symmetric w.r.t. the mid-sagittal plane in the stereotaxic space
(ICBM 305). In that case, we compute a dense asymmetry map from the ex-
trapolated tensor values at each 3D point of a hemisphere (Fig. 5, left). We may
also retrieve the corresponding points between each left and right mean sulcus
by mapping the left sulci into the right hemisphere and computing the corre-
spondences using the matching algorithm of Sec. 3.1. In that case, we end up
with an error tensor measuring the asymmetry along each sulcus (Fig. 5 middle).
This error tensor is finally extrapolated to the full brain using once again the
framework previously developed (Fig. 5, right). A very interesting feature is that
the regions with greatest asymmetries in variability include the 2 main language
areas, Broca’s speech area (see pink colors in the inferior frontal cortex) and
Wernicke’s language comprehension area (yellow and red colors surrounding the
posterior Sylvian fissure). As expected, these areas vary more on the left hemi-
sphere which is dominant for language. The greater left hemisphere variation
may be attributable to the greater volumes of structures such as the planum
temporale in the left hemisphere. Also as expected, the primary sensorimotor
areas (central and pre-central gyri) are relatively symmetric in their variance,
as the absolute variability is lower, as is their degree of hemispheric specializa-
tion (i.e. they perform analogous functions in each hemisphere, but innervate
opposite sides of the body).

4 Discussion

This paper applies a powerful Riemannian framework for tensor computing to
extrapolate sparsely distributed tensors. We extend a RBF extrapolation method
combined with diffusion PDEs. While the RBF provides a good initialization,
the diffusion with attachment to the measures results in a smooth tensor field
that stays close to the observed measures and converges in a few iterations. We
applied this methodology to model the profile of brain variability, where tensors
are measured along sulcal lines that are consistently anatomical landmarks.

When modeling variability, the main weakness is the unknown variability
along the direction tangent to the mean sulci (aperture problem). We intend
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to tackle this point by first improving our sulcal matching algorithm to safely
use the landmark information at the ends of sulci, and second by removing
the data attachment term in the direction of the sulcal tangent. Doing this,
the neighboring information could diffuse freely in that direction and hopefully
reconstruct a globally coherent variability. For the model validation, we need to
compare to other sources of information, like the variability obtained from the
matching of surfaces (e.g. ventricles or basal ganglia), fiber pathways mapped
from DTI, or of full 3D images. As these sources of information are also subject
to an aperture problem (we mainly retrieve the deformation in the direction of
the gradient of the image), we expect to obtain a good fit in some areas, but we
require complementary measures in other areas.

These results are also interesting neuroscientifically. Variance and the asym-
metry of variability are greatest in language areas, which have fundamentally
different developmental programs in each brain hemisphere, leading to volu-
metric and functional asymmetries (e.g. left hemisphere language dominance).
This variance asymmetry was also seen in Broca’s area, which is specialized in
the left hemisphere for producing speech, but is less commonly associated with
structural asymmetries. Lower variance was seen in cortical regions subserving
primary brain functions (e.g., touch, motor function, hearing) and these areas are
the earliest to mature in utero. The modeling of variance is practically valuable
for understanding the genetic and disease related factors that affect brain struc-
ture, which are currently hard to identify given the extremely complex patterns
of variation in normal anatomy.
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