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Abstract: In this work, we present a general framework to define rigorously a novel
type of mean in Lie groups, called the bi-invariant mean. This mean enjoys many desirable
invariance properties, which generalize to the non-linear case the properties of the arithmetic
mean: it is invariant with respect to left- and right-multiplication, as well as inversion.
Previously, this type of mean was only defined in Lie groups endowed with a bi-invariant
Riemannian metric, like compact Lie groups such as the group of rotations. But Riemannian
bi-invariant metrics do not always exist. In particular, we prove in this work that such
metrics do not exist in any dimension for rigid transformations, which form but the most
simple Lie group involved in bio-medical image registration.

To overcome the lack of existence of bi-invariant Riemannian metrics for many Lie groups,
we propose in this article to define bi-invariant means in any finite-dimensional real Lie group
via a general barycentric equation, whose solution is by definition the bi-invariant mean. We
show the existence and uniqueness of this novel type of mean, provided the dispersion of the
data is small enough, and the convergence of an efficient iterative algorithm for computing
this mean has also been shown. The intuition of the existence of such a mean was first
given by R.P.Woods (without any precise definition), along with an efficient algorithm for
computing it (without proof of convergence), in the case of matriz groups.

In the case of rigid transformations, we give a simple criterion for the general existence
and uniqueness of the bi-invariant mean, which happens to be the same as for rotations.
We also give closed forms for the bi-invariant mean in a number of simple but instructive
cases, including 2D rigid transformations. Interestingly, for general linear transformations,
we show that similarly to the Log-Euclidean mean, which we proposed in recent work, the
bi-invariant mean is a generalization of the (scalar) geometric mean, since the determinant
of the bi-invariant mean is exactly equal to the geometric mean of the determinants of the
data.

Last but not least, we use this new type of mean to define a novel class of polyaffine
transformations, called left-invariant polyaffine, which allows to fuse local rigid or affine
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2 Arsigny et al.

components arbitrarily far away from the identity, contrary to Log-Fuclidean polyaffine
fusion, which we have recently introduced.

Key-words: Bi-invariant means, Fréchet means, Statistics, Lie groups, Riemannian ge-
ometry, Polyaffine transformations
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Moyennes bi-invariantes dans les groupes de Lie.
Application aux transformations polyaffines
invariantes a gauche.

Résumé : Dans ce travail, nous présentons un cadre général pour définir rigoureusement
un nouveau type de moyenne dans des groupes de Lie, appelé moyenne bi-invariante. Cette
moyenne posséde de nombreuses propriétés d’invariance, qui généralisent au cas non-linéaire
les propriétés de la moyenne arithmétique: cette moyenne est invariante par multiplication &
gauche, & droite, ainsi que par inversion. Précédemment, ce type de moyenne avait seulement
été défini dans des groupes de Lie dotés d’une métrique riemannienne bi-invariante, comme
les groupes de Lie compacts tels que le groupe de rotations. Mais une métrique riemannienne
bi-invariante n’existe pas toujours. En particulier, nous prouvons dans cet article qu’une
telle métrique n’existe jamais pour pour les transformations rigides, qui forment pourtant
dans le groupe de Lie le plus simple impliqué dans le recalage d’images bio-médicales.

Pour surmonter ’absence d’existence d’une métrique riemannienne bi-invariante pour de
nombreux de groupes de Lie, nous proposons dans cet article de définir une moyenne bi-
invariante dans tout groupe de Lie réel de dimension finie par 'intermédiaire d’'une équation
barycentriqgue trés générale, dont la solution est par définition la moyenne bi-invariante.
Nous montrons dans cet article I’existence et 'unicité de cette nouvelle moyenne, dans le cas
ou la dispersion des données est assez petite ; nous montrons également la convergence d’un
algorithme itératif efficace permettant de calculer cette moyenne en pratique. L’intuition
de l’existence d’un tel type de moyenne a été fournie originellement par R.P.Woods (sans
toutefois de définition précise de cette moyenne), ainsi que Palgorithme permettant de la
calculer efficacement (sans preuve de convergence), dans le cas particulier des groupes de
matrices.

Dans le cas des transformations rigides, nous donnons un critére simple et général pour
lexistence et l'unicité de la moyenne bi-invariante, qui s’avére étre le méme que pour les
rotations. Dans un certain nombre de cas simples mais instructifs, nous donnons également la
forme analytique prise par la moyenne bi-invariante, en particulier pour les transformations
rigides 2D. Pour les transformations linéaires générales, nous montrons que de maniére
similaire aux moyennes log-euclidiennes, que nous avons proposées dans des travaux récents,
la moyenne bi-invariante est une généralisation aux transformations linéaires inversibles de
la moyenne géométrique (scalaire), puisque le déterminant de la moyenne bi-invariante est
exactement égale a la moyenne géométrique des déterminants des données.

Enfin, nous utilisons ce nouveau type de moyenne afin de définir une classe nouvelle
de transformations de polyaffines, appelée polyaffines invariantes a gauche, qui permet de
fusionner des composantes locales rigides ou affines arbitrairement lointaines de lidentité,
contrairement & la fusion log-euclidienne polyaffine, que nous avons récemment proposée.

Mots-clés : Moyennes bi-invariantes, moyennes de Fréchet, statistiques, groupes de Lie,
géometrie riemannienne, transformations polyaffines
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Bi-invariant Means in Lie Groups 5

1 Introduction

In recent years, the need for rigorous frameworks to compute statistics in non-linear spaces
has grown considerably in the bio-medical imaging community. First, a number imaging
modalities, like diffusion MRI (or dMRI) [1, 2, 3], provide researchers with data which do
not live in a linear space, and nonetheless require post-processing (re-sampling, regulariza-
tion, statistics, etc.). See for instance [4] for examples of Riemannian statistics on diffusion
tensors and [5] for statistics on rigid transformations, in the context of the analysis of the sta-
tistical properties of the human scoliosis. Second, the one-to-one registration of bio-medical
images naturally deals with data living in non-linear spaces, since many types of invertible
geometrical deformations belong to groups of transformations, which are not vector spaces.
These groups can be finite-dimensional, as in the case of rigid or affine transformations, or
infinite-dimensional as in the case of groups of diffeomorphisms parameterized with time-
varying speed vector fields [6].

Among statistics, the most fundamental is certainly the mean, which extracts from the
data a central point, minimizing in some sense the dispersion of the data around it. In this
paper, we focus on the generalization of the Fuclidean mean to Lie Groups, which are a
large class of non-linear spaces with relatively nice properties. Classically, in a Lie group
endowed with a Riemannian metric, the natural choice of mean is called the Fréchet mean
[7]. But this Riemannian approach is completely satisfactory only if a bi-invariant metric
exists, which is for example the case for compact groups such as rotations [7, 8]. The bi-
invariant Fréchet mean enjoys many desirable invariance properties, which generalize to the
non-linear case the properties of the arithmetic mean: it is invariant with respect to left- and
right-multiplication, as well as inversion. Unfortunately, bi-invariant Riemannian metrics
do not always exist. In particular, in this work, we prove the novel result that such metrics
do not exist in any dimension for rigid transformations, which form but the most simple Lie
group involved in bio-medical image registration.

To overcome the lack of existence of bi-invariant Riemannian metrics for many Lie groups,
we propose in this article to define a bi-invariant mean generalizing the Fréchet mean induced
by bi-invariant metrics, even in cases when such metrics do not exist. The intuition of the
existence of such a mean was actually first given in [9] (without any precise definition), along
with an efficient algorithm for computing it (without proof of convergence), in the case of
matriz groups.

In this work, we present a general framework to define rigorously bi-invariant means, this
time in any finite dimensional real Lie group. To do this, we rely on a general barycentric
equation, whose solution is by definition the bi-invariant mean. We show the existence and
uniqueness of this novel type of mean, provided the dispersion of the data is small enough,
and the convergence of the classical iterative algorithm of [9] is also shown.

In the case of rigid transformations, we have been able to determine a simple criterion
for the general existence and uniqueness of the bi-invariant mean, which happens to be the
same as for rotations. We also give closed forms for the bi-invariant mean in a number of
simple but instructive cases, including 2D rigid transformations. Interestingly, for general
linear transformations, we show that similarly to the Log-Euclidean mean, that we recently
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proposed in [10], the bi-invariant mean is a generalization of the (scalar) geometric mean,
since the determinant of the bi-invariant mean is exactly equal to the geometric mean of the
determinants of the data.

Last but not least, this new type of mean is used to define a novel class of polyaffine
transformations, called left-invariant polyaffine, which allows to fuse local rigid or affine
components arbitrarily far away from the identity, contrary to Log-Euclidean polyaffine
fusion, which we recently introduced in [11].

The sequel of this article is organized as follows. First, we recall the fundamental prop-
erties of Lie groups and of invariant Riemannian metrics in these spaces, and prove that
bi-invariant Riemannian metrics do not exist for rigid transformations. Then, we detail
the properties of the group exponential and logarithm in Lie groups. In the next Section,
we rely on these properties to obtain a novel definition of bi-invariant means in any finite-
dimensional real Lie groups, along with a proof of its existence and uniqueness and we also
prove the convergence of the efficient iterative scheme proposed in [9] to compute this mean
in practice. Then, we explicit the form taken by the bi-invariant mean in a number of simple
cases where a closed form exists for this mean, e.g. the Heisenberg group. Afterwards, we
focus on linear transformations, and in particular on rigid transformations and tensors. Last
but not least, we rely on bi-invariant means to define a novel class of polyaffine transforma-
tions, called left-invariant polyaffine, which allows to fuse local rigid or affine components
arbitrarily far away from the identity.

2 Means in Lie Groups

Notations. In the sequel of this article, we will use a number of notations, which are listed
below. We begin with notations for usual matrix groups and submanifolds:

e GL(n) is the group of real invertible n x n matrices, and more generally, for any (finite
dimensional) vector space E, GL(E) will be the group of invertible linear operations
acting on F.

e SL(n) is the special linear group, i.e. the subgroup of matrices of GL(n) whose deter-
minant is equal to 1.

e O(n) is the group of orthogonal transformations, i.e. square matrices satisfying R.RT =
Id, where Id is the identity matrix and R” is the transposed matrix of R.

e SO(n) is the special orthogonal group, better known has the group of rotations. It is
the subgroup of O(n) whose elements satisfy det(R) = 1.

e SE(n) is the group of special Fuclidean transformations, i.e. the group of rigid dis-
placements.

e M (n) is the space of real n x n square matrices.

e Symy (n) is the space of symmetric positive-definite real n x n matrices.

INRIA



Bi-invariant Means in Lie Groups 7

e Sym(n) is the vector space of real n x n symmetric matrices.

General (abstract) Lie group notations:

e when G is a Lie group, its neutral element will be written e, and a typical element of
G will be m. The Lie algebra of G will be written g.

e the tangent space of G at point m will be referred to as T},,G, which can be intuitively
thought of as the linear space ‘best approximating’ G around m.

e we denote L,, (resp. R,,) the left- (resp. right-)multiplication by an element m € G.
Furthermore, we will let Inv : G — G be the inversion operator.

e if a mapping ® : G — G is differentiable, we write D,, ® its tangent map (or differential
map) at m. D, ® is a mapping from 7),,G to T ()G, which means that to a tangent
vector located at m (which is basically an infinitesimal displacement) it associates
a tangent vector at ®(m) (another infinitesimal displacement, ‘living’ in a different
vector space).

2.1 Lie Groups

Definition of Lie groups. We start by recalling the basic properties of Lie groups, along
with the convenient notions which are classically used to describe these properties. Typical
examples of such groups are groups of geometrical transformations (e.g., rigid or affine
transformations), where the multiplication is the composition of mappings.

In simple terms, a Lie group is first a group in the algebraic sense, i.e. a set of elements in
which a multiplication between elements is defined. This multiplication is assumed to have
neat and intuitive properties: it is associative ((a.b).c = a.(b.c)), it has a neutral element e
and each element a has a unique inverse a~'.

Second, a Lie group has a structure of (smooth, i.e. C*) differential manifold. This
means that it is locally similar to a vector space, but can be quite ‘curved’ globally.

Third, the algebraic and differential are structures compatible: inversion and (left- and
right-) multiplications are smooth mappings. This means that it is possible to indefinitely
differentiate them. For more formal definitions and more details, please refer to classical
differential geometry books like See [12] or [13].

Examples. Many usual sets can be viewed as Lie Groups. Namely:

e vector spaces
o multiplicative matriz groups: GL(n), O(n), SO(n), etc.

o Geometric transformation groups such as rigid transformations, similarities, affine
transformations... which can anyway also be looked upon as matrix groups via their
‘faithful’ representation based on homogeneous coordinates.

RR n° 5885
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e some infinite-dimensional Lie groups of diffeomorphisms have also been recently gain-
ing much importance in computational anatomy [6]. Due to the high level of techni-
cality needed to deal with such infinite-dimensional spaces, we will not consider this
type of Lie groups in this work.

Lie Algebra and Adjoint Representation. We will need a number of notions classically
used to describe the properties of Lie groups. They are the following:

e To any vector v € T.G, i.e. to any tangent vector to G at the identity can be associated
in a one-to-one manner a left-invariant vector field X, defined by X, (m) = D.L,,.v,
i.e. simply by left-multiplying v.

e we can give (T.G,+,.), which is by construction a vector space, a structure of Lie
algebra, i.e. give it an extra algebraic operation which is an associative and bi-linear
inner product called the Lie bracket, denoted here [,]. This operation closely reflects
the multiplicative properties of the group G. In particular, for commutative Lie groups,
the Lie bracket is always null.

This inner product is actually derived from general Lie bracket on smooth vector fields,
since (T.G,+,.,[,]) can be considered as a Lie subalgebra of vector fields on G, since
we can identify T.G with the set of left-invariant vector fields.

As mentioned previously, the notation for the Lie algebra of G will be in this article
g- It has a number of remarkable algebraic properties (in addition to its associativity
and bi-linearity) which are the following;:

i) Ya,b € g, [a,b] = —[b,a] (‘anti-commutativity’), which implies [a,a] =0
ii) Va,b,c € g, [a,[b,c]] + [¢, [a, b]] + [b, ¢, a]] = 0 (Jacobi identity).

Simple examples of Lie brackets is are given by GL(n) and its multiplicative subgroups,
like SL(n) or SO(n). In these cases, the Lie algebra is a vector space of square matrices,
and the Lie bracket between two elements M and N of this algebra is the commutator
of these two matrices, i.e. [M,N] = M.N — N.M. In particular, the Lie algebra of
GL(n) is M(n), that of SL(n) is the subvector space of M (n) of matrices with a trace
equal to zero, and the Lie algebra of SO(n) is the vector space of skew symmetric
matrices. For a complete account on Lie Algebras, see [14].

e G can be ‘represented’ by a group of matrices acting on g, via what is called its adjoint
representation, Ad(G). We will see that the properties of this representation and the
existence of bi-invariant metrics for the group G are highly linked.

This means that one can map each element of the group into a linear operator (i.e., a
matrix) which acts on the Lie algebra. More precisely, an element m of G acts on an

INRIA
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element v of g by Ad(m).v = ‘m.v.m~ 1. This operation is called a representation

in the sense of representation theory (see [15] for a complete treatment), which means
that this mapping is compatible with the Lie group structure of G. This compatibility
consists of the following properties:

i) Ad(e) = Id

ii) Vm € G, Ad(m~?!) = Ad(m)~!
iii) Vm,n € G, Ad(m.n) = Ad(m).Ad(n)
iv) Ad: G — GL(g) is smooth.

This amounts to saying that Ad is a smooth group homomorphism (or Lie group ho-
momorphism).

2.2 Means and Algebraic Invariance

Lie groups are not vector spaces in general but have a more complicated structure: instead
of a (commutative) addition ‘+’ and a scalar multiplication ‘.’; they only have a (non-
commutative in general) multiplication ‘x’ and an inversion operator (which corresponds to
the scalar multiplication by —1 for vector spaces).

How should one generalize the notion of mean to this type of non-linear space? To do
o, one can rely on the invariance properties that the mean should a priori satisfy, in order
to generalize the invariance properties of the arithmetic mean in vector spaces.

Indeed, in the case of vector spaces, the arithmetic means presents strong invariance
properties: invariance with respect to any translation and with respect to any multiplication
by a scalar. This means that the arithmetic mean is invariant with respect to all the algebraic
operations induced by the vector space structure. It makes good sense that the notion of
mean and the algebraic structure should be compatible.

In the case of groups, the invariance with respect to left- and right-multiplications (the
group can be non-commutative) and the inversion operator are the equivalent of the invari-
ance properties associated to the mean in vector spaces. When we translate a given set of
samples or a probability measure, it is reasonable to wish that their mean be translated
exactly in the same way, and the same property is desirable when we take the inverses of
the samples.

Example 1. The Geometric Mean of positive numbers. We can give to the set of
positive numbers a structure of commutative group with the usual multiplication in R. In
this context, let (x;) be N positive numbers and (w;) be N non-negative normalized weights

1To be completely rigorous, one has to resort to the (more complicated) differentials of left- and right-
multiplication. This yields: Ad(m).v = ¢ mow.m™! * = D, -1Lmn.DeR,,—1.v = DR, —1.DeLim.v by
associativity of the group multiplication. In the matrix case, we do have the (simple this time) formula:
Ad(R).M = R.M.R~1, which only uses two matrix multiplications and one matrix inversion.

RR n° 5885
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(>, w; = 1). The arithmetic mean of the data is invariant with respect to multiplication,
but not with respect to inversion:
5 1 1 . ] (1)
w;— # ——— in general.
! ll’i Ezwzxz g
Thus the arithmetic mean is not fully adapted to this multiplicative structure. On the con-
trary, the geometric mean, written here E((z;), (w;)), s fully adapted. It is given by:

E((z;), (w;)) = exp(Z;w; log(x;)). (2)
We recall the classical convezity inequality between the two means:
exp(Z;w; log(z;)) < Tiw;z4, (3)

whenever the data is not reduced to a single point.

How Can We Define Invariant Means? A classical approach to define a notion of mean
compatible with algebraic operations is to define first a distance (or metric) compatible with
these operations and then to rely on this distance to define the mean.

Means and Distances. For a short time, let us now consider the problem of defining
means in the general setting of metric spaces, i.e. the sets on which a distance is defined.
To make the notion of mean compatible with the metric, one can rely on the intuitive idea
of minimal variance or dispersion to define the mean, because a metric provides a way of
quantifying how close (or far away) two elements are from each other in a metric space
(E,dist) . More precisely, the mean can be defined as the point E(X) which minimizes
some kind of dispersion dispersion of the data (X;)¥_, around itself (with respect to some
non-negative nomalized weights (w;)), for example:

E(X;) = arg min Z w;.dist(X;, Y)*. (4)
YeE .

The case o = 2 corresponds in vector spaces to the arithmetic mean, and in other spaces to
their generalization, called the Fréchet mean [7]. For @ = 1, one obtains the generalization of
the median. One should note that the dispersion may have several minimizers. For instance,
this is classically the case in vector spaces for a = 1, essentially because in this case the
dispersion it is not strictly convex, contrary to the case o > 1. Even when a > 1, the
dispersion of the data X; should not be too high in order to guarantee that the dispersion
has a unique global minima [7].

2.3 Bi-invariant Fréchet Means via Invariant Metrics in Lie Groups

In the case of Lie groups, we will see here how one can (or cannot) define a distance com-
patible with algebraic operations and the differentiable structure of these groups.

INRIA
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Riemannian Metrics and Geodesics. The distances (or metrics) compatible with the
differentiable structure of differentiable manifolds are called Riemannian metrics.

Basically, the idea is to define smoothly in each tangent space T,,G a scalar product
< .,.>r1,g- The distance between two points m and n is then obtained by computing the
minimal length of a smooth curve ¢(¢) joining them in one unit of time. We recall that the
length I(c) of ¢ is classically given by:

Z(C):/;

A smooth curve of minimal length between two points is called a geodesic, and if there is a
unique geodesic between two points, this curve is called a minimizing geodesic. Interestingly,
for any given point in a smooth manifold endowed with a Riemannian metric, there exists an
open neighborhood of this point which is geodesically convez, i.e. where any couple of points
can be joined by a minimizing geodesic. When two points are ‘far’ apart, there can fail to
be any geodesic between them (think of a set with several connected components) or on the
contrary several geodesics (possibly an infinity) can join these points (think of antipodal
points on a sphere). For details on the existence and possible uniqueness of geodesics, see
for example [13].

dc

— t.
dt d

Te)G

(t)

Invariance Properties of Riemannian Metrics. Let us now detail the different types
of invariance (or compatibility) that can exist between a Riemannian metric on a Lie group
and its algebraic properties. They are the following:

o ‘left-invariance’: the metric is invariant with respect to any multiplication on the left.
Another useful way of phrasing this is to say that left-multiplications are isometries
of G, i.e. do not change distances between elements of G.

In terms of scalar products and differentials, this means precisely that for any two
points m and h of G and any vectors v and w of 7T,,G, we have:
< DpLyv, D, Lpw >T o mG=< UV, W >T, G-

e ‘right-invariance’: invariance with respect to any multiplication on the right.

e ‘inversion-invariance’: invariance with respect to inversion. The inversion operator is
then an isometry of G.

These properties are not independent. This simply comes from the fact that for any two
elements m,n of G, we have (m.n)~! = n=L.m~!. This implies for example that the left-
multiplication can be obtained smoothly from one right-multiplication and two inversions
in the following way: L., = Invo R,,-1 o Inv.

A simple (but rarely mentioned in classical references on Lie groups) consequence of this
is that all right-invariant metrics can be obtained from left-invariant metrics by ‘inversion’,
and vice versa. Indeed, we have:

RR n° 5885
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Proposition 1. Let <,> be a left-invariant Riemannian metric defined on G. Then the
“inverted’ metric <, >, defined below, is right-invariant, and moreover we have <,>.=<
)y Pe-

For any two points m and h of G and any vectors v and w of T,,G, we define the inverted
metric <,>> as follows:

d
L V,W >y, §f< Dy Inv.o, Dy Inv.aw ST ag -

Proof. Actually, the proof relies only on differentiating the equality (h.m)~! = m~1.h~L
This yields:
Dy mInvo Dy Ly = D,,—1 Ry—1 0 Dy Inv.

This allows to show directly that:
<L Dy Rpv, Dy Ry ow > .6=< v, w >T, 3,

which means that <,>> is right-invariant.

Last but not least, the equality <, >.=<, >, comes from the fact that quite intuitively
Dc.Inv = —Id, where Id is the identity operator in 7.G. This can be easily seen from
the classical result D, exp = Dglog = Id and the equality (valid in an open neighborhood
of ) m™! = exp(—log(m)), where exp and log are the group exponential and logarithm,
presented in detail in the sequel of this article. O

Corollary 1. ‘Left-invariance’ (resp. ‘right-invariance’) and ‘inversion-invariance’ imply
‘right-invariance’ (resp. ‘left-invariance’).

Proof. We have just seen in Proposition 1 that right-invariant metrics can be obtained
by composition between left-invariant metrics and the inversion operator, and vice versa
for left-invariant metrics. If left-multiplications and inversion are isometries, so are right-
multiplications by composition. O

Riemannian metrics which are simultaneously left- and right- invariant are called bi-
invariant. On these special metrics, we have the very interesting result:

Theorem 1. Bi-invariant metrics have the following properties:
1. A bi-invariant metric is also invariant w.r.t. inversion
2. It is bi-invariant if and only if Vm € G, Ad(m) is an isometry of the Lie algebra g
3. One-parameter subgroups of G are geodesics for the bi-invariant metric
Proof. See [12], chapter V. O

From this result and Proposition 1, we see that any two invariance properties imply the
third.

INRIA
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Bi-invariant Means. We have seen that a metric structure induces a notion of mean
called the Fréchet mean. The Fréchet mean associated to a bi-invariant metric is called
the bi-invariant mean. Actually, it does not depend on the particular choice of bi-invariant
metric, since whenever the bi-invariant mean is uniquely defined, it is given as the solution
of a barycentric equation [7] which is independent from the arbitrary choice of bi-invariant
metric.

Since the metric inducing the notion of mean is bi-invariant, so is the mean, which is
then fully compatible with the algebraic properties of the Lie group. As a consequence, this
notion of mean is particularly well-adapted to Lie groups [7]. However, contrary to left- or
right- invariant metrics, which always exist 2 , bi-invariant metrics may fail to exist, and we
will now see under which conditions bi-invariant metrics exist for a given Lie group.

Compactness of the Adjoint Representation From Theorem 1, we see that if a bi-
invariant metric < .,. > exists for the Lie group G, then Vm € G, Ad(m) is an isometry of g
and can thus be looked upon as an element of the orthogonal group O(n) where n = dim/(G).
Then, note that O(n) is a compact group, and that therefore Ad(G) is necessarily included
in a compact set, a situation called relative compactness. This notion provides indeed an
excellent criterion, since we have:

Theorem 2. The Lie group G admits a bi-invariant metric if and only if its adjoint repre-
sentation Ad(G) is relatively compact.

Proof. We have already seen the first implication. For the converse part, the theory of
differential forms and their integration can be used to explicitly construct a bi-invariant
metric. This is done in [12]|B, Theorem V.5.3. O

Compactness, Commutativity and Bi-invariant Metrics. In the case of compact Lie
groups, we have the property that their adjoint representation is the image of a compact
set by a continuous mapping and is thus also compact. Then, Theorem 2 implies that bi-
invariant metrics exist in such a case. In particular, this is the case of rotations, for which
bi-invariant means have been extensively studied and used [7]. This is also trivially the case
of commutative Lie groups, where only one type of multiplication exists, which reduces the
adjoint representation to {Id}. An illustration of this situation is given by the Lie group
structure on symmetric positive-definite matrices we recently proposed in [16, 17, 18].

As shown by Theorem 2, the general non-compact and non-commutative case is not
so nice, and one has to carefully check the properties of the adjoint representation of the
Lie group to see whether a bi-invariant metric exists or not. This verification has to be
done all the more carefully that non-commutativity and non-compactness are necessary but
not sufficient to prevent the existence of bi-invariant metrics, as shown in the following
paragraph.

2Tt suffices to propagate an arbitrary scalar product defined on T.G to all tangent spaces by left- or
right-multiplication to generate all left- or right-invariant Riemannian metrics.
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An Example in the Non-Compact and Non-Commutative Case. We have already
seen that any compact or commutative Lie group has at least one bi-invariant metric. From
this remark, one can easily construct an example of non-compact and non-commutative
group having a bi-invariant metric: let G; be a commutative non-compact group and G be
a compact non-commutative group. They both have a bi-invariant metric. Let G = G; X G
be their direct product, i.e. the group obtained with the multiplication (g}, g5).(91,92) =
(95-91,95.92). Then G is neither commutative nor compact, but has a bi-invariant metric!
In fact, let < .,. >; and < .,. >3 be respectively a bi-invariant metric of G; and Go. Then
< Pg,(.),Pg,(.) >1 + < Pg,(.), Pg,(.) >2 is a bi-invariant metric of G, where Pg, is the
canonical projection on G;.

One typical example of such a situation is the Lie group of matrices of the form s.R,
where s is a positive scalar and R a rotation matrix (group of rotations and scalings). It can
be seen as the direct product of (R, x) (commutative and non-compact) with (SO(n), x)
(compact and non-commutative).

2.4 Absence of Bi-invariant Metrics for Rigid Transformations

As we have seen in the previous Subsection, bi-invariant metrics always exist for compact
groups, which is the case of rotations. But when one tries to extend the use of bi-invariance
metrics to more general transformation groups, one is very limited. In biomedical imaging,
the simplest possible registration procedure between two anatomies uses rigid transforma-
tions. Such transformations seem quite close to rotations and one could hope for the exis-
tence of bi-invariant metrics. But we have the following general result, which is new to our
knowledge?®:

Proposition 2. The action of the adjoint representation Ad of SE(n) at the point (R,t)
on an infinitesimal displacement (dR,dt) is given by:

Ad(R,t).(dR,dt) = (RARR", —RARR" t + Rdt).

As a consequence, no bi-invariant Riemannian metric exists on the space of rigid transfor-
mations.

Proof. In the case of matrix Lie groups, we have the following formula [20] Ad(h).dh =
h.dh.h~' for dh € g. Classically, using homogeneous coordinates, the Lie group of rigid
transformations is faithfully represented by the following matrix Lie group [21]:

(R,t)w(lg :J”l)

3We have recently found that the non-existence of bi-invariant Riemannian metrics for SE(3) was already
known in the literature [19]. However, our result does not depend on the dimension and is obtained in a
very economical way, using short and abstract arguments rather than long and direct computations as in
[19] for n = 3.
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Bi-invariant Means in Lie Groups 15

Using this, we get:

Ad(R,1).(dR, dt) ~ ( fg ! )( dé% cét ) ( R(’)T —JiT.t )

which yields the announced formula. In this formula, the translation ‘¢’ introduces a un-
bounded term which prevents the adjoint group from being bounded. Applying Theorem 2,
it is then clear that no bi-invariant metric exists for rigid transformations in nD (n>1). O

We thus see that the Riemannian approach based on bi-invariant metrics cannot be ex-
tended to rigid transformations, and even less so to affine transformations.

One should note that our result contradicts a statement in [9], which claimed that a
bi-invariant metric existed when n = 2. The reference backing this claim was [21], in which
it is only stated that though SE(2) is non-compact, it has a bi-invariant measure (Chapter
7, page 92). But whereas the existence of a metric implies that of a measure (see [7], page 25;
the measure can be thought of as the determinant of the metric), the existence of a measure
does mot imply the existence of a metric. This subtle mistake is of no consequence, since
there truly are examples of non-compact groups which have bi-invariant metrics. As long as
the group is commutative, such metrics obviously exist (think of vector spaces!). But here,
the non-compactness and non-commutativity of SFE(n) forbid the existence of such a metric.
Other simple illustrations of this phenomenon are given in Section 5, where we give more
examples of non-compact and non-commutative Lie groups with no bi-invariant metrics.

Bi-invariant Means without Riemannian Metrics. In the sequel, we will see how it
is possible to define general bi-invariant means in Lie groups without relying on bi-invariant
Riemannian means, which can fail to exist. The key to our approach is to use the general
algebraic properties of Lie groups, and in particular the group exponential and logarithm.

3 Fundamental Properties of the Exponential and Loga-
rithm

Before defining general bi-invariant means in Lie groups, we detail in this Section the fun-
damental properties of the group exponential and logarithm. We will find these properties
very useful in the sequel.

3.1 Matrix Exponential and Logarithm

The Matrix Exponential and Logarithm. Before we present the group exponential
and logarithm in their full generality, let us recall the fundamental properties of the matriz
exponential and logarithm, which correspond to the group exponential and logarithm of the
Lie group of n X n invertible matrices, GL(n). They are the generalization to matrices of
the well-known scalar exponential and logarithm.
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16 Arsigny et al.

Definition 1. The exzponential exp(M) of a matriz M is given by exp(M) = > 07, ]‘,/f—,k

Let G € GL(n). If there exists M € M(n) such that G = exp(M), then M is said to be a
logarithm of N.

In general, the logarithm of a real invertible matrix may not exist, and if it exists it
may not be unique. The lack of existence is a general phenomenon in connected Lie groups.
One generally needs two exponentials to reach every element [22]. The lack of uniqueness is
essentially due to the influence of rotations: rotating of an angle « is the same as rotating
of an angle o + 2k7 where k is an integer. Since the logarithm of a rotation matrix directly
depends on its rotation angles (one angle suffices in 3D, but several angles are necessary
when n > 3), it is not unique.

Principal Logarithm of a Matrix. When a real invertible matrix has no (complex)
eigenvalue on the (closed) half line of negative real numbers, then it has a unique real
logarithm whose (complex) eigenvalues have an imaginary part in | — 7, [ [23]. In this case
this particular logarithm is well-defined and called principal. We will write log(M) for the
principal logarithm of a matrix M whenever it is defined.

3.2 Lie Group Exponential

Let us now detail some of the fundamental properties of the group exponential and logarithm
in Lie groups. For more details on these properties, see [24]. Basically, these properties are
very similar to those of the matrix exponential and logarithm, which are a particular case
of such mappings. One should note that this particular case is actually quite general, since
most classical Lie groups can be looked upon as matrix Lie groups anyway [20]. But all Lie
groups are not (at least directly) multiplicative matrix groups, as in the case of the Lie group
structure we have recently proposed by symmetric positive-definite matrices [25]. This is
the reason why we do not limit ourselves to the matrix case.

Definition 2. Let G be a Lie group and let v be an tangent vector at the identity, i.e. an
element of the Lie Algebra g. The group exponential of v, denoted exp(v), is given by the
value at time 1 of the unique function g(t) defined by the following ordinary differential
equation (ODE):

d
g% = DeLg(t).’U (5)
g9(0) =e.

Eq. (5) has particularly nice properties. ¢(t) is in fact defined for all ¢, and yields a
continuous one-parameter subgroup (also called one-parameter Lie subgroup), which means
that g(0) = e, g(t +1t') = g(t).g(t') = g(t').g(t). v is called the infinitesimal generator of
this subgroup. See [13], pages 27-29 for proofs of these properties. In fact, Eq. (5) is the
equivalent of the matrix differential equation, which is a nice and classical linear ODE:

@“-Ggv
G(0) = Id,
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Bi-invariant Means in Lie Groups 17

whose solution is well-known from classical ODE theory to be G(t) = exp(tV'), where exp is
the matrix exponential [26].

One-Parameter Subgroups vs. Group Exponential. We have just seen that for all v
belonging to g, exp(t.v) is a one-parameter subgroup of G: the additive subgroup (¢.V); of g
is mapped into a multiplicative subgroup of G by the exponential. Conversely, we have the
interesting result that all continuous one-parameter subgroups of G are of this form ([12],
Section V, Theorem 3.1, page 223). This provides a simple way of computing the group
exponential in situations where one-parameter subgroups are easy to obtain.

The Exponential as a Local Diffeomorphism. Very much like the exponential map
associated to a Riemannian metric, the group exponential is diffeomorphic locally around 0.
More precisely, we have the following theorem:

Theorem 3. The group exponential is a diffeomorphism from a open neighborhood of 0 in
g to a open neighborhood of e in G, and its differential map at 0 is the identity.

Proof. Since the exponential is a smooth mapping, the fact that its differential map is
invertible at e allows for the use of the ‘Implicit Function Theorem’, which guarantees
that it is a diffeomorphism from some open neighborhood of 0 to a open neighborhood of
exp(0) = e. For more details, see [13], page 28. O

This theorem implies that one can define without ambiguity a logarithm in a open neigh-
borhood of e: for every g in this open neighborhood, there exists a unique v in the open
neighborhood of 0 in g, such that g = exp(v). In the following, we will write v = log(g) for
this logarithm, which is the (abstract) equivalent of the (matrix) principal logarithm.

Geodesic Convexity. Another useful property of the (metric) exponential map is that
given any point, there exists a open neighborhood of this point, called geodesically convez, in
which for any coupe of points, there exists a unique minimizing geodesic between them (see
for example [13], page 84-85). We now prove an analogous result for the group exponential:

Theorem 4. Let ®: G x g — G x G, defined by ®(g,v) = (g,9.exp(v)). Then @ is always
locally diffeomorphic. More precisely, for all g in G, it defines a diffeomorphism from some
open neighborhood of (g,0) to a open neighborhood of (g, g).

Proof. Since ® is smooth, one can apply anew the ‘Implicit Function Theorem’ provided
that the differential of ® at (g,0) is invertible. To see this, note that we have:

{ g_zkgyv):(e,o) = (Id7 Id)
30 lg.=(e.0) = (0, DeLy 0 Id) = (0, DcLy),

where we have used the fact the property that the differential of the exponential at 0 is the
identity (see Theorem 3). Since L, is a diffeomorphism, its differential at e, DL, is always
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invertible. As a consequence, the differential of ® is also always invertible, and the ‘Implicit
Function Theorem’ applies. This proof is very similar to the proof given in [13] to show the
analogous property of the metric exponential. O

3.3 Group Geodesics.

Theorem 4 essentially shows that for every point g of G, there exists a open neighborhood
of g in which every couple of points can be joined by a unique ‘group geodesic’ of the form
g.exp(t.v) such that g. exp(v) = h. By symmetry, the same result also holds for the geodesics
of the type exp(t.v).g. In fact, those two types of ‘group geodesic’ are the same, since we
have the following result:

Theorem 5. For all g in G, there exists a open neighborhood V4 of 0 in g such that for
all g in G and for all v, there exist a unique w in g such that g.exp(t.v) = exp(t.w).g for
all t € R. More precisely, w = Ad(g).v. Moreover, in this open neighborhood of 0, the
relationship g.exp(v) = exp(w).g tmplies w = Ad(g).v.

The proof of this theorem is simply based on the following relationships between the
Adjoint representation, the exponential and the logarithm:

Lemma 1. Let v be in g and g in G. Then we have:

g.exp(v).g~ = exp(Ad(g).v).

Also, for all g in G, there exists a open neighborhood V, of e such that for all m in V: log(m)
and log(g.m.g~') are well-defined and are linked by the following relationship:

log(g.m.g™*) = Ad(g).log(m).

These equations are simply the generalization to (abstract) Lie groups of the well-known
matrix properties: G.exp(V).G~! = exp(G.V.G™!) and G.log(V).G~! = log(G.V.G™1).

Proof. The first relationship of this Lemma can be proved in the following way:
(g.exp(t.v).g~1); is a continuous one-parameter subgroup, whose infinitesimal generator is
4 g.exp(t.v).g |1=o = Ad(g).v (see Proposition 1.81 on page 29 of [13]). Using the fact that
continuous one-parameter subgroups are of the form exp(t.w), we obtain the first equality.
To prove the second (and this time local) equality, we see that since ¥, : m — g.m.g— ! is
smooth and ¥ (e) = e, there exists a open neighborhood of e where log(m) and log(g.m.g~*)
are well-defined. Then the second equality is deduced from the first. O

Proof. Proof of Theorem 5: just see that g.exp(t.v) = g.exp(t.v).g~1.g and apply Lemma
1.
O
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Figure 1: Properties of Group Geodesics. Left: group geodesic convexity, which means
that for any point g of G, there exists a open neighborhood V of g, such that any couple of
points = and y in V can be joined by a unique group geodesics of the form z(t) = . exp(t.v)
satisfying . exp(v) = y. Note that the geodesic is entirely contained in V. Right: at any
point g, a unique group geodesic is associated to any initial speed vector, provided this speed
is small enough.

Definition of Group Geodesics. Essentially, we have just shown that the exponential
and its translated versions can be looked upon as some sort of ‘group geodesic’ in a Lie
group. Any couple of points can be joined by a unique ‘group geodesic’, provided they are
close enough. This leads to the following definitions:

Definition 3. Any continuous path of G of the form g.exp(t.v), which has the property of
Theorem 5 (i.e. v is small enough) is called a group geodesic. Furthermore, an open set
O of G is called groupwise geodesically convex (or GGC) if and only if any couple of
points of O can be joined by a group geodesic. We have just shown that every g in G has a
groupwise geodesically convex open neighborhood.

To conclude this subsection, let us now present a last property for group geodesics, which
generalizes the other well-known property of (metric) geodesics. The properties of group
geodesics are illustrated in Fig. 1.

Proposition 3. Let g be in G and z be in the tangent space at g. Then there ezists a unique
smooth path of the form g.exp(t.v) that g(0) = g and %gh:o = z. When z is small enough,
this smooth path is a group geodesic.

Proof. The only possible choice is v = DyL,-.2, since DyL,-; is always invertible. O

3.4 Baker-Campbell-Hausdorff Formula

Before defining general bi-invariant means in Lie groups, let us focus on a last fundamen-
tal tool: the Baker-Campbell-Hausdorff formula (or BCH formula). Intuitively, this for-
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mula shows how much log(exp(v). exp(w)) deviates from v + w due to the (possible) non-
commutativity of the multiplication in G. Remarkably, this deviation can be expressed only
in terms of Lie brackets between v and w [24]. We have already used in [25] to compare the
traces of two different generalization of the geometric mean to symmetric positive-definite
matrices.

Theorem 6. Series form of the BCH formula ([24], Chapter VI). Let v,w be in g. Then
they are small enough, we have the following development:

log(exp(v).exp(w)) = v+ w+1/2([v,w])
+1/12([v, [v, w]] + [w, [w, v]]) (6)
+1/24([[v, [v, w]], w]) + O(([[v + [wl]])?).

Following [24], let us write H : g x g — g the mapping defined near 0 such that H (v, w) =
log(exp(v). exp(w)). A fundamental property of this function is the following: it is not only
C® but also analytic around 0, which means that H (v, w) (near 0) is the sum of an absolutely
converging multivariate infinite series (the usual multiplication is replaced here by the Lie
bracket). This implies in particular that all the (partial) derivatives of this function are also
analytic. We will use these very remarkable properties in the sequel of this article.

4 Bi-invariant Means in Lie Groups

4.1 A Geometric Definition of the Mean

Let us recall the classical definition of a mean in an affine space F, i.e. a space of points,
associated to a wector space E such that to any couple of points M, N we can associate
the vector MN , which is simply the difference between the two points: M + MN = N.
In this context, the barycenter (or mean) of a system of points (X;);=1., associated to the
non-negative normalized weights (w;) (3, w; = 1) is the unique point M that verifies the
following equation, called barycentric:

— —

This equation means geometrically that M is the mean of the (X;) with respect to the
weights (w;). Since F is a flat space, we can get a closed form for M:

—_—
M = X1 + EiwinXi. (8)

This kind of mean or averaging procedure is the direct generalization in the affine case of
the arithmetic mean of real numbers. It gives a geometrical interpretation to the weighted
mean: at the mean, the sum of the weighted displacements to each of the sample points is
null, i.e. the mean is at the geometrical center of the data (more precisely at the center with
respect to the weights).

INRIA



Bi-invariant Means in Lie Groups 21

Fréchet Means and Barycenters. The Fréchet mean of N points (x;) with respect
to the non-negative normalized weights w; which induced by a Riemannian metric on a
manifold is defined implicitly by the following barycentric equation ([7]):

N
Z w; logg, ) (z:) = 0, 9)
=1

where logg, ) is the logarithmic map at the point E(z;), which is defined only locally around
this point. In the particular case of bi-invariant metrics, this equation writes:

N
Z Ws log(E(xj)_l.a:i) = O7 (10)

where this time log is the inverse of the group exponential, defined locally around the neutral
element e: the (metric) logarithmic map is expressed simply in term of group logarithm. Eq.
(10) has particularly nice invariance properties: left-, right- and inverse-invariance, since it
derives from a bi-invariant metric. One should note that Eq. (9) (and (10) in the bi-invariant
case) provides a geometrical definition of the mean, exactly as in the case of affine spaces.
The Fréchet mean is defined as a barycenter, i.e. the element positioned at the center of the
data in wvectorial sense. This situation is illustrated in Fig. 2.

The key idea developed in this Section in the following: although bi-invariant metrics
may fail to exist, the group logarithm always exists in a Lie group and one can try to define
a bi-invariant mean directly via Eq. (10). As will be shown in the next subsections, this
equation has all the desirable invariance properties, even when bi-invariant metrics do not
exist.

4.2 Stability of the Classical Iterative Scheme

In the cases where a bi-invariant metric exists, a very efficient iterative strategy can be used
to solve iteratively the barycentric equation given by Eq. (10). It is given by:

1) Initialize for example mg := 7.
2) Update the estimate of the mean by: m41 := My.€xp (Zfil w; log(mt_l.aji)) .

3) Test the difference between m;;; and m; to decide to stop or to loop with
step 2.

This procedure was originally proposed in [9] to compute empirically bi-invariant means
in the particular case of linear transformations, without any proof of convergence or of the
existence and uniqueness of this mean, which was not precisely defined. Here, one of our
contributions is to provide a gemeral and precise definition of bi-invariant means, which is
valid for any finite-dimensional real Lie group, via Eq. (10). This will allow us to show
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O log,n () € Tm G

QO z; €G

m satisfies: >, w;log,, (z:) = 0.

Figure 2: Geometric Property of the Fréchet mean. The Fréchet mean of a set of points
(x;) with non-negative (normalized) weights (w;) satisfies a barycentric equation. This has
a geometric interpretation: in the tangent space at the mean m, 0 (i.e. m) is precisely the
barycenter of the vectors log,,(x;) associated to the weights w;. In this geometrical sense,
m is at the center of the points z;.

the existence and uniqueness of the bi-invariant mean provided the dispersion of the data is
small enough.

Interestingly, the mapping ® : m — m.exp (Zi\;l w; log(mfl.xi)) plays a central role
in the approach presented in this article. Let us now detail some of its properties.

Proposition 4. Let (w;) be N fived non-negative weights. Then mapping ¥ : gV ™! — g

defined by ¥(vy,...,un,2) = log (exp(z).exp (Zfil wj log(exp(—z).exp(vi)))) is analytic
near 0.

Proof. The multivariate nature of ¥ complicates the proof a little bit, but this comes from
the simple fact that ¥ is a composition of other analytic mappings: namely the mapping
H defined in Subsection 3.4, the mapping v — —v and the weighted sum (v1,...,on) —
>; wi.v;. This suffices to ensure that near 0, ¥ is the sum an absolutely converging infinite
multivariate series whose variables are the v1,...,vxy and z. For more details on multivariate
analytic functions in Lie algebras, see [24], Chapter VL. O

Actually, ¥ is also an analytic function of the non-negative normalized weights (w;).
Since these weights live in a compact set, we can guarantee the existence and uniqueness
of the bi-invariant mean independently of the weights considered (provided the dispersion of
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the data is small enough). But for more simplicity and clarity, we will skip these details in
this article and consider fixed weights (w;) in the proofs.

Corollary 2. Let us suppose that the x; and m are sufficiently close to e. Then we have
the following development:

N

log(®(m)) = I+ O((Y_ l[log(x)| + || log(m)|)?), (11)

i=1
where [ =, w; log(x;).

Proof. Successive applications of the BCH formula (see Subsection 3.4) yield the first term
(1) of the infinite series of ¥, which is intuitively the usual arithmetic mean obtained when
all the data and m commute. The bound obtained on the deviation with respect to [ is a
direct consequence of the fact that ¥ is analytic: the order of any remaining term of the

infinite seri?vs is equal or larger to two and as a consequence the other terms can be bounded
by a O((32;2, [l log(@:)[| + [[log(m)[])?). O

Corollary 2 has the following consequence:

Corollary 3. For all o in ]0, 1], there exists a R > 0 such that whenever || log(z;)|| < a.R
and || log(m)|| < R then we also have ||log(®(m))| < R.

Proof. Just notice in Eq. (11) that the norm of first order term is less or equal than a.R
and that the second-order term, which is a O((Ef\il | log(ax;)|| + || log(m)]|)?), there exists
a constant C' such that the second-order term is bounded in the following way:

N
10D Ilog(a) | + [[log(m)[)?)]| < C.(N.a™ +1).R%.

i=1

Since R? is a o(R), C.(N.a¥ +1).R? < (1 —«).R provided that R is sufficiently small. From
this we obtain || log(®(m))|| < «.R+ (1 — «).R = R, which concludes the proof. O

Corollary 3 shows that provided the z; and m are close enough to e, we can iterate
indefinitely ® over the successive estimates of the ‘mean’ of the z;. This shows that the
iterative scheme presented before is stable and remains indefinitely well-defined when the
data is close enough to e (that is, without taking numerical errors into account). For the
moment, we have only considered the case where all elements are close to e. We will see
in the next subsection how this extends to the general case, where all the data are only
assumed to be close to one another, possibly very far from e.
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4.3 Convergence: Special Case

The Bi-invariant Mean as a Fixed Point. Let « be in ]0, 1[, then, accordingly with
Corollary 3, let us take a R > 0 such that provided for all ¢ || log(x;)|| < a.R and || log(m)|| <
R, then || log(®(m))|| is also non-superior to R.

Then, let us define Q = {m € G : | log(m)| < R}. From Corollary 3, we know that ®
defines a mapping from Q to 2. Now, let us note that m € Q is a solution of Eq. (10) if and
only if m is a fized point of @, i.e. ®(m) = m. If we want to show the existence of a solution
of Eq. (10), the mathematical tool we need is therefore some sort of fized point Theorem.

In fact, the mathematical literature abounds with fixed point theorems. First, let us
consider Brouwer’s fixed point theorem:

Theorem 7. Brouwer’s Fized Point Theorem [27]. Let U : B™ — B™ be a continuous map-
ping, where B™ is the n-dimensional Euclidean closed ball, i.e. B" = {z € R" : > (2;)? <
1}. Then U has at least one fized point.

Corollary 4. With the assumptions made at the beginning of this subsection, then Eq. (10)
has at least one solution in €.

Proof. In our case, this result applies, since we can define ¥ : log(2) — log(2) by ¥(v) =
log(®(exp(v))). Since log(?) is precisely a closed ball, and thus homeomorphic to the Eu-
clidean closed ball, then Brouwer’s theorem applies and guarantees the existence of at least
one fixed point of ¥, which is also a fixed point of ® and therefore a solution of Eq. (10). O

The existence of a solution to Eq. (10) is thus guaranteed. However, in order to prove
the convergence of the iterative strategy to a fixed point of ®, the mathematical tool we need
is another type of fixed point theorem. We will now recall Picard’s fixed point Theorem,
which is the following:

Theorem 8. Picard’s Fized Point Theorem. Let (E,d) be a complete metric space and
f+ E — E be a K—contraction, i.e. for all x,y of E, d(f(x), f(y)) < K.d(z,y), with
0 < K < 1. Then f has a unique fized point p in E and for all sequence (x,,), > 0 verifying
Tnt1 = f(xn), then x, — p when n — +oo, with at least a K—linear speed of convergence.

Proof. This is classical undergraduate topology. The idea is to prove to take any sequence
verifying z,4+1 = f(x,), to show that it is a Cauchy sequence and thus has a limit in F,
which is the unique fixed point of E. Moreover, we have d(z,t1,p) < K.d(x,,p), which
shows that the speed of convergence is at least K —linear. O

Here, (£2,d) is the complete metric space in which the successive evaluations of the
‘mean’ live. The distance d is simply given by d(m,n) = || log(m) — log(n)||. To obtain the
existence, uniqueness of a solution of Eq. (10) and linear convergence of our iterative scheme
to this point, it only remains to show that ® is a contraction. This leads to the following
Proposition:

Proposition 5. When the R in Corollary 3 is chosen small enough, ® is a contraction.
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Proof. Let us consider F = log(Q2) with © : E — F defined as in the proof of Corollary 4 by
O(v) = log(®(exp(v))). The key idea is to see that O is smooth with respect to log(m) and
the (log(z;)), with the property that the norm of the differential of © is uniformly bounded
in the following way:

[ D1og(m) Ol < O([[ log(m) || + Z [[log(z4)l])- (12)

In fact, Eq. (12) is a simple consequence of the fact that W is analytic: Djg(m)© is simply
one of its partial derivative, which is therefore also analytic. Its value at 0 is precisely 0,
and therefore all the terms of its infinite series are of order one or larger, which yields the
bound in O([[log(m)[| + 3_; [ log(z:)l])-

With the bound given by Eq. (12), we can ensure that when R is small enough, there
exists 3 in 0, 1] such that || Digg(,)©|| < 8 for all m. Then we have the classical bound:

[©(v) — B(w)|| < (Slelgl\Dz@ll)llv —wl < Bllv—wl|.

Since 8 < 1, © is by definition a contraction, and so is ®.
O

Corollary 5. As a consequence, when the data (x;) is chosen close enough to e, there exists
a open neighborhood of e in which there exists a unique solution to Eq. (10). Moreover,
the iterative strategy given above always converges towards this solution, provided that the
initialization to this algorithm is taken close enough to the data. Last but not least, the speed
of convergence is at least linear.

Proof. Just apply Picard’s Theorem to ® and recall that being a fixed point of @ is equivalent
to being a solution of Eq. (10). O

4.4 Convergence: General Case

In the previous subsection, we have shown the existence and uniqueness of a solution of the
exponential barycentric equation living in a open neighborhood of e, as long as the data
were all close enough to e. In fact, this can be greatly generalized, as shown by the following
result:

Theorem 9. Let g be in G. Then there exists a groupwise geodesically conver open neigh-
borhood V of g, such that whenever the data (x;) are in V), then there exists a unique solution
of Eq. (10) in an open neighborhood of g. Moreover, the classical iterative strategy always
converges towards this solution, provided the initialization is taken close enough to g; also,
the speed of convergence is at least linear.

Proof. Just multiply the data by g—! on the left to shift all the points in an adequate open
neighborhood of the neutral element. Then one can run the iterative scheme to obtain the
unique solution of the barycentric equation which lives close to e. Then just multiply on the
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left by g this solution to find the unique solution of the barycentric equation with the real
data. Then note that the normal (non-shifted) iterative scheme is just the shifted version
of the scheme associated to the shifted data. O

This leads to the following definition:

Definition 4. Let the (z;)Y.; be some data belonging to a small enough groupwise geodesi-
cally conver set of G. Then, for any system of (normalized) non-negative weights (w;) ,,
we call bi-invariant mean of (z;) with respect to the weights (w;) the unique solution (in
a neighborhood of the data) of the group barycentric equation (10).

Proposition 6. The bi-invariant mean s left-, right- and inverse-invariant.

Proof. The data is by hypothesis close enough to one another so that we can apply Lemma,
1, so that we have:

Ad(m). (Ziil Wi IOg(milwi)) = >, w;log (m.(m™ta;).m™)
YL, wilog(w;m™h).

Since Ad(m) is invertible, the usual barycentric equation, which is left-invariant, is equivalent
to a right-invariant barycentric equation, which shows that the barycenter is both left- and
right-invariant. Now, to prove the invariance with respect by inversion, note that:

(—1) x (vazlwl 1og(m_1.xi))) = Y, wilog ((m™ta;)™t)
Sy wilog(a . (m™H) ™),

which shows that whenever m is the bi-invariant mean of the z;, m~! is that of the z; !,
which is exactly inverse-invariance. O

Some Comments on Bi-invariant Means. Thus, we have rigorously generalized to any
real Lie group the notion of bi-invariant mean normally associated to bi-invariant Rieman-
nian metrics, even in the case where such metrics fail to exist. This novel mean enjoys all
the desirable invariance properties, and can be iteratively computed in a very efficient way.

One should note that as usual with mean in manifolds, the bi-invariant mean only exists
provided the data are close enough to one another: the dispersion should not be too large.
In the next section, we will see more precisely in various situations what practical limitation
is imposed on the dispersion of the data. One does not seem to lose much in this regard
with respect to existing Riemannian bi-invariant means: we will show for example that the
bi-invariant mean of some rigid transformations exists if and only if the bi-invariant mean
of their rotation parts exists.

5 Bi-invariant Means in Simple Cases

Let us now detail several insightful cases where the algebraic mean can be explicitly or
directly computed, without using the classical iterative scheme.
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5.1 Bi-invariant Mean of Two Points
There is a closed form for the bi-invariant mean of two points:

Proposition 7. Let x be in G and y be in a GGC open neighborhood of x. Then their
bi-invariant mean m with respect to the couple of weights (1 — «, ) is given by:

Y (13)

Proof. We can simply check that m is a solution to the adequate barycentric equation. We
have:

m = z.exp (alog(z™'.y)) = z.(z7"

log(m~t.z) = log(exp(—alog(z~1.y)).x  .z) = —alog(z'.y).

Also, we have that:

log(m™'.y) = log(exp(—alog(z~t.y)).27 .y) = log(n"*.n),
with n = 2~ 1.y. Therefore:
{ a.log(m=1.y) = log(n®* (1)
(1 —a).log(m™'.z) =log(n=**1-%)) = —a.log(m 1 .y).
Thus, m is the bi-invariant mean of = and y. O

Notice that the explicit formula given by Eq. (13) is quite exceptional. In general, there
will be no closed form for the bi-invariant mean, as soon as N > 2. However, there are some
specific groups where a closed form exists for the bi-invariant mean in all cases, and we will
now detail some examples of this rare phenomenon.

5.2 Scalings and Translations in 1D

Here, we will devote some time to a very instructive group: the group of scalings and
translations in 1D. The study of this (quite) simple group is relevant in the context of this
work, because it is one of the most simple cases of non-compact and non-commutative Lie
groups which does not possess any bi-invariant Riemannian metric. This group has many of
the properties of rigid or affine transformations, but with only two degrees of freedom, which
simplifies greatly the computations, and allows a direct (2D) geometric visualization in the
plane. For these reasons, this is a highly pedagogical case. In the rest of this Subsection,
we will let this group be written ST'(1).

Elementary Algebraic Properties of ST'(1).

e An element g of ST(1) can be uniquely represented by a couple (A,#) in RY x R. A
corresponds to the scaling factor and ¢ to the translation part.

e The action of ST'(1) on scalars is given by: (A, t).x = A.x + ¢ for every scalar z.
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The multiplication in ST(1) is: (N, t').(A\,t) = N\ Nt +t"). ST(1) is thus a semi-
direct product between the multiplicative group (R%, x) and the additive group (R, +).
Both groups are commutative, but this semi-direct product is not.

Inversion: (A, ¢)~! = (3, —%).

ST(1) can be faithfully represented by the subgroup of triangular matrices of the form:

At

0o 1)
The elements of the Lie algebra of ST'(1) are of the form (dA, dt), where d\ and dt are
any scalars.

The group exponential exp(dA, dt) has the following form:

(e, L (e — 1), when d)\ #£ 0,
exp(d), dt) = { (1, dt}. when dA = 0,

where e* is the scalar exponential of A\. Thus, we see that the group exponential is
simply given by the scalar exponential on the scaling part, whereas the translation part
mixes the multiplicative and additive influences of both components. Moreover, we see
geometrically than in the upper half plane R, x R, the curve given by exp(s.(d\, dt))
with s varying in R is on a straight line, whose equation is t = j—f\)\ -1

ST(1) is entirely groupwise geodesically convex: any two points can be joined by a
unique group geodesic. In particular, the group logarithm is always well-defined and
given by:

(In(), £.222) when A # 1,

log(A, t) =
og(A 1) { (0,t), when \ =1,

where In()) is the natural (scalar) logarithm of A\. Same remark has for the exponential:
we get the classical logarithm on the scaling part and a mixture of the multiplicative
and additive logarithms on the translation part. We recall that in the case of an
additive group such (R, +), both additive exponential and logarithm are simply the
identity. This is what we get both for the exponential and the logarithm when there
is no scaling.

The unique group geodesic joining (A, t) and (N, ') of the form (), t). exp(s.(d),dt))
with s in [0, 1] has its parameters (d, dt) given by:

’ ’ n(X
(d\, dt) = (m(%), (t . t) . (!_ﬂ)) . (14)
A
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Absence of Bi-invariant Metrics. S7(1) is one of the most simple non-compact and
non-commutative Lie groups. In terms of bi-invariant metrics, it exhibits the typical ten-
dency of such Lie groups: it has no such metric. As usual (see Section 2), to see this, we
use the fact it is necessary and sufficient that the adjoint representation of ST'(1) be not
bounded to ensure that no bi-invariant metric exists for this group. To show this, we use
again the classical matrix representation of ST'(1):

Ad((\1)).(dA, dt) 3 i )( dO/\ cét )( é _ﬁ )
dA —t.d)\+)\.dt)

0 0
= (d\ —t.d\+ \.dt).

2

~

Both factors ‘¢’ and ‘N’ in —t.d\ + A.dt are not bounded and thus Ad(ST(1)) cannot be
bounded. Has a consequence, ST'(1) has no bi-invariant metric. Both (R4, x) and (R, +)
are commutative and thus have bi-invariant metrics, but interestingly, their semi-direct
product has no such metric.

A Closed Form for the Bi-invariant Mean. We recall that the bi-invariant mean in a
Lie group is defined implicitly by a barycentric equation, given by Eq. (10). Here, since we
have explicit formulae for the group exponential and logarithm, one can use these formulae
to try to solve directly the barycentric equation. This leads to the following result:

Proposition 8. Let ((\;,t;)) be N points in ST(1) and (w;) be N non-negative (normalized)
weights. Then the associated bi-invariant mean (), 1) is given explicitly by:

X = e2i Wil - feighted geometric mean of scalings),
t= 2.3 wi.q;.t;, (weighted arithmetic mean of translations influenced by scalings),
(15)
with:
A

o = h;iT); note that c; = 1 when \; = \.

—~

by
Z = Ei Wi .0

Proof. Just replace in the barycentric equation the exponentials and logarithms by the
formulae given above. Since the scaling component is independent from the translation one,
we simply obtain the geometric mean, which is the bi-invariant mean for positive numbers.
The translation part can be handled simply using directly Eq. (14), which yields this
simplified expression for the barycentric equation:

(5 (5) -

Hence the result. O
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Comparison Between Group and Metric Geodesics. In Figure 3, one can visually
compare the group geodesics to some of their left-invariant and right-invariant (metric)
counterparts.

Interestingly, one of the left-invariant metrics on S7'(1) induces an isometry between this
group and Poincaré half-plane model for hyperbolic geometry (see [13], page 82-83 for more
details on this space). The scalar product of this scalar metric is the most simple at the
(1,0): it is the usual Euclidean scalar product. Geodesics take a very particular form in this
case: they are the set of all the half-circles perpendicular to the axis of translations and of
all (truncated below the axis of translations) lines perpendicular to the axis of translations
(these lines can be seen as half-circles of infinite diameter anyway).

Thanks to Proposition 1, we know that the right-invariant Riemannian metric whose
scalar product at (1,0) is the same as the previous metric can be obtained simply by ‘invert-
ing’ this left-invariant metric. As a consequence, its geodesics can be computed simply by
inverting the initial conditions, computing the associated left-invariant geodesic and finally
inverting it. The right-invariant geodesics visualized in Fig. 3 are by consequence some sort
of ‘inverted half-circles’. In fact, simple algebraic computations show that these geodesics
are all half-hyperbolas.

One should note that the simple form taken by left-invariant geodesics is indeed excep-
tional. In general, there are no closed form for neither left- nor right-invariant geodesics,
and group geodesics are much simpler to compute, since in most practical cases they only
involve the computation of a matrix exponential and a matrix logarithm, for which very
efficient methods exist [28, 29]. Another nice Lie group where left-invariant metrics (and by
consequence also right-invariant metrics) take a simple (closed) form is the group of rigid
transformations. See [5] for examples of left-invariant statistics on rigid transformations in
the context of a statistical study of human scoliotic spines.

Extension to ST(n). One can directly generalize the results obtained for ST'(1) to the
more general group ST (n) of scalings and translations in nD. Instead of being a scalar, the
translation is in this general case a n—dimensional vector. This does not change anything:
all the algebraic properties of ST (1) are also valid for ST'(n). In particular, one can use Eq.
(15) to compute bi-invariant means in ST'(n).

5.3 The Heisenberg Group

With the group ST'(1), we had seen a simple case of mixing between a 1D multiplicative
group and a 1D additive group. In this subsection, we study instead a 3D group where this
time 2 additive groups (one 2D and the other 1D) are mixed.

The Heisenberg group. It is the group of 3D upper triangular matrices M of the form:

M =

S O =
o = 8
[l SR

INRIA



Bi-invariant Means in Lie Groups 31

Figure 3: Examples of geodesics in the group of scalings and translations in 1D.
Top row: two examples of left- and right- and group geodesics. Bottom row: two examples
of geodesics with each time three possible orientations. Blue: group geodesics, red: left-
invariant geodesics and green: right-invariant geodesics. Note the particular form taken by
group geodesics, which are part of straight lines and of the left-invariant geodesics, which
are half-circles perpendicular to the horizontal axis. Right-invariant geodesics are also given
in a closed form and are in fact half-hyperbolas.

To simplify notations, we will also write (z,y, z) to represent an element of this group.

Elementary Algebraic Properties. They are the following:

e Multiplication: (z1,y1,21)-(z2,Y2, 22) = (z1 + Z2,y1 + Y2,21 + 22 + 21.y2). The first
two parameters thus live in a 2D additive group which is independent of the third
parameter, whereas the third additive parameter is influenced by the first two. The
Heisenberg group is thus a semi-direct product between (R?, +) and (R, +), which is
not commutative.
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1

e Inversion: (z,y,2)"' = (—x, —y, —2z + x.y). Neutral element: (0,0,0).

e Asin the ST(1) case, the Heisenberg group is entirely groupwise geodesically complete
and we have:
{ exp((dz, dy, dz)) = (dz, dy, dz + %.dx.dy)
10g((.§67 Y, Z)) = (Jj, Y,z — %ny)

The wunique group geodesic joining (T, Ym,2m) and (z,y,z) of the form
(Tms Yms 2m). exp(s.(dz, dy, z)) with s in [0,1]. Its parameters (dz,dy,dz) are given
by:

1
(dz,dy,dz) = (a: — Ty Y — Ymy 2 — Zm + = (T Ym — TY + Ty — xym)> . (16)

PR
Bi-invariant Metrics and Bi-invariant Means. As in the ST(1) case, no bi-invariant
metrics exists and one has the closed form for the bi-invariant mean. Interestingly, the bi-
invariant mean yields a simple arithmetic averaging of the first two parameters. The third

parameter is also averaged arithmetically, except that this arithmetic mean is ‘corrected’ by
a quadratic function of the first two parameters of the data.

Proposition 9. The action of the adjoint representation Ad of the Heisenberg group at a
point (x,y, z) on an infinitesimal displacement (dx,dy,dz) is given by:

Ad(z,y, z).(dz,dy, dz) = (dz,dy, —y dx + x dy + dz).
As a consequence, no bi-invariance metric exists for the Heisenberg group.
Proof. Proceed exactly as in Proposition 2. O

Proposition 10. Let ((z;,yi,2:)) be N points in the Heisenberg group and (w;) be N non-
negative (normalized) weights. Then the associated bi-invariant mean (T,y,Z) is given ex-
plicitly by:

(53,:1?,5) = <XZ:’LUZ$1, ;wlyz,;wmz + % <$y — XzzwleyZ)) .

Proof. Just replace in the barycentric equation the exponentials and logarithms by the
formulae given above. Since the first two components are additive and independent from
the third one, their bi-invariant mean is simply their arithmetic mean. The third coefficient
case can be handled simply using directly Eq. (16), which yields this simplified expression
for the barycentric equation:

1
> wi (zm = 2+ (T Ym — i+ T Yi — xi.ym)) :

Hence the result. O
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5.4 On a Subgroup of Triangular Matrices

We can generalize the results obtained on the Heisenberg group to the following subgroup
of triangular matrices:

Definition 5. Let UT(n) be the group of n x n upper triangular matrices M of the form:
M = M\Id+ N,

where \ is any positive scalar, Id the identity matrix and N an upper triangular nilpotent
matriz (N = 0) with only zeros in its diagonal.

The Heisenberg group is the subgroup of matrices of UT(3) whose ) is always equal to 1.
The situation in this case is particularly nice, since thanks to the fact that N is nilpotent,
one can perform ezactly all the usual algebraic operations in UT'(n):

e Group exponential:

exp(dM) = exp(d\.Id+ dN) = exp(dA.Id).exp(dN)
ed\ Zn—l dNF

k=0 "kl -
e Group logarithm:
log(M) = log(AId+ N)=log ((\.Id).(Id+ +.N))

)k+1

= In(N).1d + Y0 S—(5)k.

e Inversion:
(M)*1 = (/\.Id—&—N)*1 A~

-1
AL (DR (DR,

e Multiplication:
MM = (NId+N').(AId+ N)=(N\N.Id+ (N.N+ AN + N'.N).

Using these closed forms, one can derive the following equation:

k+1 1 k
log(M'. M) = In(\N .\ Id—s—z ( N+YN’ 5V )

which in turns allows to compute the equation satisfied by the bi-invariant mean M =
AId+ N in UT(n):

— Zi w; 1Og(M_1MZ) = Zi w; log(MMfl) =0
<

S w; <1n(M1)1d+z" ! 1)“1.( LN 4 3N+ b N N) );0,
(17)
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where we N; ' is the nilpotent part of M; . From Eq. (17), we see that X is simply the
geometric mean of the )\;, and that the coefficient of N can be recursively computed, starting
from coefficients above the diagonal. The key idea is that the k" power of a nilpotent matrix
N will have non-zero coefficients only in its k" upper diagonal.

As a consequence, to compute the coefficients of M above the diagonal, one only needs to
take into account the the following terms: /\il—_l.Ni_l + 1.N. These coefficients will simply
be a weighted arithmetic mean of the coefficients in the data, the weights being equal to
(wl%) /S with § = 37, wji)\]— Using this result, then one can compute the coefficients
above, which are an weighted arithmetic mean of the corresponding coefficients in the data,
with a quadratic correction involving the previous coefficients. The same phenomenon ap-
pears for the next set of coefficients above, with an even more complex correction involving
all the previously computed coeflicients. One can continue this way until all the coefficients
of the mean have been effectively computed.

6 Linear Transformations

6.1 General Rigid Transformations

We recall that the Lie group of rigid transformations in the n-dimensional Euclidean space,
written here SE(n), is the semi-direct product between (SO(n), x) (rotations) and (R™, +)
(translations) defined has follows:

e An element of SE(n) is uniquely represented by a couple (R, ) € SO(n) x R™ and its
action on a point x of R™ is given by (R,t).x = R.x + t.

Multiplication: (R’,t').(R,t) = (R'.R,R'.t +1).

e Neutral element: (Id,0), inverse: (R, —RT.t).

Representation of (R,t) by a (n+ 1) X (n + 1) matrix using homogenous coordinates:

R t

0o 1 )°
Lie algebra: thanks to the matrix representation of SE(n), it is simple to see that
the Lie algebra of SE(n) can be faithfully represented by the following vector space

of matrices:
dR dt
0 0 ’

where dR is any skew n X n matrix and dt any vector of R™. In this representation,
the Lie bracket [.,.] is simply given by the matrix Lie bracket: [A, B] = A.B — B.A.
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e Group exponential: it can be computed using directly the matrix representation, or
by identifying the one-parameter subgroups of SE(n). It is given by:

1
exp(dR, dt) = (edR,edR.( / e“'deu).dt) :
0

where e%f is the matrix exponential of dR.

Existence of the Logarithm. From Section 3, we know that it is only defined locally
in a neighborhood of the neutral element (Id,0). However, since we have a faithful repre-
sentation of SE(n) in terms of matrices, we can use the matrix criterion for the existence
of the principal logarithm: from Subsection 3.1, we know that an invertible matrix with
no (complex) eigenvalue on the closed half-line of negative real numbers has unique matrix
logarithm with eigenvalues having imaginary parts in | — 7, 7[. In the case of rotations, this
means that the various angles of rotation (there can be several angles of rotation in the
general n-dimensional case, whereas only one exists in 2D or 3D) of a rotation R should not
go outside | — 7, 7| if we want the logarithm of R to be well-defined. Otherwise, one cannot
define a unique logarithm. This is typically the case for —Id in 2D (i.e. a rotation of 180
degrees), whose two ‘smallest’ real logarithms are the following;:

(0 ma (7).

Going back to SE(n), we have the following result:

Proposition 11. The logarithm of a rigid transformation (R, t) is well-defined if and only
if the logarithm of its rotation part R is well-defined.

Proof. The logarithm of (R,t) is well-defined if and only if the matrix representing (R, t)
has a principal logarithm, which is equivalent to the fact that it has no eigenvalue on
the closed negative line. Then, this is equivalent to the fact that R has no eigenvalue on
the closed negative line, since the eigenvalues of the upper triangular matrix (in terms of

R t
blocks) 0 1
As a consequence, the logarithm of a rigid transformation is well-defined if and only if the
logarithm of its rotation part is well-defined. O

depend only on the blocks in its diagonal, i.e. only on R, and not t.

Criterion for the Existence of the Bi-Invariant Mean. We have seen in Subsection
2.4 that no bi-invariant mean exists in the rigid case. One may now ask the question: is there
a simple criterion for the existence of the bi-invariant mean of rigid transformations? In the
case of bi-invariant metrics, one has such a criterion: the bi-invariant mean is well-defined
as long as all the data is strictly included in a regular geodesic ball of radius r such that
the geodesic ball of radius 2.7 is still regular ([7], page 9). In the case of rotations, this is
reduces to checking that within the data, there does not exist a couple R and R’ such that
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R~1.R’ has an angle of rotation greater or equal to 7 — C' minus a small constant [30]. We
have exactly the same result in the case of rigid transformations:

Theorem 10. Let (R;,t;) be N rigid transformations satisfying sup d(R;,R;) < 7 — C,
4,J

where C' > 0 and where d(R, R') is the magnitude of the largest angle of rotation of R~1.R'.

Then for any set of non-negative weights (w;), there exists a unique bi-invariant mean for

(RZ‘, ti).

Proof. We have just seen that the condition imposed on rotation matrices ensures that their
bi-invariant mean is well-defined, for any weights (w;). Let use write R for that barycenter.
R is included in the same geodesic ball as the data and thus satisfies the same condition on
its eigenvalues than the data: sup d(R;, R) <7 — C.

? —
We now have to check whether a unique translation ¢ exists, which satisfies the following
barycentric equation:

Zwi 10g((R,'E).(R¢,ti)_l) =0. (18)

We have: (R,?).(R;,t;)" ! = (R.RF, R.(—RT .t;)+t). Let us write M (dR) = e?F. fol e~ ARy,
We will soon show that M (dR) is always invertible provided that the norm of largest eigen-
value of dR is smaller than 7. Then Eq. (18) writes in terms of translations:

S, wM (log(R.RT)) ™ (R(=RT.t;) +1) = 0
— (19)
(Zi w; M (1og(R.R;T))’1) =Y, wiM (log(R.RT)) ™" .RT ;.

Thus, we see that the existence and unicity of such a ¢ is equivalent to the invertibility of
the following matrix: Y, w; M (log(R.R;f))fl. Under the restriction described above on
rotations, this matrix is indeed invertible, and this concludes the proof. To see this, we have
the following Lemma: O

Lemma 2. Let (dR;) be N a skew symmetric matrices, such that the norm of their largest
(complez) eigenvalue is always smaller than © — C, with C > 0.

Let M(dR) be equal to %, fol e~ %Ry for any skew symmetric matriz. Then for all
dR;, M(dR;) is invertible, and for any non-negative weights (w;), >, w;M(dR;)™" is also
invertible.

Proof. The key idea is to see the form taken by M (dR) in an appropriate orthonormal
basis. From classical linear algebra, we have the following spectral decomposition for any
skew symmetric matrix dR: there exists a decomposition of the geometrical space R” in a
direct sum of mutually orthogonal subspaces, which are all stable for dR [15].

These subspaces are of two kinds: first k& (possibly equal to zero) 2-dimensional vector
subspaces E}, and second a single subspace F' of dimension n — 2.k (the orthogonal comple-
ment of the other subspaces). F' is simply the kernel of dR, and any j in 1...k, dR restrained
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to E; is of the following form (in an appropriate orthonormal basis):

0 -6
6; 0 )

with 6; # 0, which is the j*®® angle of rotation of the rotation matrix e Intuitively,
this means that any general rotation can be decomposed in k independent 2D rotations. This
spectral decomposition allows for the explicit computation of M (dR) is the various subspaces
mentionned above. In a E;, M(dR) is equal to:

sin(6;) cos(f;)—1
9; 9;
< ~ cos(8;)-1 sin(79j) ) :

0;

dR

In F, dR is simply the identity. This shows that whenever for all j, |6, < 2.7, M(dR) is
always invertible (which is more than we need), since the determinant of the latter matrix

is equal to (Sine(?j))2 + (005(35)71)2, which is positive for |0;| < 2.7. Furthermore, a direct
computation shows that the inverse of M (dR) takes the following form in E;:

0]~ . Sin(ej) 0]~
< 2.(1—cos(6;) 2 )
9 _0;.sin(0;) |-

T2 2.(1—cos(6;)

For |0;| < m — C, some elementary calculus shows that there exists a constant K > 0, such

that Gj.sil’l(ej)

2 (1=cos(8;) > K. As a consequence, the latter matrix is of the following form:

(5 a)

with @ > K > 0. This has the interesting consequence that under the assumption that for
all j |0;] <7 —C, M(dR)™! has the following decomposition:

M(dR)™ =S+ A,

where S is a symmetric positive-definite matrices with all its eigenvalues larger than K and
where A is a skew symmetric matrix. Then let us take N skew matrices whose eigenvalues
are smaller than 7 — C. Any convex combination of the M (dR;)~! writes:

ZwiM(dRi)_l = (Z w;S;) + (Z w;4;) = S+ A,

where S is still symmetric definite positive and A is skew symmetric. 3, w; M (dR;)~" is
therefore invertible, since any matrix of the form S+ A is invertible. To see this, just remark
that if there exists one x such that (S + A).z = 0, this implies z7.S.2 + 7. A.z = 0. Then
notice that 27 A.x = (7. A.x)” = 27 . A.x = 0. Thus (S + A).z = 0 implies z7.5.z = 0,
which is equivalent (S is symmetric positive-definite) to 2 = 0. Consequently S + A is
invertible and this ends the proof. O
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6.2 2D Rigid Transformations

Contrary to the general case, 2D rigid transformations have a particularity: one has an
closed form for the bi-invariant mean. The reason behing this is that SO(2), the group of
2D rotations, is commutative. As a consequence, one can compute explicitely the bi-invariant
mean of the rotation parts of the data and deduce from it the translation part using the
barycentric equation, like in the proof of Theorem 10. More precisely, we have:

Proposition 12. Let (R;,t;) be N 2D rigid transformations, such that there angles of
rotation 0; satisfy: sup |0; —0;| < m — C. Then the bi-invariant mean (R,t) associated to
ij

the weights (w;) is gi;)en explicitely by:

R = Ry.exp(+ Y, w; log(RT.R;))
t=>%,w, Z7".M (log(R.R?))_l .RTt;,

with the following formulae for M and Z:

0 -6 -t def 2 eism(e)ﬁ % def = TN\~
M (( 0 0 )> = ! :Cé)S( ) 0.sin(0) 7Z = szM (10g(RRZ ))
2 2.(1—cos(0)

Example of Bi-Invariant Mean. Let us take a look at the example chosen in [31], page
31. Let f1 = (n/4,—v2/2,7v/2/2), f2 = (0,4/2,0) and f3 = (—7/4, —+/2/2, —/2/2) be three
rigid transformations. The first coefficient corresponds to the angle of rotation (chosen here
in [—m, 7[) and last two to the translation.

We can compute exactly the bi-invariant mean of these rigid transformations with (20); a
left-invariant Fréchet mean can also be computed explicitely in this case thanks to the simple
form taken by the corresponding geodesics (see [31] for more details), and finally, thanks
to Proposition 1, the analogous right-invariant Fréchet mean can be computed by inverting
the data, computing their left-invariant mean and then inverting this Fréchet mean. This
yields:

e left-invariant Fréchet mean: (0,0,0),

_Ve-§

o 0) = (0,02171,0),

&wsl:

¢ bi-invariant mean: (0,

=3
e right-invariant Fréchet mean: (0, @, 0) ~ (0,0.4714,0).

Interestingly, we thus see that the mean rotation is exactly the same in all three cases. But
the mean translations are different, and the bi-invariant mean is situated nicely between the
left- and right-invariant Fréchet means. This is quite intuitive, since the bi-invariant mean
can be looked upon as an in-between alternative with regard to left- and right-invariant
Fréchet means.
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6.3 General Linear Transformations

The Bi-invariant Mean as a Geometric Mean. Interestingly, it is possible to show
that in the linear group GL(n), the determinant of the bi-invariant mean is equal to the
scalar geometric mean of the determinant of the data. This mean can thus be looked upon
as a generalization to invertible linear transformations of the geometric mean of positive
numbers. Remarkably, this generalization is not the only possible one, since an other (sim-
pler) generalization of the geometric mean exists, called the Log-Euclidean mean, which
we described in [18] in the case of tensors and in [10] for affine transformations. However,
the Log-Euclidean mean is restricted to linear transformations whose principal logarithm is
well-defined, which is not the case for the bi-invariant mean.

Proposition 13. Let T; be N linear transformations in GL(n) and let (w;) be N (nor-
malized) non-negative weights, such that their bi-invariant mean E(T;) exists. Then, we
have:

if det(S;) > 0, for all i, then det(E(T;)) = e2=: wi-n(det(S))
if det(S;) < 0, for all i, then det(E(T;)) = —e22i wi-In(—det(5:)

Proof. When the bi-invariant mean is well-defined, then all the data must have a determinant
with the same sign, which is also the sign of E(7};). Otherwise, one of the products E(T;)~*.T;
would have a negative determinant and its principal logarithm would fail to exist.

To prove our result, we will rely only on two ingredients: the barycentric equation (10)
and the following property: det(M) = exp(Trace(log(M))), which holds for any square
matrix with a principal logarithm. This (classical) equality can be shown for example using
the Jordan (or Schur) decomposition of the matrix M.

Taking the trace of the barycentric equation and then the (scalar) exponential, we get:

1 — H ‘ew,iTrace(ln(det(IE(Ti)_1 T1))) .

Then, using det(A.B) = det(A).det(B) and In(a.b) = In(a) + In(b) and det(E(T;)~1.T;) =
|det(E(T5;))|~*.|det(S;)|, we get the geometrical interpolation of determinants:

1 = |det (E(T3))| " . exp <Z wi.ln(|det(51v)|)> ,

which yields the result.
O

Practical Computation of the Bi-invariant Mean. Whe have seen in Section 4 that
an efficiently iterative scheme could be used to compute bi-invariant means. It relies on suc-
cessive computations involving inversions, exponentials and logarithms. To actually compute
numerically the exponential and logarithm, we recommend using modern and efficient al-
gorithms like the ‘Scaling and Squaring’ method for the matrix exponential [28] and the
‘Inverse Scaling and Squaring Method’ [29] for the matrix logarithm.
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In the case of rigid and affine transformations, one can use their representation by ma-
trices given by homogeneous coordinates, and use the general iterative scheme on these
matrices to compute their bi-invariant mean.

6.4 Tensors

Let us now say a few words about a very interesting submanifold (which is not a subgroup)
of GL(n): the set of all symmetric positive-definite matrices, denoted here Sym’ (n). By
abuse of language, we will refer to this type of data as ‘tensors’. This (nick-)name comes
from ‘Diffusion Tensors Imaging’, which is an imaging modality whose importance has been
steadily growing in the biomedical imaging commutity in past years [1].

A number of teams (including ours) proposed almost simultanously in 2004 to endow
this space with affine-invariant metrics. These metrics provide a distance between tensors
which is completely independent of the arbitrary choice coordinate system [32, 33, 34, 35].
In more recent work, with Pierre Fillard, we also proposed to endowed this space with a
family of Riemannian metrics called ‘Log-Euclidean’, which also have excellent theoretical
properties (e.g., a number of them are similarity-invariant) and yield very similar results,
but are much simpler to use in practice.

Interestingly, the Fréchet mean associated to affine-invariant Riemannian metrics on the
tensor space coincides with the bi-invariant mean of tensors! Indeed, the affine-invariant
Fréchet mean E4¢¢(S1, ..., Sn) of N tensors Si, ..., Sn is defined implicitely by the following
barycentric equation:

N
> log(Bass(St, ..., Sn)~.8i) =0, (21)
i=1

which happens to be exactly our general equation (10) for bi-invariant means. Intuitively,

this means that our bi-invariant mean naturally unifies into a very general framework a

number of well-established notions of means for various types of data living in Lie groups

(e.g tensors, rotations, translations).

7 Left-invariant Polyaffine Transformations

Before presenting our novel polyaffine framework let us briefly recall the two polyaffine
frameworks we have already introduced in past years, which are described in detail in [36,
10, 11].

7.1 Polyaffine Transformations

The idea is to define transformations that exhibit a locally rigid or affine behavior, with
nice invertibility properties. Following the seminal work of [37], we model such transforma-
tions by a finite number N of affine components. Precisely, each component ¢ consists of
an affine transformation 7; and of a non-negative weight function w;(z) which models its
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spatial extension: the influence of the i** component at point x is proportional to w;(z).
Furthermore, we assume that for all z, Zi\;l w;(z) =1, i.e. the weights are normalized.

Fusion of Displacements. In order to obtain a global transformation from several weighted
components, the classical approach to fuse the N components, given in [38], simply consists
in averaging the associated displacements according to the weights:

N
T(x) = Zwl(x)Tl(a:) (22)

The transformation obtained using (22) is smooth, but this approach has one major draw-
back: although each component is invertible, the resulting global transformation is not
invertible in general. To remedy this, it was proposed in [36] to rely on the averaging of
some infinitesimal displacements associated to each affine component instead. The resulting
global transformation is obtained by integrating an Ordinary Differential Equation (ODE),
which is computationally more expensive but guarantees its invertibility and also yields a
simple form for its inverse.

Log-Euclidean Polyaffine Transformations. However, the first polyaffine framework
we proposed lacks some important properties: the inverse of a polyaffine transformation is
not polyaffine in general, and the polyaffine fusion of affine components is not invariant with
respect to a change of coordinate system.

This is the reason why we proposed a novel framework in [10, 11], called Log-Euclidean
polyaffine, which overcomes these defects. We also showed that this novel type of geometrical
deformations can be computed very efficiently (as well as their inverses) on regular grids,
with a simple algorithm called the Fast Polyaffine Transform.

Let us now see what the Log-Euclidean polyaffine fusion consists of. Let (7;) be N affine
(or rigid) transformations, and let (log(7;)) be their logarithms. Using these logarithms,
one can fuse the T; infinitesimally according to the weights w;(x) with a stationary (or
autonomous) ODE, called the ‘Log-Euclidean polyaffine ODE’. In homogeneous coordinates,
this ODE is the following:

i = Z wi(x)log(Ty)., (23)

which is a nice infinitesimal analogous of Eq. (22). The value at a point x of the Log-
Euclidean polyaffine transformation (LEPT) defined by (23) is given by integrating (23)
between time 0 and 1 with x as initial condition.

7.2 A Novel Type of Polyaffine Transformations

Why (Again) a Novel Polyaffine Framework? The properties of the Log-Euclidean
polyaffine framework are excellent, and do not suffer from the defects of our first polyaffine
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framework. However, this Log-Euclidean framework is limited to rigid or affine transforma-
tions whose principal logarithm is well-defined, i.e. which are close enough to the identity.
So far, we did not find this restriction limiting in our work on 3D locally affine registration
[39], mainly because we perform first a global affine alignment of anatomies before any lo-
cally affine registration. Still, it would be very interesting to have an infinitesimal strategy
of fusion capable of handling any type of local rigid or affine deformations (provided their
dispersion is not too large, of course), regardless of their distance to the identity.

Left-Invariant Polyaffine Transformations (LIPTs). To define our novel polyaffine
fusion, called left-invariant, we will rely on bi-invariant means of rigid or affine transforma-
tions.

Let (T;) be N affine (or rigid) transformations, let (w;(z)) be some non-negative weights
functions. Let also () be N non-negative weights, which intuitively correspond to the
global weights of components, whereas weight functions provide local information. Finally,
let T be the weighted left-invariant mean of the 7; and the weights (;). The bi-invariant
polyaffine transformation ® associated to all of these data is defined as follows:

1. Starting from a position zg, the following ODE (in homogeneous coordinates) is inte-
grated during one unit of time, which yields a final position ¥(xz):

i= Zwi(x) log(T~'.T3).x. (24)

2. We obtain the value at xo of the LIPT ® by computing: ®(xq) = T.¥(zo).

This allows to fuse infinitesimally the T} provided only that the logarithms of the T—1.T;
exist, which does not require that any of the logarithms of the 7; exist. The properties of
this fusion are quite nice: left-invariance and affine-invariance. They are summarized in the
following Proposition:

Proposition 14. The left-invariant polyaffine fusion ® of the components (T;, w;(x)) with
respect to the global weights (c;) has the following invariance properties:

e left-invariance: any left-multiplication (by an affine transformation) of the T; results
i a left-multiplication of ®

e affine-invariance: the fusion does not depend on the current choice of coordinate
system

e at any point x such that w;(x) = a; for all i, we have ®(x) = T.x, i.e. © moves
according to the mean transformation.
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Proof. Proof of left-invariance: let A be an affine transformations, and let us replace the
T; by A.T;. By construction, T is bi-invariant and is replaced by A.T and thus Eq. (24)
remains unchanged:

x—sz logT AT AT x—sz Ylog(T~ lﬂ)x

7

Since the value of ® is obtained by left-multiplying by 7" in a second step, ® is replaced by
A.®, which means that our novel polyaffine fusion is left-invariant.
Affine-invariance: let us change the current coordinate system by transforming x into

“) Az in homogeneous coordinates. This results in the following changes:
e a weight function z — w;(z) becomes y — w;(A~1.y).
e an affine transformation T; becomes A.T;.A~1.
e the bi-invariant mean becomes A.T. A1,

In the new coordinate systems, the left-invariant polyaffine ODE becomes:

y-Zwi y)log(AT 1AL AT, AY <sz y) log(T~ T)) ALy,

which yields:
= S A ) og(T LA ) (25)

This means that x(t) is a solution of Eq. (24) if and only if y(¢) = A.x(t) is a solution
of (25), i.e. of the left-invariant polyaffine ODE in the novel coordinate system. As a
consequence, a change of coordinate system does not affect the left-invariant polyaffine
fusion, i.e. this fusion is affine-invariant.

Finally, at a point x such that w;(z) = «;, we have:

ZwZ ). log(T~1.T; x—(ZallogT T)).x:O.;v:(),

by construction of the bi-invariant mean T. This implies that X is a fixed point of U.
Therefore, we have ®(z) = T.x at this point. O

Log-Euclidean vs. Left-Invariant Polyaffine Transformations. The price paid for
the infinitesimal fusion of local rigid or affine components regardless of their distance to
the identity is the following: the fusion is not inversion-invariant, i.e. the inverse of a
left-invariant polyaffine transormation is not left-invariant polyaffine (but right-invariant
polyaffine in fact). However, affine-invariance is preserved, i.e. independence with respect
to the choice of coordinate system.
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Computing Left-Invariant Polyaffine Transformations. The first step of the left-
invariant polyaffine fusion, the ODE (24) is a simple Log-Euclidean polyaffine ODE, which
can be integrated very efficiently using the Fast Polyaffine Transform described in [10]. The
second step is very simple to compute: it only consists in applying an affine transformation,
which is the bi-invariant mean T. We recall that this mean can be very efficiently numer-
ically computed in homogeneous coordinates using the classical iterative scheme described
previously in this article.

Right-Invariant Polyaffine Transformations (RIPTs). We have just defined LIPTs.
What about right-invariant polyaffine transformations? With the same notations as before,
one can indeed define such transformations, by slightly modifying the left-invariant polyaffine
ODE:

1. Starting from a position zg, the following ODE (in homogeneous coordinates) is inte-
grated during one unit of time, which yields a final position ¥ g(z¢):

T = Z w;(T.x) log(T~1.T;).. (26)
2. We obtain the value at zg of the right-invariant polyaffine transformation ® by com-
puting: ®r(xg) = T.Vg(zo).

With exactly the same type of techniques as in the proof of Proposition 14, one can show
that type of fusion is right-invariant and also affine-invariant. It is much less intuitive, since
the weight functions w; are geometrically deformed by 7! before being used in the fusion.
With have the interesting following relationship between LIPTs and RIPTs:

Proposition 15. The inverse of a LIPT is the RIPT with inverted components, and vice
versa.

Proof. Inverting the left-invariant polyaffine fusion results in the following two steps:
1. multiplying by 7!

2. integrating the following ODE during one unit of time:

Zwl Ylog(T~1.T;) a:—Zwl Viog(T; 1. T).x (27)

Let us use the change of variable y = T'.x in (27). This yields:

t=T"ty= Zwl y) log(T; 1. 1).T~1 <Z wi (T~ .y). log(T.T;” )) Y,
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which yields the simpler equation:
g=> wi(T " y)log(T.T; ).y, (28)

which is the ODE associated to the first step of the right-invariant fusion of the inverses of
the T; with the same weights as originally.

Thus, x(t) is the solution of (27), second step of the inversion of our LIPT if and only if
T.x(t) is a solution of the first step of the RIPT with inverted components. As consequence,
the two steps of the inversion of our LIPT are equivalent to the two steps the RIPT with
inverted components. the inverse of a LIPT is therefore the RIPT with inverted components
and vice versa.

O

And Bi-invariant Polyaffine Transformations? So far, we have not been able to define
a bi-invariant polyaffine fusion, i.e. an infinitesimal fusion of local affine transformations
which would be simultanously left- and right- and inversion-invariant. Is such a fusion
possible? We do not know yet, and this will be the subject of future work.

8 Conclusions and Perspectives

In this work, we have presented a general framework to define rigorously a novel type of mean
in Lie groups, called the bi-invariant mean. This mean enjoys many desirable invariance
properties, which generalize to the non-linear case the properties of the arithmetic mean: it
is invariant with respect to left- and right-multiplication, as well as inversion. Previously,
this type of mean was only defined in Lie groups endowed with a bi-invariant Riemannian
metric, like compact Lie groups such as the group of rotations [7, 8]. But Riemannian bi-
invariant metrics do not always exist. In particular, we have proved in this work that such
metrics do not exist in any dimension for rigid transformations, which form but the most
simple Lie group involved in bio-medical image registration.

To overcome the lack of existence of bi-invariant Riemannian metrics for many Lie groups,
we have proposed in this article to define bi-invariant means in any finite-dimensional real
Lie group via a general barycentric equation, whose solution is by definition the bi-invariant
mean. We have shown the existence and uniqueness of this novel type of mean, provided the
dispersion of the data is small enough, and the convergence of an efficient iterative algorithm
for computing this mean has also been shown. The intuition of the existence of such a mean
was first given in [9] (without any precise definition), along with an efficient algorithm for
computing it (without proof of convergence), in the case of matriz groups.

In the case of rigid transformations, we have been able to determine a simple criterion
for the general existence and uniqueness of the bi-invariant mean, which happens to be the
same as for rotations. We have also given closed forms for the bi-invariant mean in a number
of simple but instructive cases, including 2D rigid transformations. Interestingly, for general
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linear transformations, we have shown that similarly to the Log-Euclidean mean, that we
recently proposed in [10], the bi-invariant mean is a generalization of the (scalar) geometric
mean, since the determinant of the bi-invariant mean is exactly equal to the geometric mean
of the determinants of the data.

Last but not least, we have used this new type of mean to define a novel class of polyaffine
transformations, called left-invariant polyaffine, which allows to fuse local rigid or affine
components arbitrarily far away from the identity, contrary to Log-Euclidean polyaffine
fusion, which we recently introduced in [11].

In future work, we are planning to compare the statistics obtained via the bi-invariant
mean to other types of statistics on rigid or affine transformations such as Log-Euclidean
statistics [10], or left-invariant Riemannian statistics [5]. These statistics could prove very
useful for example to constraint locally rigid or affine registration algorithms such as the
one described in [39].
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