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Abstract. In this article, we focus on the parameterization of non-
rigid geometrical deformations with a small number of flexible degrees
of freedom . In previous work, we proposed a general framework called
polyaffine to parameterize deformations with a small number of rigid or
affine components, while guaranteeing the invertibility of global defor-
mations. However, this framework lacks some important properties: the
inverse of a polyaffine transformation is not polyaffine in general, and the
polyaffine fusion of affine components is not invariant with respect to a
change of coordinate system. We present here a novel general framework,
called Log-Euclidean polyaffine, which overcomes these defects. We also
detail a simple algorithm, the Fast Polyaffine Transform, which allows
to compute very efficiently Log-Euclidean polyaffine transformations and
their inverses on a regular grid. The results presented here on real 3D
locally affine registration suggest that our novel framework provides a
general and efficient way of fusing local rigid or affine deformations into
a global invertible transformation without introducing artifacts, inde-
pendently of the way local deformations are first estimated.

1 Introduction

The registration of medical images is in general a difficult problem, and numer-
ous methods and tools have been already devised to address this task [9]. Still
currently, much effort continues to be devoted to finding adequate measures of
similarity, relevant parameterizations of geometrical deformations, efficient op-
timization methods, or realistic mechanical models of deformations, depending
on the precise type of registration considered.

In this article, we focus on the parameterization of non-rigid geometrical de-
formations with a small number of flexible degrees of freedom . This type of
parameterization is particularly well-adapted for example to the registration of
articulated structures [11] and to the registration of histological slices [12, 3]. Af-
ter a global affine (or rigid) alignment, this sort of parameterization also allows
a finer local registration with very smooth transformations [5, 10, 6, 13].

In [3], we parameterized deformations with a small number of rigid or affine
components, which can model smoothly a large variety of local deformations.
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We provided a general framework to fuse these components into a global trans-
formation, called polyrigid or polyaffine, whose invertibility is guaranteed. How-
ever, this framework lacks some important properties: the inverse of a polyaffine
transformation is not polyaffine in general, and the polyaffine fusion of affine
components is not invariant with respect to a change of coordinate system (i.e.
is not affine-invariant). Here, we present a novel general framework to fuse rigid
or affine components, called Log-Euclidean polyaffine, which overcomes these
defects and yields transformations which can be very efficiently computed.

The sequel of this article is organized as follows. In Section 2, we present
the Log-Euclidean polyaffine framework and its intuitive properties. Then, we
present the Fast Polyaffine Transform (FPT), which allows to compute very effi-
ciently Log-Euclidean polyaffine transformations (LEPTs) and their inverses on
a regular grid. Finally, we apply the FPT to a real 3D example, where affine com-
ponents are estimated with the algorithm of [5]. Without introducing artifacts,
our novel fusion ensures the invertibility of the global transformation.

2 A Log-Euclidean Polyaffine Framework

Before presenting our novel polyaffine framework, let us briefly recall our frame-
work for locally affine registration and the original polyaffine framework, de-
scribed in [3].

Locally Affine or Rigid Transformations. Following the seminal work of
[8], we parameterize locally affine (or rigid) transformations by N affine (or
rigid) components. Each component i consists of an affine transformation Ti =
(Mi, ti) (Mi and ti are the linear and translation parts) and of a non-negative
weight function wi(x), such that the influence of the ith component at point x
is proportional to wi(x). Here, we assume that the weights are normalized: that
for all x,

∑N
i=1 wi(x) = 1.

Direct Fusion of Components. To obtain a global transformation from sev-
eral components, the classical approach [14], called here direct fusion, simply
consists in averaging the associated displacements according to the weights:

T (x) =
N∑

i=1

wi(x)Ti(x). (1)

The transformation obtained using (1) is smooth, but although each component
is invertible, the resulting global transformation is not invertible in general.

Previous Polyaffine Framework. We proposed in [3] to average displace-
ments infinitesimally. The resulting global transformation is obtained by in-
tegrating an Ordinary Differential Equation (ODE), called polyaffine, which is
computationally more expensive, but guarantees the invertibility of global defor-
mations. To define a polyaffine ODE, this approach relies on principal logarithms
of the linear parts Mi of the transformations Ti. However, as mentioned in the
introduction, this framework lacks some important and desirable properties.
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Logarithm of an Rigid or Affine Transformation. The key idea of our
novel approach is to use the logarithms of the transformations themselves. In 3D,
the logarithm of an affine (or rigid) transformation T is given in homogeneous
coordinates by a 4x4 matrix which is simply the matrix logarithm of the 4x4
matrix representing T [1]:

log (T ) = log
(

M t
0 1

)

=
(

L v
0 0

)

.

This logarithm is well-defined if and only if none of the eigenvalues of M are
non-positive real numbers. See [4] for more details and an efficient numerical al-
gorithm to compute matrix logarithms. Intuitively, this constraint only excludes
affine transformations very far from the identity, which we did not observe at
all in our registration experiments. In particular, for rigid components, this only
imposes that (local) rotations be stricly below π radians. For a discussion of this
limitation, see [1]. In the following, we assume that the logarithms of our affine
transformations are well-defined.

Log-Euclidean Polyaffine Transformations. Let (Ti) be N affine (or rigid)
transformations, and let (log(Ti)) be their logarithms. Using these logarithms,
one can fuse the Ti infinitesimally according to the weights wi(x) with a sta-
tionary (or autonomous) ODE. In homogeneous coordinates, this ODE is the
following:

ẋ = V (x)
def
=

∑

i

wi(x) log(Ti).x. (2)

The solutions of (2) are always well-defined for all time. The proof is extremely
similar to that given in [3]. The value at a point x of the Log-Euclidean polyaffine
transformation (LEPT) defined by (2) is given by integrating (2) between time 0
and 1 with x as initial condition. This novel framework is called Log-Euclidean,
because when the weights wi(x) do not depend on x, the resulting LEPT is
simply the affine (or rigid) transformation equal to exp(

∑
i wi log(Ti)), i.e. the

Log-Euclidean mean of the components, similarly as in our work on tensors [2].

Remarkable Properties. The stationarity of (2) yields particularly nice and
intuitive properties, conveniently expressed in terms of flow. At an instant s,
the flow T (s, .) of (2) is the mapping which gives the way the ambient space is
deformed by the integration of (2) during s units of time. It is always invertible
and smooth (as well as its inverse) [16], i.e. it is a diffeomorphism.

A classical property of the flow is the following: it is a one-parameter subgroup
of diffeomorphisms, i.e. T (s, .) ◦ T (t, .) = T (s + t, .). Here, it is also a one-
parameter subgroup of LEPTs. This means that T (s, .) is the sth power of the
Log-Euclidean polyaffine transformation defined by T (1, .). In particular, we have
the intuitive properties that the inverse of T (1, .) (resp. its square root) is simply
T (−1, .) (resp. T (1/2, .)), i.e. the LEPT with identical weights but whose affine
transformations are the inverses (resp. square roots) of the original ones. Last
but not least, (2) is affine-invariant: the Log-Euclidean polyaffine fusion does
not depend on the current coordinate system. For more details, see [1].
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3 Fast Polyaffine Transform

The remarkable (and novel) properties of the Log-Euclidean polyaffine frame-
work allow fast computations of LEPTs. We propose here a very efficient algo-
rithm to evaluate a Log-Euclidean polyaffine transformation on a regular grid.

Method Overview. Surprisingly, our fast algorithm generalizes a method
widely used to compute matrix exponentials to the non-linear case. The basic
idea of this method, called ‘Scaling and Squaring’, is that for a square matrix M ,
we have: exp(M) = exp( M

2N )2
N

. Since the matrix exponential is much simpler to
compute for matrices close to zero, for example using Padé approximants, one
can compute very accurately exp

(
M
2N

)
and obtain exp(M) by squaring recur-

sively N times the result [7]. In the non-linear case, since the flow T (s, .) of (2)
is a one-parameter subgroup, we also have:

T (1, .) = T

(
1

2N
, .

)2N

, (3)

which means that what the deformation observed at time 1 (i.e., the LEPT)
results of 2N times the composition of the small deformations observed at time
1

2N . Therefore, one can generalize the ‘Scaling and Squaring’ method to LEPTs
in a straightforward way. This method, called the ‘Fast Polyaffine Transform’
(FPT), follows the same three steps as in the matrix case:

1. Scaling step: divide V (x) (speed vectors of (2)) by a factor 2N , so that
V (x)/2N is close enough to zero (according to the level of accuracy desired).

2. Exponentiation step: T
( 1

2N , .
)

is computed with a numerical scheme.
3. Squaring step: using (3), N recursive squarings of T

( 1
2N , .

)
yield an accu-

rate estimation of T (1, .) (only N compositions of mappings are used).

Numerical Scheme for the Exponentiation Step. Integrating an ODE
during a very short interval of time (short with respect to the smoothness of the
solution) is quite simple. Generalizing ideas of [3], we use in this article a second-
order scheme, called the affine exponentiation scheme (A.S.), which is exact in
the case of a single affine component. It writes in homogeneous coordinates:

T

(
1

2N
, x

)

A.S.

def
=

N∑

i=1

wi(x). exp
(

1
2N

log (Ti)
)

.x.

This choice of scheme comes from our numerical experiments [1] which show that
this numerical scheme is on average approximately 40% more accurate than the
first-order explicit scheme, with a similar simplicity and computational cost.

Computational Cost. An integration of (2) between times 0 and 1 with a
time-step of 2−N is performed in only N steps, and not in 2N steps as with
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Fig. 1. Fast polyaffine transform for two rotations: three last squaring steps.
6 squarings are used in this experiment. Note how the deformation is initially very small,
and increases exponentially. The relative accuracy of the estimation of the polyaffine
transformation is on average of 0.21%, and the maximal error is below 3.2%.

methods using fixed time-steps. This is somehow comparable with the computa-
tional gain obtained by using the Fast Fourier Transform. Interestingly, after the
exponentiation step, only N compositions between transformations are needed,
which is an operation based on interpolation techniques. In this work, we use
bi- and tri-linear interpolations, which are simple and guarantee a continuous
interpolation of our transformation.

Synthetic Experiments. We measure the accuracy of our results by comput-
ing the relative difference with respect to an accurate estimation of the continu-
ous transformation, obtained by a classical integration (i.e., with fixed time step,
here 2−8 ) of (2) for each voxel of the grid, which has 50 × 40 pixels. Numerical
errors at the boundary of the regular grid are drastically reduced here by adding
extra points to the grid so that it contains the boundary of the original grid
deformed by direct fusion.

Fig. 1 displays the last 3 squaring steps of a typical FPT, using two rotations
of opposite angles of 0.63 radians, (normalized) Gaussian weights (σ = 5) and
a scaling of 26 (i.e., 6 squarings). Errors are low: the relative accuracy of the
resulting estimation of the polyaffine transformation is on average 0.21% (instead
of approximately 0.6% without an enlarged grid), and the maximal relative error
is below 3.2% (instead of 11% wihtout an enlarged grid).

Inversion with the FPT. The inverse of a LEPT is simply (and intuitively)
the LEPT with the same weights and with inverted affine transformations.
Therefore, it can also be computed using the FPT. The accuracy of the in-
version is evaluated via the composition of the estimation of the original LEPT
and of its inverse by FPT, which should be close to the identity. Fig. 2 shows
the evolution of this accuracy when the number of squarings varies, in our ex-
ample of fusion between two rotations. We thus see that an excellent quality of
inversion can be achieved using a small number of squarings, typically 7. The
maximal relative error converges below 2% and the mean relative error is of the
order of 0.2%. Similar results were obtained in [1] on other examples.
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Fig. 2. Inversion with the FPT. From left to right: the regular grid deformed
by the composition between the FPT of the LEPT and the FPT of its inverse, first
with 2 squarings then 6 squarings. On the right: evolution of the relative accuracy
when the number of squarings varies. An excellent accuracy is already achieved with 6
squarings, and the mean and maximal relative errors converge toward 0.2%and 2%.

4 Application to Locally Affine 3D Registration

Let us now consider a real 3D example of locally affine registration, between an
atlas of 216 × 180 × 180 voxels and a T1-weighted MR image, with the multi-
resolution and robust block-matching algorithm described in [5], without regu-
larization. 7 structures of interest are considered: eyes (1 affine component each),
cerebellum (2 components), brain stem (2 components), optic chiasm (1 com-
ponent), 1 supplementary component (set to the identity) elsewhere. Weight
functions are defined in the atlas geometry using mathematical morphology and
a smoothing kernel in a preliminary step [5].

LEPTs as a Post-Processing Tool. To obtain short computation times
(typically 10 minutes), our locally affine registration algorithm estimates affine
components using the direct fusion. The FPT is used in a final step to ensure

Fig. 3. Locally affine vs. dense-transformation: smoothness of deformations.
The contours of our structures of interest (eyes, brain stem, cerebellum, optic chiasm)
are displayed on the subject and are obtained by deforming those of the atlas using
the dense transformation of [15] and using our locally affine framework. From left to
right: axial slice, with first dense and then locally affine deformations; sagittal slice,
with again dense and then locally affine deformations. Note how smoother contours are
in the locally affine case, although both accuracies are comparable.
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Fig. 4. Singularity removal with LEPTs.A 3D regular grid is deformed with the
locally affine transformation obtained with the algorithm of [5], two slices are displayed.
From left to right: polyaffine fusion and direct fusion (for the first slice) and then
again polyaffine fusion and direct fusion (second slice). Note how the singularities of the
direct fusion disappear with LEPTs. Remarkably, this is obtained without introducing
any artifacts: outside singularities, both fusions yield very close results.

the invertibility of the final transformation, as well as to compute its inverse.
A typical result of this registration procedure is illustrated by Fig. 3, which
shows that the locally affine registration, with much smoother deformations,
has an accuracy in the structures of interest which is comparable to the dense
transformation case of [15].

Here, the scaling used in 28 and the FPT is computed in 40s on a Pentium4
Xeon™2.8 GHz on a 216× 180× 180 regular grid. As shown by Fig. 4, the direct
fusion of components estimated by [5] can lead to singularities, which is not the
case when the FPT is used. Remarkably, both fusions are very close outside of
regions with singularities. This means that no artifacts are introduced by the
FPT, which justifies a posteriori the estimation of affine components with the
(faster) direct fusion.

5 Conclusion and Perspectives

In this work, we have presented a novel framework to fuse rigid or affine com-
ponents into a global transformation, called Log-Euclidean polyaffine. Similarly
to the previous polyaffine framework of [3], it guarantees the invertibility of the
result. However, contrary to the previous framework, this is achieved with very
intuitive properties: for example the inverse of a LEPT is a LEPT with identical
weights and inverted affine components. Moreover, this novel fusion is affine-
invariant, i.e. does not depend on the choice of coordinate system. We have also
shown that remarkably, and contrary to previous polyaffine transformations, the
specific properties of LEPTs allow their fast computations on regular grids, with
an algorithm called the ‘Fast Polyaffine Transform’, whose efficiency is somehow
comparable to that of the Fast Fourier Transform.

In the example of locally affine 3D registration presented here, we use LEPTs
in a final step to fuse the affine components estimated during the algorithm of
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[5]. With the FPT, this is done very efficiently. Remarkably, the novel fusion is
very close to the direct fusion in regions without singularities. This suggests that
our novel framework provides a general and efficient way of fusing local rigid or
affine deformations into a global invertible transformation without introducing
artifacts, independently of the way local affine deformations are first estimated.
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