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GEOMETRIC MEANS IN A NOVEL VECTOR SPACE STRUCTURE
ON SYMMETRIC POSITIVE-DEFINITE MATRICES∗
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Abstract. In this work we present a new generalization of the geometric mean of positive
numbers on symmetric positive-definite matrices, called Log-Euclidean. The approach is based on
two novel algebraic structures on symmetric positive-definite matrices: first, a lie group structure
which is compatible with the usual algebraic properties of this matrix space; second, a new scalar
multiplication that smoothly extends the Lie group structure into a vector space structure. From bi-
invariant metrics on the Lie group structure, we define the Log-Euclidean mean from a Riemannian
point of view. This notion coincides with the usual Euclidean mean associated with the novel vector
space structure. Furthermore, this means corresponds to an arithmetic mean in the domain of matrix
logarithms. We detail the invariance properties of this novel geometric mean and compare it to the
recently introduced affine-invariant mean. The two means have the same determinant and are equal
in a number of cases, yet they are not identical in general. Indeed, the Log-Euclidean mean has a
larger trace whenever they are not equal. Last but not least, the Log-Euclidean mean is much easier
to compute.
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1. Introduction. Symmetric positive-definite (SPD) matrices of real numbers
appear in many contexts. In medical imaging, their use has become common during
the last 10 years with the growing interest in diffusion tensor magnetic resonance
imaging (DT-MRI, or simply DTI) [3]. In this imaging technique, based on nuclear
magnetic resonance (NMR), the assumption is made that the random diffusion of
water molecules at a given position in a biological tissue is Gaussian. As a conse-
quence, a diffusion tensor image is an SPD matrix-valued image in which the SPD
matrix associated with the current volume element (or voxel) is the covariance matrix
of the local diffusion process. SPD matrices also provide a powerful framework for
modeling the anatomical variability of the brain, as shown in [15]. More generally,
they are widely used in image analysis, especially for segmentation, grouping, motion
analysis, and texture segmentation [16]. They are also used intensively in mechan-
ics, for example, with strain or stress tensors [4]. Last, but not least, SPD matrices
are becoming a common tool in numerical analysis for generating adapted meshes to
reduce the computational cost of solving partial differential equations (PDEs) in three
dimensions [17].

As a consequence, there has been a growing need to carry out computations
with these objects, for instance to interpolate, restore, and enhance images SPD
matrices. To this end, one needs to define a complete operational framework. This
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is necessary to fully generalize to the SPD case the usual statistical tools or PDEs
on vector-valued images. The framework of Riemannian geometry [8] is particularly
adapted to this task, since many statistical tools [18] and PDEs can be generalized to
this framework.

To evaluate the relevance of a given Riemannian metric, the properties of the
associated notion of mean are of great importance. Indeed, most computations useful
in practice involve averaging procedures. This is the case in particular for the inter-
polation, regularization, and extrapolation of SPD matrices, where mean values are
implicitly computed to generate new data. For instance, the classical regularization
technique based on the heat equation is equivalent to the convolution of the original
data with Gaussian kernels.

Let M be an abstract manifold endowed with a Riemannian metric, whose asso-
ciated distance is d(., .). Then the classical generalization of the Euclidean mean is
given by the Fréchet mean (also called the Riemannian mean) [18, 19]. Let (xi)

N
i=1 be

N points of M. Their Fréchet mean E(xi) (possibly not uniquely defined) is defined
as the point minimizing the following metric dispersion:

E(xi) = arg
x

min

N∑
i=1

d2(x, xi).(1.1)

One can directly use a Euclidean structure on square matrices to define a metric
on the space of SPD matrices. This is straightforward, and in this setting, the Rie-
mannian mean of a system of SPD matrices is their arithmetic mean, which is an SPD
matrix since SPD matrices form a convex set. However, this mean is not adequate in
many situations, for two main reasons. First, symmetric matrices with nonpositive
eigenvalues are at a finite distance from any SPD matrix in this framework. In the
case of DT-MRI, this is not physically acceptable, since this amounts to assuming
that small diffusions (i.e., small eigenvalues) are much more likely than large diffu-
sions (i.e., large eigenvalues). A priori, large and small diffusions are equally unlikely
in DT-MRI, and a symmetry with respect to matrix inversion should be respected.
In particular, a matrix and its inverse should be at the same distance from the iden-
tity. Therefore, the use of a generalization to SPD matrices of the geometric mean of
positive numbers would be preferable, since such a mean is precisely invariant with
respect to inversion.

Second, an SPD matrix corresponds typically to a covariance matrix. The value
of its determinant is a direct measure of the dispersion of the associated multivariate
Gaussian. The reason is that the volumes of associated trust regions are proportional
to the square root of this determinant. But the Euclidean averaging of SPD matrices
often leads to a swelling effect: the determinant of the Euclidean mean can be strictly
larger than the original determinants. The reason is that the induced interpolation of
determinants is polynomial and not monotonic in general. In DTI, diffusion tensors are
assumed to be covariance matrices of the local Brownian motion of water molecules.
Introducing more dispersion in computations amounts to introducing more diffusion,
which is physically unacceptable. For illustrations of this effect, see [20, 21]. As a
consequence, the determinant of a mean of SPD matrices should remain bounded by
the values of the determinants of the averaged matrices.

To fully circumvent these difficulties, other metrics have been recently proposed
for SPD matrices. With the affine-invariant metrics proposed in [12, 22, 23, 19],
symmetric matrices with negative and null eigenvalues are at an infinite distance from
any SPD matrix. The swelling effect has disappeared, and the symmetry with respect
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to inversion is respected. These new metrics provide an affine-invariant generalization
of the geometric mean of positive numbers on SPD matrices. But the price paid
for this success is a high computational burden in practice, essentially due to the
curvature induced on the space of SPD matrices. This leads in many cases to slow
and hard-to-implement algorithms (especially for PDEs) [12].

We propose here a new Riemannian framework on SPD matrices, which gives rise
to a novel generalization of the geometric mean to SPD matrices. It fully overcomes
the computational limitations of the affine-invariant framework, while conserving ex-
cellent theoretical properties. This is obtained with a new family of metrics named
Log-Euclidean. Such metrics are particularly simple to use. They result in classical
Euclidean computations in the domain of matrix logarithms. As a consequence, there
is a closed form for the Log-Euclidean mean, contrary to the affine-invariant case. It
results in a drastic reduction in computation time: the Log-Euclidean mean can be
computed approximately 20 times faster.

The remainder of this article is organized as follows. In section 2, we recall a
number of elementary properties of the space of SPD matrices. Then we proceed in
section 3 to the theory of Log-Euclidean metrics which is based on two novel algebraic
structures on SPD matrices: a Lie group structure and a new scalar multiplication
which complements the new multiplication to obtain a new vector space structure.
The definition of the Log-Euclidean mean is deduced from these new structures. Con-
trary to the affine-invariant mean, there is a closed form for the Log-Euclidean mean
and it is simple to compute. In section 4 we highlight the resemblances and differences
between affine-invariant and Log-Euclidean means. They are quite similar, since they
have the same determinant, which is the classical geometric mean of the determinants
of the averaged SPD matrices. They even coincide in a number of cases, and yet are
different in general. We prove that Log-Euclidean means are strictly more anisotropic
when averaged SPD matrices are isotropic enough.

2. Preliminaries. We begin with a description of the fundamental properties
and tools used in this work. First, we recall the elementary properties of the matrix
exponential. Then we examine the general properties of SPD matrices. These prop-
erties are of two types: algebraic and differential. On the one hand, SPD matrices
have algebraic properties because they are a special kind of invertible matrices, and
on the other hand they can be considered globally as a smooth manifold and therefore
have differential geometry properties. These properties are not independent: on the
contrary, they are compatible in a profound way. This compatibility is the core of the
approach developed here.

2.1. Notation. We will use the following definitions and notation:
• Sym+

� (n) is the space of SPD real n× n matrices.
• Sym(n) is the vector space of real n× n symmetric matrices.
• GL(n) is the group of real invertible n× n matrices.
• M(n) is the space of real n× n square matrices.
• Diag(λ1, . . . , λn) is the diagonal matrix constructed with the real values

(λi)i∈1...n in its diagonal.
• For any square matrix M , Sp(M) is the spectrum of M , i.e., the set of its

eigenvalues.
• φ : E → F is differentiable mapping between two smooth manifolds. Its

differential at a point M ∈ E acting on a infinitesimal displacement dM in
the tangent space to E at M is written as DMφ.dM .
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2.2. Matrix exponential. The exponential plays a central role in Lie groups
(see [11, 5, 8]). We will consider here only the matrix version of the exponential, which
is a tool that we extensively use in the next sections. We recall its definition and give
its elementary properties. Last but not least, we give the Baker–Campbell–Hausdorff
formula. It is a powerful tool that provides fine information on the structure of Lie
groups around the identity. We will see in section 4 how it can be used to compare
Log-Euclidean means to affine-invariant means in terms of anisotropy.

Definition 2.1. The exponential exp(M) of a matrix M is given by exp(M) =∑∞
n=0

Mk

k! . Let G ∈ GL(n). If there exists M ∈ M(n) such that G = exp(M), then
M is said to be a logarithm of N .

In general, the logarithm of a real invertible matrix may not exist, and if it exists
it may not be unique. The lack of existence is a general phenomenon in connected Lie
groups. One generally needs two exponentials to reach every element [10]. The lack
of uniqueness is essentially due to the influence of rotations: rotating of an angle α is
the same as rotating of an angle α + 2kπ, where k is an integer. Since the logarithm
of a rotation matrix directly depends on its rotation angles (one angle suffices in three
dimensions, but several angles are necessary when n > 3), it is not unique. However,
when a real invertible matrix has no (complex) eigenvalue on the (closed) negative
real line, then it has a unique real logarithm whose (complex) eigenvalues have an
imaginary part in ] − π, π[ [2]. This particular logarithm is called principal. We will
write log(M) for the principal logarithm of a matrix M whenever it is defined.

Theorem 2.2. exp : M(n) → GL(n) is a C∞ mapping. Its differential map at a
point M ∈ M(n) acting on an infinitesimal displacement dM ∈ M(n) is given by

DM exp .dM =

∞∑
k=1

1

k!

(
k−1∑
l=0

Mk−l−1.dM.M l

)
.(2.1)

Proof. The smoothness of exp is simply a consequence of the uniform absolute
convergence of its series expansion in any compact set of M(n). The differential is
obtained classically by a term by term derivation of the series defining the expo-
nential.

We see here that the noncommutativity of the matrix multiplication seriously
complicates the differentiation of the exponential, which is much simpler in the scalar
case. However, taking the trace in (2.1) yields the following.

Corollary 2.3. We have the following simplification in terms of traces:

Trace(DM exp .dM) = Trace(exp(M).dM).(2.2)

In the following we will also use this property on determinants.
Proposition 2.4. Let M ∈ M(n). Then det(exp(M)) = exp(Trace(M)).
Proof. This is easily seen in terms of eigenvalues of M . The Jordan decomposition

of M [1] ensures that Trace(M) is the sum of its eigenvalues. But the exponential
of a triangular matrix transforms the diagonal values of this matrix into their scalar
exponential. The determinant of exp(M) is simply the product of its eigenvalues,
which is precisely the exponential of the trace of M .

Theorem 2.5 (Baker–Campbell–Hausdorff formula [9] (matrix case)). Let
M,N ∈ M(n) and t ∈ R. When t is small enough, we have the following devel-
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opment, in which the logarithm used is the principal logarithm:

log(exp(t.M). exp(t.N)) = t.(M + N) + t2/2([M,N ])
+ t3/12([M, [M,N ]] + [N, [N,M ]])
+ t4/24([[M, [M,N ]], N ]) + O(t5).

(2.3)

We recall that [M,N ] = MN −NM is the Lie bracket of M and N .
The Baker–Campbell–Hausdorff formula shows how much exp(log(M). log(N))

deviates from M + N due to the noncommutativity of the matrix product. Remark-
ably, this deviation can be expressed only in terms of Lie brackets between M and N
[14].

2.3. Algebraic properties. SPD matrices have remarkable algebraic proper-
ties. First, there always exists a unique real and symmetric logarithm for any SPD
matrix, which is its principal logarithm. Second, if the space of SPD matrices is not
a subgroup of GL(n), it is stable with respect to inversion. Moreover, its spectral
decomposition is particularly simple.1

Theorem 2.6. For any S ∈ Sym(n), there exists an orthonormal coordinate sys-
tem in which S is diagonal. This is particularly the case for SPD matrices. Sym+

� (n)
is not a subgroup of GL(n), but it is stable by inversion. Moreover, the matrix expo-
nential exp : Sym(n) → Sym+

� (n) is one-to-one.
Proof. For a proof of the first assertion, see elementary linear algebra manuals,

or [1]. For the second assertion, we see from section 2.2 that SPD matrices have a
unique real logarithm whose eigenvalues have an imaginary part between −π and +π,
since the eigenvalues of SPD matrices are real and always positive. The principal
logarithm of an SPD matrix can be obtained simply by replacing its eigenvalues with
their natural logarithms, which shows that this logarithm is symmetric.

Thanks to the existence of an orthonormal basis in which an SPD matrix (resp.,
a symmetric matrix) is diagonal, the logarithm (resp., the exponential) has a particu-
larly simple expression. In such a basis, taking the log (resp., the exp) is simply done
by applying its scalar version to eigenvalues:{

log(R.Diag(λ1, . . . , λN ).RT ) = R.Diag(log(λ1), . . . , log(λN )).RT ,
exp(R.Diag(λ1, . . . , λN ).RT ) = R.Diag(exp(λ1), . . . , exp(λN )).RT .

These formulae provide a particularly efficient method to calculate the logarithms
and exponentials of symmetric matrices, whenever the cost of a diagonalization is less
than that of the many matrix multiplications (in the case of the exponential) and
inversions (in the case of the logarithm) used in the general matrix case by classical
algorithms [13, 24]. For small values of n, and in particular n = 3, we found such
formulae to be extremely useful.

2.4. Differential properties. From the point of view of topology and differen-
tial geometry, the space of SPD matrices also has many particularities. The properties
recalled here are elementary and will not be detailed. See [25] for complete proofs.

Proposition 2.7. Sym+
� (n) is an open convex half-cone of Sym(n) and is there-

fore a submanifold of Sym(n), whose dimension is n(n + 1)/2.

2.5. Compatibility between algebraic and differential properties. We
have seen that exp is a smooth bijection. We show here that the logarithm, i.e.,

1This is due to the fact that SPD matrices are normal operators, like rotations and antisymmetric
matrices [1].
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its inverse, is also smooth. As a consequence, all the algebraic operations on SPD
matrices presented before are also smooth, in particular the inversion. Thus, the two
structures are fully compatible.

Theorem 2.8. log : Sym+
� (n) → Sym(n) is C∞. Thus, exp and its inverse

log are both smooth, i.e., they are diffeomorphisms. This is due to the fact that the
differential of exp is nowhere singular.

Proof. In fact, we need only prove the last assertion. If it is true, the implicit
function theorem [6] applies and ensures that log is also smooth. Since the differential
of exp at 0 is simply given by the identity, it is invertible by continuity in a neighbor-
hood of 0. We now show that this propagates to the entire space Sym(n). Indeed,
let us then suppose that for a point M , the differential DM/2 exp is invertible. We
claim that then DM exp is also invertible, which suffices to prove the point. To show
this, let us take dM ∈ Sym(n) such that DM exp .dM = 0. If DM exp is invertible,
we should have dM = 0. To see this, remark that exp(M) = exp(M/2). exp(M/2).
By differentiation and applying to dM , we get

DM exp .dM = 1/2((DM/2 exp .dM). exp(M/2) + exp(M/2).(DM/2 exp .dM)) = 0.

This implies by multiplication by exp(−M/2):

exp(−M/2)(DM/2 exp .dM). exp(M/2) + (DM/2 exp .dM) = 0.

Since

A−1. exp(B).A = exp(A−1.B.A)

we have also by differentiation

A−1.DB exp(dB).A = DB exp(A−1.dB.A).

Using this simplification and the hypothesis that DM/2 exp is invertible, we obtain

exp(−M/2).dM. exp(M/2) + dM = 0.

Let us rewrite this equation in an orthonormal basis in which M is diagonal with a
rotation matrix R. Let (λi) be the eigenvalues of M and let dN := R.dM.RT . Then
we have

dN = −Diag(exp(−λ1/2), . . . , exp(−λN/2)).dN.Diag(exp(λ1/2), . . . , exp(λN/2)).

Coordinate by coordinate, this is written as:

∀i, j : dNi,j(1 + exp(−λi/2 + λj/2)) = 0.

Hence for all i, j : dNi,j = 0 which is equivalent to dM = 0. We are done.
Corollary 2.9. In the space of SPD matrices, for all α ∈ R, the power mapping:

S �→ Sα is smooth. In particular, this is true for the inversion mapping (i.e., when
α = −1).

Proof. We have Sα = exp(α log(S)). The composition of smooth mappings is
smooth.
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3. Log-Euclidean means. In this section we focus on the construction of Log-
Euclidean means. They are derived from two new structures on SPD matrices.

The first is a Lie group structure [11], i.e., an algebraic group structure that is
compatible with the differential structure of the Space of SPD matrices. The second
structure is a vector space structure. Indeed, one can define a logarithmic scalar mul-
tiplication that complements the Lie group structure to form a vector space structure
on the space of SPD matrices. In this context, Log-Euclidean metrics are defined as
bi-invariant metrics on the Lie group of SPD matrices. The Log-Euclidean mean is
the Fréchet mean associated with these metrics. It is particularly simple to compute.

3.1. Multiplication of SPD matrices. It is not a priori obvious how one could
define a multiplication on the space of SPD matrices compatible with classical alge-
braic and differential properties. How can one combine smoothly two SPD matrices
to make a third one, in such a way that Id is still the identity and the usual inverse
remains its inverse? Moreover, if we obtain a new Lie group structure, we would
also like the matrix exponential to be the exponential associated with the Lie group
structure which, a priori, can be different.

The first idea that comes to mind is to directly use matrix multiplication. But
then the noncommutativity of matrix multiplication between SPD matrices stops the
attempt: if S1, S2 ∈ Sym+

� (n), S1.S2 is an SPD matrix (or equivalently, is symmetric)
if and only if S1 and S2 commute. To overcome the possible asymmetry of the matrix
product of two SPD matrices, one can simply take the symmetric part (i.e., the closest
symmetric matrix in the sense of the Frobenius norm [7]) of the product and define
the new product �:

S1 � S2 :=
1

2
(S1.S2 + S2.S1).

This multiplication is smooth and conserves the identity and the inverse. But S1�S2 is
not necessarily positive! Also, since the set of SPD matrices is not closed, one cannot
define in general a closest SPD matrix, but only a closest symmetric semidefinite
matrix [7].

In [12], affine-invariant distances between two SPD matrices S1, S2 are of the form

d(S1, S2) = ‖ log(S
−1/2
1 .S2.S

−1/2
1 )‖,(3.1)

where ‖.‖ is a Euclidean norm defined on Sym(n). Let us define the following multi-
plication �:

S1 � S2 := S
1/2
1 .S2.S

1/2
1 .

With this multiplication, the affine-invariant metric constructed in [12] can be inter-
preted then as a left-invariant metric. Moreover, this multiplication is smooth and
compatible with matrix inversion and matrix exponential, and the product truly de-
fines an SPD matrix. Everything works fine, except that it is not associative. This
makes everything fail, because associativity is an essential requirement of group struc-
ture. Without it, many fundamental properties disappear. For Lie groups, the notion
of adjoint representation no longer exists without associativity.

Theorem 2.8 points to an important fact: Sym+
� (n) is diffeomorphic to its tangent

space at the identity, Sym(n). But Sym(n) has an additive group structure, and to
obtain a group structure on the space of SPD matrices, one can simply transport the
additive structure of Sym(n) to Sym+

� (n) with the exponential. More precisely, we
have the following.
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Definition 3.1. Let S1, S2 ∈ Sym+
� (n). We define their logarithmic product

S1 � S2 by

S1 � S2 := exp(log(S1) + log(S2)).(3.2)

Proposition 3.2. (Sym+
� (n),�) is a group. The neutral element is the usual

identity matrix, and the group inverse of an SPD matrix is its inverse in the matrix
sense. Moreover, whenever two SPD matrices commute in the matrix sense, the
logarithmic multiplication is equal to their matrix product. Last but not least, the
multiplication is commutative.

Proof. The multiplication is defined by addition on logarithms. It is therefore
associative and commutative. Since log(Id) = 0, the neutral element is Id, and
since log(S−1) = − log(S), the new inverse is the matrix inverse. Finally, we have
exp(log(S1) + log(S2)) = exp(log(S1)). exp(log(S2)) = S1.S2 when [S1, S2] = 0.

Theorem 3.3. The logarithmic multiplication � on Sym+
� (n) is compatible with

its structure of smooth manifold: (S1, S2) �→ S1 �S−1
2 is C∞. Therefore, Sym+

� (n) is
given a commutative Lie group structure by �.

Proof. (S1, S2) �→ S1 � S−1
2 = exp(log(S1) − log(S2)). But since exp and log and

the addition are smooth, their composition is also smooth. By definition (see [8, page
29]), Sym+

� (n) is a Lie group.
Proposition 3.4. exp : (Sym(n),+) → (Sym+

� (n),�) is a Lie group isomor-
phism. In particular, one-parameter subgroups of Sym+

� (n) are obtained by taking the
matrix exponential of those of Sym(n), which are simply of the form (t.V )t∈R, where
V ∈ Sym(n). As a consequence, the Lie group exponential in Sym+

� (n) is given by
the classical matrix exponential on the Lie algebra Sym(n).

Proof. We have explicitly transported the group structure of Sym(n) into Sym+
� (n)

so exp is a morphism. It is also a bijection, and thus an isomorphism. The smoothness
of exp then ensures its compatibility with the differential structure.

Let us recall the definition of one-parameter subgroups. (S(t))t∈R is such a sub-
group if and only if we have for all t, s: S(t + s) = S(t) � S(s) = S(s) � S(t). But
then log(S(t+s) = log(S(t)�S(s)) = log(S(t))+log(S(s)) by definition of �. There-
fore logS(t) is also a one-parameter subgroup of (Sym(n),+), which is necessarily of
the form t.V , where V ∈ Sym(n). V is the infinitesimal generator of S(t). Finally,
the exponential is obtained from one-parameter subgroups, which are all of the form
(exp(t.V ))t∈R (see [5, Chap. V]).

Thus, we have given the space of SPD matrices a structure of Lie group that leaves
unchanged the classical matrix notions of inverse and exponential. The new multipli-
cation used, i.e., the logarithmic multiplication, generalizes the matrix multiplication
when two SPD matrices do not commute in the matrix sense.

The associated Lie algebra is the space of symmetric matrices, which is diffeo-
morphic and isomorphic to the group itself. The associated Lie bracket is the null
bracket: [S1, S2] = 0 for all S1, S2 ∈ Sym(n).

The reader should note that this Lie group structure is, to our knowledge, new in
the literature. For a space as commonly used as SPD matrices, this is quite surprising.
The probable reason is that the Lie group of SPD matrices is not a multiplicative
matrix group, contrary to most Lie groups.

3.2. Log-Euclidean metrics on the Lie group of SPD matrices. Now that
we have given Sym+

� (n) a Lie group structure, we turn to the task of exploring metrics
compatible with this new structure. Among Riemannian metrics in Lie groups, bi-
invariant metrics are the most convenient. We have the following definition.
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Definition 3.5. A metric 〈, 〉 defined on a Lie group G is said to be bi-invariant
if for all m ∈ G, the left- and right-multiplication by m do not change distances
between points, i.e., are isometries.

Theorem 3.6. From [5, Chap. V], bi-invariant metrics have the following prop-
erties:

1. A bi-invariant metric is also invariant w.r.t. inversion.
2. It is bi-invariant if and only if for all m ∈ G,Ad(m) is an isometry of the

Lie algebra g, where Ad(m) is the adjoint representation of m.
3. One-parameter subgroups of G are geodesics for the bi-invariant metric.

Conversely, geodesics are simply given by left- or right-translations of
one-parameter subgroups.

Corollary 3.7. Any metric 〈, 〉 on TIdSym
+
� (n) = Sym(n) extended to Sym+

� (n)
by left- or right-multiplication is a bi-invariant metric.

Proof. The commutativity of the multiplication implies that Ad(Sym+
� (n)) =

{Id}, which is trivially an isometry group.
This result is striking. In general Lie groups, the existence of bi-invariant metrics

is not guaranteed. More precisely, it is guaranteed if and only if the adjoint represen-
tation Ad(G) is relatively compact, i.e., (the dimension is assumed finite) if the group
of matrices given by Ad(G) is bounded (see [5, Theorem V.5.3]). This is trivially the
case when the group is commutative, as here, since Ad(G) = {e}, which is obviously
bounded. Other remarkable cases where Ad(G) is bounded are compact groups, such
as rotations. But for noncompact noncommutative groups, there is in general no
bi-invariant metric, as in the case of rigid transformations.

Definition 3.8. Any bi-invariant metric on the lie group of SPD matrices is
also called a Log-Euclidean metric because it corresponds to a Euclidean metric in the
logarithmic domain, as is shown in Corollary 3.9.

Corollary 3.9. Let 〈, 〉 be a bi-invariant metric on Sym+
� (n). Then its geodesics

are simply given by the translated versions of one-parameter subgroups, namely,

(exp(V1 + t.V2))t∈R, where V1, V2 ∈ Sym(n).(3.3)

The exponential and logarithmic maps associated with the metric can be expressed in
terms of matrix exponential and logarithms in the following way:{

logS1
(S2) = Dlog(S1) exp .(log(S2) − log(S1)),

expS1
(L) = exp(log(S1) + DS1 log .L).

(3.4)

The scalar product between two tangent vectors V1, V2 at a point S is given by

〈V1, V2〉S = 〈DS log .V1, DS log .V2〉Id.(3.5)

From this equation, we get the distance between two SPD matrices:

d(S1, S2) = ‖ logS1
(S2)‖S1

= ‖ log(S2) − log(S1)‖Id,(3.6)

where ‖.‖ is the norm associated with the metric.
Proof. Theorem 3.6 states that geodesics are obtained by translating one-parameter

subgroups, and Proposition 3.4 gives the form of these subgroups in terms of the
matrix exponential. By definition, the metric exponential expS1

: TS1
Sym+

� (n) →
Sym+

� (n) is the mapping that associates with a tangent vector L the value at time
1 of the geodesic starting at time 0 from S1 with an initial speed vector L. Differ-
entiating the geodesic equation (3.3) at time 0 yields an initial vector speed equal to
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DV1
exp .V2. As a consequence, expS1

(L) = exp(log(S1) + (Dlog(S1) exp)−1.L). The
differentiation of the equality log ◦ exp = Id yields (Dlog(S1) exp)−1 = DS1 log. Hence
we have the formula for expS1

(L). Solving in L the equation expS1
(L) = S2 provides

the formula for logS1
(S2).

The metric at a point S is obtained by propagating by translation the scalar
product on the tangent space at the identity. Let LS : Sym+

� (n) → Sym+
� (n) be

the logarithmic multiplication by S. We have 〈V1, V2〉S = 〈DSLS−1 .V1, DSLS−1 .V2〉.
But simple computations show that DSLS−1 = DS log. Hence we have (3.5). Finally,
we combine (3.4) and (3.5) to obtain the (simple this time!) formula for the
distance.

Corollary 3.10. Endowed with a bi-invariant metric, the space of SPD ma-
trices is a flat Riemannian space: its sectional curvature (see [8, page 107]) is null
everywhere.

This is clear, since it is isometric to the Sym(n) endowed with the Euclidean
distance associated with the metric.

In [12], the metric defined on the space of SPD matrices is affine invariant. The
action act(A) of an invertible matrix A on the space of SPD matrices is defined by

∀S, act(A)(S) = A.S.AT .

Affine-invariance means that for all invertible matrices A, the mapping act(A) :
Sym+

� (n) → Sym+
� (n) is an isometry. This group action describes how an SPD

matrix, assimilated to a covariance matrix, is affected by a general affine change of
coordinates.

Here, the Log-Euclidean Riemannian framework will not yield full affine-invariance.
However, it is not far from it, because we can obtain invariance by similarity (isometry
plus scaling).

Proposition 3.11. We can endow Sym+
� (n) with a similarity-invariant metric,

for instance, by choosing 〈V1, V2〉 := Trace(V1.V2) for V1, V2 ∈ Sym(n).
Proof. Let R ∈ SO(n) be a rotation and s > 0 be a scaling factor. Let S be an

SPD matrix. V is transformed by the action of s.R into act(sR)(S) = s2.R.S.RT .
From (3.6), the distance between two SPD matrices S1 and S2 transformed by sR is

d(act(sR)(S1), act(sR)(S2)) = Trace({log(act(sR)(S1)) − log(act(sR)(S2))}2).

A scaling by a positive factor λ on an SPD matrix corresponds to a translation
by log(λ).Id in the domain of logarithms. Furthermore, we have log(R.S.RT ) =
R. log(S).RT for any SPD matrix S and any rotation R. Consequently, the scaling
zeros out in the previous formula and we have

d(act(sR)(S1), act(sR)(S2)) = Trace({R.(log(S1) − log(S2)).R
T }2)

= Trace({log(S1) − log(S2)}2)

= d(S1, S2).

Hence we have the result.
Thus, we see that the Lie group of SPD matrices with an appropriate Log-

Euclidean metric has many invariance properties: Lie group bi-invariance and similarity-
invariance. Moreover, Theorem 3.6 shows that the inversion mapping S �→ S−1 is an
isometry.
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3.3. A vector space structure on SPD matrices. We have already seen that
the Lie group of SPD matrices is isomorphic and diffeomorphic to the additive group
of symmetric matrices. We have also seen that with a Log-Euclidean metric, the Lie
group of SPD matrices is also isometric to the space of symmetric matrices endowed
with the associated Euclidean metric. There is more: the Lie group isomorphism
exp from the Lie algebra of symmetric matrices to the space of SPD matrices can be
smoothly extended into an isomorphism of vector spaces. Indeed, let us define the
following operation.

Definition 3.12. The logarithmic scalar multiplication � of an SPD matrix by
a scalar λ ∈ R is

λ � S = exp(λ. log(S)) = Sλ.(3.7)

When we assimilate the logarithmic multiplication to an addition and the loga-
rithmic scalar multiplication to a usual scalar multiplication, we have all the prop-
erties of a vector space. By construction, the mapping exp : (Sym(N),+, .) →
(Sym+

� (n),�,�) is a vector space isomorphism. Since all algebraic operations on
this vector space are smooth, this defines what could be called a “Lie vector space
structure” on SPD matrices.

Of course, this result does not imply that the space of SPD matrices is a vector
subspace of the vector space of square matrices. But it shows that we can view this
space as a vector space when we identify an SPD matrix with its logarithm. The
question of whether or not the SPD matrix space is a vector space depends on the
vector space structure we are considering, and not on the space itself.

From this point of view, bi-invariant metrics on the Lie group of SPD matrices
are simply the classical Euclidean metrics on the vector space (Sym(n),+, .). Thus,
we have in fact defined a new Euclidean structure on the space of SPD matrices by
transporting that of its Lie algebra Sym(n) on SPD matrices. But this Euclidean
structure does not have the defects mentioned in the introduction of this article:
matrices with null eigenvalues are at infinite distance and the symmetry principle is
respected. Last but not least, with an appropriate metric, similarity-invariance is also
guaranteed.

3.4. Log-Euclidean mean. We present here the definition of the Log-Euclidean
mean of SPD matrices and its invariance properties.

Theorem 3.13. Let (Si)
N
1 be a finite number of SPD matrices. Then their

Log-Euclidean Fréchet mean exists and is unique. It is given explicitly by

ELE(S1, . . . , SN ) = exp

(
1

N

N∑
i=1

log(Si)

)
.(3.8)

The Log-Euclidean mean is similarity-invariant, invariant by group multiplication and
inversion, and is exponential-invariant (i.e., invariant with respect to scaling in the
domain of logarithms).

Proof. When one expresses distances in the logarithm domain, one is faced with
the classical computation of an Euclidean mean. Hence we have the formula by
mapping back the results with exp in the domain of SPD matrices. Now, this mean
does not depend on the chosen Log-Euclidean metric, and since there exist similarity-
invariant metrics among Log-Euclidean metrics, this property propagates to the mean.
The three last invariance properties are reformulations in the domain of SPD matrices
of classical properties of the arithmetic mean in the domain of logarithms.
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Table 4.1

Comparison between affine-invariant and Log-Euclidean metrics. Note on the one hand
the important simplifications in terms of distance and geodesics in the Log-Euclidean case. On the
other hand, this results in the use of the differentials of the matrix exponential and logarithm in the
exponential and logarithm maps.

Affine-invariant metrics Log-Euclidean metrics

Exponential map: expS1
(L) =

S
1/2
1 . exp(S

−1/2
1 .L.S

−1/2
1 ).S

1/2
1 exp(log(S1) + DS1

log .L)

Logarithm map: logS1
(S2) =

S
1/2
1 . log(S

−1/2
1 .S2.S

−1/2
1 ).S

1/2
1 Dlog(S1) exp .(log(S2) − log(S1))

Dot product: 〈L1, L2〉S =

〈S−1/2.L1.S−1/2, S−1/2.L2.S−1/2〉Id 〈DS log .L1, DS log .L2〉Id
Distance: d(S1, S2) =

‖ log(S
−1/2
1 .S2.S

−1/2
1 )‖ ‖ log(S2) − log(S1)‖

Geodesic between S1 and S2:

S
1/2
1 . exp(tW ).S

1/2
1 exp ((1 − t) log(S1) + t log(S2))

with W = log
(
S
−1/2
1 .L.S

−1/2
1

)
Invariance properties

Lie group bi-invariance,
Affine-invariance Similarity-invariance

4. Comparison with the affine-invariant mean. In this section we compare
the Log-Euclidean mean to the recently introduced affine-invariant mean [12, 19,
23, 22]. To this end, we first recall the differences between affine-invariant metrics
and Log-Euclidean metrics in terms of elementary operators, distance, and geodesics.
Then we turn to a study of the algebraic properties of Fréchet means in the Log-
Euclidean and affine-invariant cases.

4.1. Elementary metric operations and invariance. Distances, geodesics,
and Riemannian means take a much simpler form in the Log-Euclidean than in
the affine-invariant case. Invariance properties are comparable: some Log-Euclidean
metrics are not only bi-invariant but also similarity invariant. These properties are
summarized in Table 4.1. However, we see in this table that the exponential and
logarithmic mappings are complicated in the Log-Euclidean case by the use of the
differentials of the matrix exponential and logarithm. This is the price to pay to
obtain simple distances and geodesics. Interestingly, using spectral properties of sym-
metric matrices, one can obtain a closed form for the differential of both matrix
logarithm and exponential and it is possible compute them very efficiently. See [26]
for more details.

4.2. Affine-invariant means. Let (Si)
N
i=1 be a system of SPD matrices. Con-

trary to the Log-Euclidean case, there is in general no closed form for the affine-
invariant Fréchet mean EAff (S1, . . . , SN ) associated with affine-invariant metrics.
The affine-invariant mean is defined implicitly by a barycentric equation, which is
the following:

N∑
i=1

log(EAff (S1, . . . , SN )−1/2.Si.EAff (S1, . . . , SN )−1/2) = 0.(4.1)
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This equation is equivalent to the following other barycentric equation, given in [19]:

N∑
i=1

log(EAff (S1, . . . , SN )−1.Si) = 0.(4.2)

The two equations are equivalent simply because for all i,

EAff (S1, . . . , SN )−1/2.Si.EAff (S1, . . . , SN )−1/2 = A.EAff (S1, . . . , SN )−1.Si.A
−1

with A = EAff (S1, . . . , SN )−1/2. The fact that log(A.S.A−1) = A. log(S).A−1 suffices
to conclude.

To solve (4.1), the only known strategy is to resort to an iterative numerical
procedure, such as the Gauss–Newton gradient descent method described in [12].

4.3. Geometric interpolation of determinants. The definition of the Log-
Euclidean mean given by (3.8) is extremely similar to that of the classical scalar
geometrical mean. We have the following classical definition.

Definition 4.1. The geometrical mean of positive numbers d1, . . . , dN ,is given
by

E(d1, . . . , dN ) = exp

(
1

N

N∑
i=1

log(di)

)
.

The Log-Euclidean and affine-invariant Fréchet means can both be considered as
generalizations of the geometric mean. Indeed, their determinants are both equal to
the scalar geometric mean of the determinants of the original SPD matrices. This
fundamental property can be thought of as the common property that should have all
generalizations of the geometric mean to SPD matrices.

Theorem 4.2. Let (Si)
N
i=1 be N SPD matrices. Then the determinant of their

Log-Euclidean and affine-invariant means is the geometric mean of their determi-
nants.

Proof. From Proposition 2.4 we know that det(exp(M)) = exp(Trace(M)) for
any square matrix M . Then for the geometric mean, we get

det(ELE(S1, . . . , SN )) = exp(Trace(log(ELE(S1, . . . , SN ))))

= exp

(
Trace

(
1

N

N∑
i=1

log(Si)

))

= exp

(
1

N

N∑
i=1

log(det(Si))

)

= exp (E(log(det(S1, . . . , SN )))) .

For affine-invariant means, there is no closed form for the mean. But there is
the barycentric equation given by (4.1). By applying the same formula as before
after having taken the exponential and using det(S.T ) = det(S).det(T ) we obtain the
result.

Theorem 4.2 shows that the Log-Euclidean and affine-invariant means of SPD
matrices are quite similar. In terms of interpolation, this result is satisfactory, since
it implies that the interpolated determinant, i.e., the volume of the associated inter-
polated ellipsoids, will vary between the values of the determinants of the source SPD
matrices. Indeed, we have the following.
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Corollary 4.3. Let (Si)
N
i=1 be N SPD matrices. Then the determinant of their

Log-Euclidean and affine-invariant means are within the interval[
inf

i∈1...N
(Si), sup

i∈1...N
(Si)

]
.

Proof. This is simply a consequence of the monotonicity of the scalar exponential
and of the scalar integral.

Corollary 4.4. Let S1 and S2 be two SPD matrices. The geodesic interpola-
tions provided by the affine-invariant and Log-Euclidean metrics lead to a geometric
interpolation of determinants. As a consequence, this interpolation of determinants
is monotonic.

Proof. Indeed, in both cases, the interpolated determinant Det(t) is the geometric
mean of the two determinants, i.e., at t ∈ [0, 1]: Det(t) = exp((1 − t) log(det(S1)) +
t log(det(S2))). This interpolation is monotonic, since the differentiation yields

d

dt
Det(t) = Det(t) log(det(S2.S

−1
1 )).

As a consequence, Det(t) is equal to det(S1). exp(t. log(det(S2.S
−1
1 ))), and the sign of

d
dtDet(t) is constant and given by log(det(S2.S

−1
1 )).

4.4. Criterion for the equality of the two means. In general, Log-Euclidean
and affine-invariant means are similar, yet they are not identical. Nonetheless, there
are a number of cases where they are identical, for example, when the logarithms
of averaged SPD matrices all commute with one another. In fact, we have more as
follows.

Proposition 4.5. Let (Si)
N
i=1 be N SPD matrices. If the Euclidean mean of

the associated logarithms commutes with all log(Si), then the Log-Euclidean and the
affine-invariant means are identical.

Proof. Let L̄ := 1
N

∑N
i=1 log(Si). The hypothesis is that [L̄, log(Si)] = 0 for

all i. This implies that log(exp(− 1
2 L̄).Si. exp(− 1

2 L̄)) = log(Si) − L̄ for all i. We see
then that exp L̄, i.e., the Log-Euclidean mean, is the solution of (4.1), i.e., is the
affine-invariant mean.

So far, we have not been able to prove the converse part of this proposition.
However, the next subsection provides a partial proof, valid when SPD matrices are
isotropic enough, i.e., close to a scaled version of the identity. The intensive numerical
experiments we have carried out strongly suggest that the result given in the next
section is true in general. The full proof of this assertion will be the subject of future
work.

4.5. Larger anisotropy in Log-Euclidean means. In section 4.6, we will
verify experimentally that affine-invariant means tend to be less anisotropic than
Log-Euclidean means. The following theorem accounts for this phenomenon when
SPD matrices are isotropic enough.

Theorem 4.6. Let (Si)
N
i=1 be a finite number of SPD matrices close enough to

the identity, so that we can apply the Baker–Campbell–Hausdorff formula in all cases
(see section 2). When the logarithm of the Log-Euclidean mean does not commute
with all log(Si), then we have the following inequality:

Trace(EAff (S1, . . . , SN )) < Trace(ELE(S1, . . . , SN )).(4.3)
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Proof. The idea is to see how the two means differ close to the identity. To this
end, we introduce a small scaling factor t and see how the two means vary when t
is close to zero. For all i, let Si,t be the version of Si scaled by t in the logarithmic
domain. Around the identity, we can use the Baker–Campbell–Hausdorff formula
to simplify the barycentric equation (4.1). Let us denote both Riemannian cases as
E(St) = E(S1,t, . . . , SN,t) and E(S) := E(S1, . . . , SN ). We will also use the following
notation: log(Si) := Li, L̄t;Aff := log(EAff (St)) and L̄LE := log(ELE(S)).

%pagebreak
First, we use twice the Baker–Campbell–Hausdorff formula to obtain the following

approximation:

log(EAff (St)
−1/2.Si,t.EAff (St)

−1/2) = tLi − L̄t;Aff − t3 1
12 [Li, [Li, L̄t;Aff ]]

+ t3 1
24 [L̄t;Aff , [L̄t;Aff , Li]] + O(t5).

(4.4)

Then we average over i to obtain the following approximation lemma.
Lemma 4.7. When t is small enough, we have:

L̄t;Aff = tL̄LE +
t3

12.N

N∑
i=1

[Li, [L̄LE , Li]] + O(t5).(4.5)

Proof. To obtain the approximation, note that the second factor t3 1
24 [L̄t;Aff ,

[L̄t;Aff , Li]] in (4.4) becomes an O(t5). Indeed, when the sum over i is done, Li

becomes L̄LE . But we can replace L̄LE with its value in term of the affine-invariance
mean by using (4.4). Then, using the fact that [L̄t;Aff , L̄t;Aff ] = 0 we see that we
obtain an O(t5).

Note also that, thanks to the symmetry with respect to inversion, L̄t;Aff becomes
−L̄t;Aff when t is changed into −t, i.e., t �→ L̄t;Aff is odd. As a consequence, only
odd terms appear in the development in powers of t.

Next, we take the exponential of (4.5) and differentiate the exponential to obtain

EAff (St) = ELE(St) + DtL̄LE
exp .

(
t3

12.N

N∑
i=1

[Li, [L̄LE , Li]]

)
+ O(t5).

Then we use several properties to approximate the trace of affine-invariant means.
First, we use Corollary 2.3 to simplify the use of the differential of the exponential.
Then we approximate the exponential by the first two terms of its series expansion.
We obtain

Trace(EAff (St)) = Trace(ELE(St)) + t3.F (t, Li, L̄LE) + O(t5),

with F (t, Li, L̄LE) = Trace(exp(tL̄LE). 1
12.N

∑N
i=1[Li, [L̄LE , Li]]). This expression can

be simplified as follows:

F (t, Li, L̄LE) = Trace

(
(Id + tL̄LE).

1

12.N

N∑
i=1

[Li, [L̄LE , Li]]

)
+ O(t2)

=
t

12.N

N∑
i=1

Trace
(
L̄LE .[Li, [L̄LE , Li]]

)
+ O(t2)

= − t

12.N

N∑
i=1

Trace
(
L2
i .L̄

2
LE − (Li.L̄LE)2

)
+ O(t2).
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As a consequence, the difference between the two traces can be written as

Trace(EAff (St)) − Trace(ELE(St)) = − t4

12.N

N∑
i=1

Trace
(
L2
i .L̄

2
LE − (Li.L̄LE)2

)
+ O(t5).

To conclude, we use the following lemma.
Lemma 4.8. Let A, B ∈ Sym(n). Then Trace(A2.B2 − (A.B)2) ≥ 0. The

inequality is strict if and only if A and B do not commute.
Proof. Let (Ai) (resp., (Bi)) be the column vectors of A (resp., B). Let 〈, 〉 be

the usual scalar product. Then we have{
Trace(A2.B2) =

∑
i,j〈Ai, Aj〉〈Bi, Bj〉,

Trace((A.B)2) =
∑

i,j〈Ai, Bj〉〈Bi, Aj〉.

Let us now chose a rotation matrix R that makes A diagonal: R.A.RT =
Diag(λ1, . . . , λn) =: D. Let us define C := R.B.RT and use the notation (Ci) and
(Di) for the column vectors of C and D. We have{

Trace(A2.B2) =
∑

i,j〈Di, Dj〉〈Ci, Cj〉 =
∑

i λ
2
i 〈Ci, Ci〉,

Trace((A.B)2) =
∑

i,j〈Di, Cj〉〈Ci, Dj〉 =
∑

i,j λi.λj〈Ci, Cj〉.

Then the Cauchy–Schwarz inequality yields∣∣∣∣∣∣
∑
i,j

λi.λj〈Ci, Cj〉

∣∣∣∣∣∣ ≤
∑
i

λ2
i 〈Ci, Ci〉,

which proves the first point. But the Cauchy–Schwarz inequality is an equality if and
only if there is a constant μ such that D.C = μC.D. But only μ = 1 allows the
inequality of the lemma to be an equality. This is equivalent to C.D = D.C, which is
equivalent in turn to A.B = B.A. Hence we have the result.

End of proof of Theorem 4.6. When we apply Lemma 4.8 to the obtained estima-
tion for the trace, we see that for a t �= 0 small enough, the trace of the affine-invariant
mean is indeed strictly inferior to the trace of the Log-Euclidean mean whenever the
mean logarithm does not commute with all logarithms log(Si).

Corollary 4.9. By invariance of the two means with respect to scaling, the
strict inequality given in Theorem 4.6 is valid in a neighborhood of any SPD matrix
of the form λId with λ > 0.

Corollary 4.10. When the dimension is equal to 2, the Log-Euclidean mean
of SPD matrices which are isotropic enough is strictly more anisotropic than their
affine-invariant mean when those means do not coincide.

Proof. In this case, there are only two eigenvalues for each mean. Their products
are equal and we have a strict inequality between their sums. Consequently, the largest
eigenvalue of the Log-Euclidean mean is strictly larger than the affine-invariant one,
and we have the opposite result for the smallest eigenvalue.

4.6. Linear and bilinear interpolation of SPD matrices. Volume elements
(or voxels) in clinical DT images are often spatially anisotropic. Yet, in many prac-
tical situations where DT images are used, it is recommended (see [27]) to work
with isotropic voxels to avoid spatial biases. A preliminary resampling step with an
adequate interpolation method is therefore important in many cases. Proper inter-
polation methods are also required to generalize to the SPD case usual registration
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Fig. 4.1. Linear interpolation of two SPD matrices. Top: linear interpolation on coefficients.
Middle: affine-invariant interpolation. Bottom: Log-Euclidean interpolation. The shading of el-
lipsoids is based on the direction of dominant eigenvectors. Note the characteristic swelling effect
observed in the Euclidean case, which is not present in both Riemannian frameworks. Note also that
Log-Euclidean means are slightly more anisotropic their affine-invariant counterparts.

techniques used on scalar or vector images. The framework of Riemannian metrics
allows a direct generalization to SPD matrices of classical resampling methods with
the use of associated Fréchet means instead of the Euclidean (i.e., arithmetic) mean.

In the Riemannian case, the equivalent of linear interpolation is geodesic inter-
polation. To interpolate between two SPD matrices, intermediate values are taken
along the shortest path joining the two matrices. Figure 4.1 presents a typical result
of linear interpolation between two SPD matrices. The Euclidean, affine-invariant,
and Log-Euclidean results are given. The “swelling effect” is clearly visible in the
Euclidean case: the volume of associated ellipsoids is parabolically interpolated and
reaches a global maximum between the two extremities! This effect disappears in both
Riemannian cases, where volumes are interpolated geometrically. As expected, Log-
Euclidean means are a little more anisotropic than their affine-invariant counterparts.

To resample images, bilinear (resp., trilinear) interpolation generalizes in two
dimensions (resp., in three dimensions) the linear interpolation and offers an efficient
compromise between simplicity and accuracy in the scalar and vector cases. With this
technique, the value at any given point is inferred from known values measured at
the vertices of a regular grid whose elementary cells are rectangles in two dimensions
(resp., right parallelepipeds in three dimensions), which is usually the case with MR
images. More precisely, the interpolated value at a given point is given by the weighted
mean of the values at the vertices of the current cell. The weights are the barycentric
coordinates of the current point with respect to the vertices of the current cell.

Figure 4.2 presents the results of the bilinear interpolation of four SPD matri-
ces placed at the extremities of a rectangle. Again, a large swelling effect is present
in Euclidean results and not in both Riemannian results, and Log-Euclidean means
are slightly more anisotropic than their affine-invariant equivalents. One should note
that the computation of the affine-invariant mean here is iterative, since the number
of averaged matrices is larger than 2 (we use the Gauss–Newton method described
in [12]), whereas the closed form given by 3.8 is used directly in the Log-Euclidean
case. This has a large impact on computation times: 0.003s (Euclidean), 0.009s
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Fig. 4.2. Bilinear interpolation of four SPD matrices at the corners of a regular grid. Left:
Euclidean interpolation. Middle: affine-invariant interpolation. Right: Log-Euclidean interpola-
tion. Again, a characteristic swelling effect is observed in the Euclidean case and not in both
Riemannian frameworks. As expected, Log-Euclidean means are slightly more anisotropic than their
affine-invariant counterparts.

(Log-Euclidean), and 1s (affine-invariant) for a 5 × 5 grid on a Pentium M 2 GHz.
Computations were carried out with MATLAB, which explains the poor computa-
tional performance. Here, Log-Euclidean means were calculated approximately 100
times faster than affine-invariant means because the logarithms of the four interpo-
lated tensors were computed only once, instead of being computing each time a new
barycenter is calculated. When only one mean is computed, the typical ratio is closer
to 20, since between 15 and 20 iterations are typically needed (for 3×3 SPD matrices)
to obtain the affine-invariant mean with a precision of the order of 10−12.

One should note that from a numerical point of view the computation of Log-
Euclidean means is not only much faster but also more stable than in the affine-
invariant case. On synthetic examples, as soon as SPD matrices are quite anisotropic
(for instance, with the dominant eigenvalue larger than 500 times the smallest), nu-
merical instabilities appear, essentially due to limited numerical precision (even with
double precision). This can greatly complicate the computation of affine-invariant
means. On the contrary, the computation of Log-Euclidean means is more sta-
ble since the logarithm and exponential are taken only once and thus even very
large anisotropies can be dealt with. In applications where very high anisotropies
are present, such as the generation of adapted meshes [17], this phenomenon could
severely limit the use of affine-invariant means, whereas no such limitation exists in
the Log-Euclidean case.

5. Conclusion and perspectives. In this work, we have presented a particu-
larly simple and efficient generalization of the geometric mean to SPD matrices, called
Log-Euclidean. It is simply an arithmetic mean in the domain of matrix logarithms.
This mean corresponds to a bi-invariant mean in our novel Lie group structure on
SPD matrices, or equivalently to a Euclidean mean when this structure is smoothly
extended into a vector space by a novel scalar multiplication.

The Log-Euclidean mean is similar to the recently introduced affine-invariant
mean, which is another generalization of the geometric mean to SPD matrices. In-
deed, the Log-Euclidean mean is similarity invariant, and two means have the same
determinant, which is the geometric mean of the determinants of averaged SPD ma-
trices. However, they are not equal: the Log-Euclidean trace is larger when the two
means differ. The most striking difference between the two means resides in their com-
putational cost: the Log-Euclidean mean can be calculated approximately 20 times
faster than the affine-invariant mean. This property can be crucial in applications
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where large amounts of data are processed. This is especially the case in medical
imaging with DTI and in numerical analysis with the generation of adapted meshes.

We have shown in this work that there are indeed several generalizations of the
geometric mean to SPD matrices. Other variants may exist, and we will investigate
other possible generalizations in future work. This is important, since situations in
applied mathematics, mechanics, medical imaging, etc., where SPD matrices need to
be processed, are highly varied. As a consequence, the relevance of each generalization
of the geometric mean and of the associated metric framework may depend on the
application considered. We have already begun to compare the Log-Euclidean and
affine-invariant frameworks in the case of DT-MRI processing [28]. In future work,
we will proceed to variability tensors, which we began to use in [15] to model and
analyze the variability of brain anatomy.
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[21] C. Chefd’hotel, D. Tschumperlé, R. Deriche, and O. Faugeras, Regularizing flows for
constrained matrix-valued images, J. Math. Imaging Vision, 20 (2004), pp. 147–162.

[22] P.T. Fletcher and S.C. Joshi, Principal geodesic analysis on symmetric spaces: Statistics



LOG-EUCLIDEAN MEANS 347

of diffusion tensors., in Proceedings of the CVAMIA and MMBIA Workshops, (Prague,
Czech Republic, May 15, 2004), Lecture Notes in Comput. Sci. 3117, Springer, Berlin,
2004, pp. 87–98.

[23] C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras, Statistics on the manifold of mul-
tivariate normal distributions: Theory and application to diffusion tensor MRI processing,
J. Math. Imaging Vision, 25 (2006), pp. 423–444.

%pagebreak
[24] S. Hun Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the logarithm

of a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112–1125.
[25] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Fast and Simple Computations on

Tensors with Log-Euclidean Metrics, Research Report RR-5584, INRIA, Sophia-Antipolis,
France, 2005.

[26] P. Fillard, V. Arsigny, X. Pennec, and N. Ayache, Clinical DT-MRI estimation, smooth-
ing and fiber tracking with log-Euclidean metrics, in Proceedings of the Third IEEE In-
ternational Symposium on Biomedical Imaging (ISBI 2006), Arlington, Virginia, 2006,
pp. 786–789.

[27] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, In vivo fiber tractography
using DT-MRI data, Magnetic Resonance in Medicine, 44 (2000), pp. 625–632.

[28] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Log-Euclidean metrics for fast and
simple calculus on diffusion tensors, Magnetic Resonance in Medicine, 56 (2006), pp. 411–
421.


