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ABSTRACT

Non-Rigid image registration has been widely developed over
the last years. However, many registration techniques do not
take into account any a priori information on the structures in
the images. We present in this article a general locally affine
registration framework, which allows us to register local areas
in the images using affine transformations having few degrees
of freedom. Thanks to our novel polyaffine framework and
Log-Euclidean regularization, we ensure a smooth, coherent
and invertible transformation all over the image. Remarkably,
this is achieved very efficiently, even in 3D.

We illustrate our method with two applications: bone reg-
istration in the lower abdomen area and critical brain struc-
tures registration.

1. INTRODUCTION

The registration of medical images is in general a difficult
problem. Numerous methods have been devised to address
this problem. Rigid and affine transformations are widely
used to recover global deformations, e.g. for intra-patient reg-
istration. However, they do not cope with local deformations.

Other types of transformations have therefore been devel-
oped, called non-rigid. These can be split into two classes.
First, parametric transformations can be a linear combination
of radial basis functions [1] or B-Splines [2]. These transfor-
mations can have an arbitrary number of degrees of freedom.
However, defining specific areas having a common behav-
ior can be very complicated. The second class, called dense
transformations [3, 4, 5], has the highest number of degrees
of freedom, as it defines one displacement vector per voxel.
These non-rigid methods can cope with local deformations.
However, they may have too many degrees of freedom, re-
sulting in local irregularities in the contours of structures.

We would prefer to use a transformation with few degrees
of freedom for each structure. Following this idea, several ap-
proaches have already been proposed in the literature. Unfor-
tunately, they either are quite computationally expensive and
their use restricted to 2D so far [6, 7], or have been specifi-
cally designed for one application as in the case of [8] for the
correction of manipulation artifacts in histological slices or of
[9] for the registration of articulated structures.

We present in this article an efficient and general frame-
work for locally affine registration. We parameterize our trans-
formations by local affine components, associated to prede-
fined areas. Our framework guarantees an invertible and anato-
mically consistent transformation, thanks to the use of the
Log-Euclidean polyaffine framework and of a Log-Euclidean
regularization between affine components [10]. Remarkably,
this is achieved very efficiently, even in 3D.

We will first present how to combine local affine transfor-
mations to obtain a global transformation and our new reg-
ularization scheme. Then, we will focus on qualitative and
quantitative results of our method on two applications: bone
registration in the lower abdomen area and the segmentation
of brain critical structures using atlas-to-subject registration.

2. LOCALLY AFFINE FRAMEWORK

2.1. Locally Affine Transformation

To define locally affine transformations, we proceed as in
[11, 7]. Such transformations are parameterized by a finite
numberN of affine components. Precisely, each component
consists of an affine transformationAi and of a non-negative
weight functionwi(x) which models its spatial extension: the
influence of theith component at pointx is proportional to
wi(x). Furthermore, we assume that for allx,

∑N
i=1 wi(x) =

1, i.e. the weights are normalized.
In order to obtain a global transformation from several

weighted components, the classical approach to fuse each lo-
cal behavior, given in [12], simply amounts to averaging the
displacements according to the weights:

T (x) =
N∑

i=1

wi(x)Ai(x). (1)

The transformation obtained using (1) is smooth, but as
pointed in [7], this approach has one major drawback: the
resulting global transformation is notinvertible in general.
To remedy this, we use the recently proposedLog-Euclidean
polyaffine framework. See [10] for more details. It basi-
cally consists in averaginginfinitesimaldisplacements asso-
ciated to each affine component. The resulting global trans-
formation is obtained by integrating an Ordinary Differential



Equation (ODE), which can be done in a very efficient way.
Log-Euclidean polyaffine transformations are always invert-
ible, and their inverse can also be very efficiently computed.

2.2. Log-Euclidean Regularization

We present here a novel regularization approach, specific to
locally affine transformations. For more details, see [10].

The basic idea is to use the 4x4 matrix representation of
3D affine transformation given byhomogeneous coordinates.
Interestingly, whenever the amount of rotation present in an
affine transformationA is less thanπ radians, one can de-
fine the logarithm of A, simply via the principal logarithm
of the matrix representingA. This matrix logarithm is of the

form:

(
M v
0 0

)
, whereM is a 3x3 matrix (not necessar-

ily invertible) andv a 3D vector. Conversely, a unique affine
transformation is associated to any 4x4 matrixB of the latter
form via itsmatrix exponential.

As for diffusion tensors [13], taking the logarithm of affine
transformations corresponds to linearizing the (curved) affine
group around the identity, while conserving excellent theoret-
ical properties (invariance with respect to inversion in partic-
ular). This allows to performEuclidean(i.e. vectorial) oper-
ations on affine transformations via their logarithms.

This representation of affine transformations by vectors
allows the direct generalization of classical vectorial regu-
larization techniques. For example, one can define aLog-
Euclideanelastic energy between affine components:

Reg(Ai, wi) =
N∑

i=1

∑

j 6=i

pi,j‖ log(Ai)− log(Aj)‖2, (2)

where we havepi,j =
∫
Ω

wi(x).wj(x)dx/
∫
Ω

wi(x)dx, which
take into account the spatial extensions of the components.
Furthermore, one can define afluid energy by regularizing the
transformation corrections∆Ai instead of the affine trans-
formationsAi in (2). In the sequel,‖.‖ is set to‖M‖2 =
Trace(M.MT ) (Frobenius norm).

3. APPLICATIONS

3.1. Registration Algorithm

In our implementation, we chose to have entire areas adopting
an affine behavior. Convoluting areas with a gaussian kernel
would penalize small areas neighboring large areas. We have
therefore implemented the weighting function for each area
as a function of the minimal distance to the area:wi(x) =
1/(1 + α.dist(x, areai)2). These weights are normalized.

The framework described so far is also independent of
how we evaluate each affine component of the transforma-
tion. In the following two applications, we choose to opti-
mize all the affine components at the same time using a multi-

resolution scheme. At each resolution, we perform an alter-
nate optimization between the estimation of the affine com-
ponents and the regularization of the transformation. The
estimation of affine transformation corrections is done using
a block-matching algorithm, which uses a correlation coeffi-
cient as a similarity measure. The transformation corrections
∆Ai of AM−1

i are estimated at iterationM from the pairings
(xv, xv + dv) using a least trimmed squares weighted proce-
dure, which minimizes the following energy:

E(∆Ai) =
∑

v

‖
N∑

i=1

wi(xv + dv)AM−1
i .(xv + dv)

−
N∑

i=1

wi(xv)∆Ai.A
M−1
i .xv‖2. (3)

The balance between the regularization and the affine correc-
tions is done by a parameterλ ∈ [0, 1], which acts as a per-
centage of the mean Frobenius norm of the affine transforma-
tion corrections (1N

∑N
i=1 ‖log(∆Ai)‖).

All the computations are done using the simple displace-
ment averaging method (1). We can indeed assume that the
corrections are sufficiently small for the transformation to re-
main invertible. The Log-Euclidean polyaffine framework is
used only at the end of the registration to ensure the invert-
ibility of the final transformation and to compute its inverse.

3.2. Bone Registration in Lower Abdomen Area

We first evaluate the performance of our algorithm in the frame
of high-precision radiotherapy planning. The aim is to de-
velop an automatic method for soft-tissue localization in the
lower abdomen area, based on CT images. Since soft tissues
exhibit, on the one hand, a high variability in shape, size and
contrast (e.g. a full or empty bladder) and, on the other hand,
a very low contrast on CT images, it is a difficult task to au-
tomatically determine their position with accuracy.

We then decide to estimate their position statistically, with
respect to a set of landmarks established in more stable sur-
rounding structures showing a better contrast in CT images.
For that purpose, we must initially register all the patients’
images to a common space. The landmarks we establish are
a set of salient points in the pelvic and leg bones. For a feasi-
bility study, we concentrate on two of them that correspond to
the centers of mass of the femoral heads. The regions around
these points, i.e the femoral heads themselves, are used as
affine component localizations in our algorithm.

We present here results of the inter-patient registration
process using these anatomical landmarks. All the patients’
images are registered with respect to a reference image. The
process consists of two stages: a global affine registration is
performed using a block-matching algorithm, and then our
algorithm is applied. In Figure 1, we see a significant qualita-
tive improvement on the registration result with respect to an
affine transformation. Moreover, the information contained in



Fig. 1. Registration result on the pelvis with femoral heads
contours of the reference image superimposed.On left
the reference image, in the middle the floating image after
a global affine registration, on right the floating image after
using our algorithm.

the images outside the regions used in the registration remains
consistent from an anatomical point of view.

We also compare our results with a dense algorithm [4].
Qualitatively, the results are similar. For a more quantitative
evaluation of the results, Table 1 shows the norm of the Eu-
clidean distance between the landmarks in the registered im-
ages and the corresponding landmarks in reference image.

Patient # 1 2 3 4
Left head (DT) 3.53 1.20 2.51 4.37
Left head (MAF) 3.44 1.00 2.11 3.30
Right head (DT) 1.11 1.55 1.03 3.78
Right head (MAF) 1.33 1.59 0.88 3.19

Table 1. Registration results on femoral head centers.Dis-
tances in millimeters between the expected femoral head cen-
ters and those obtained from the registration (locally affine:
MAF ; dense transformation: DT).

As we have shown above, the results of our method are at
least as good as the results obtained through non-rigid regis-
tration. This fact becomes even more evident if we take into
account that our algorithm computation time is much lower
(3 minutes as opposed to 10 minutes). Moreover, the goal
was to place all of the patients’ data in a common space while
deforming the soft tissues as little as possible. Our method
performs the registration based on specific zones and ensures
consistent results all over the image. It is then much more
adapted to this type of application than a dense transforma-
tion solution, which tries to match the entire floating image.

3.3. Brain Structures Segmentation

A second application of our framework is the automatic seg-
mentation of brain critical structures for brain radiotherapy.
An accurate segmentation of these structures and of the tu-
mor allows to optimize the irradiation doses received by each
structure. The method we follow consists of bringing the pa-
tient image onto an anatomical atlas. The atlas is composed
of a simulated MRI of the brain and its segmentation done by

an expert. The patient image is first globally positioned by
an affine registration. The second step is to refine the result
locally by using a non-rigid registration algorithm.

The first task to use our algorithm is to define the areas
to register. In the following example, we register five critical
structures: the cerebellum, the eyes, the optic chiasma and
the brainstem. Thanks to our atlas, we can select the areas on
which to put affine transformations in a simple manner. For
small structures such as the eyes or the chiasma, we simply di-
lated each related label in the atlas and used it as an area. For
bigger structures, like the cerebellum or the brainstem, one
affine transformation is not sufficient ; each of these struc-
tures is then split arbitrarily into two areas and is therefore
handled by two affine transformations.

Having defined the affine areas, we first want to test the
contribution of regularization in the registration process. We
have therefore run one registration with regularization (with
λelas = 0.3 andλfluid = 0.2) and without regularization.

Fig. 2. Contribution of the regularization in the registra-
tion. From left to right: Patient image registered on the atlas
without regularization (image and deformed grid) and with
regularization (image and deformed grid).

The results are shown in Figure 2. This example clearly
underlines the importance of the regularization. The cerebel-
lum does not have the shape we would expect when not using
regularization: there is indeed a lack of coherence between
its two components yielding a result which is not consistent
from an anatomical point of view. The errors also propagate
to the rest of the brain. Our regularization technique solves
this problem and provides consistent results all over the brain.

The second series of experiments consists of comparing
the results of our algorithm with the algorithm proposed by
[5], which computes a dense transformation and allows to
use spatial-dependent regularization. The dense method pro-
duces quite accurate segmentations (see Figure 3). However,
the contours are irregular and in particular the eyes and the
chiasma can have a shape that no longer looks like the real
structure. The algorithm indeed does not use any prior on the
structures present in the brain. As it is only based on a simi-
larity measure, it can result in noisy contours.

The obtained contours are shown on Figure 3. They are
much smoother than the ones obtained with a dense registra-
tion. They are also more precise, mostly on the brainstem and
the eyes. Our framework seems indeed more adapted as it is
able to take into account priors on the structures we want to
register. The transformation is also, by construction, less sen-
sitive to local minima of the similarity measure. Finally, the



Fig. 3. Qualitative comparison of the segmentation results
on one patient.From left to right: Contours obtained using a
dense transformation and using our new framework.

computation time is faster (10 minutes as opposed to 40 min-
utes on a 3 GHz computer) than with the dense registration.

4. CONCLUSIONS AND PERSPECTIVES

In this article, we have detailed a new registration frame-
work using locally affine transformations. This framework
has shown to be simple, efficient and is fully 3D. Thanks to
our novel Log-Euclidean regularization and polyaffine frame-
work, we ensure a smooth and invertible transformation. We
have so far used our algorithm on two different applications,
for which it is particularly well adapted. Our method show
both qualitative and quantitative improvement of the results
compared to classical non-rigid dense registration. We have
also shown on several examples a consistent behavior of the
areas where no affine transformation was defined.

In a near future, we want to go into further quantitative
validation, mainly for the brain application using the IBSR
database. Another point to look at is the influence of the num-
ber and shape of affine components and areas. A measure of
the quality of the registration of any area will be a good way
to decide whether it should be split or not. Furthermore, we
can investigate ways to refine the weight functions, that are
fixed in our implementation, depending on the surrounding
affine transformations evolution.

Finally, this framework can be used as a link between
affine and dense non-rigid registration algorithms. It is in-
deed not limited to structure registration in atlas-to-subject
registration. We could implement a more general registration
algorithm by using areas regularly placed on the image and
refining them. Our algorithm can also be used as an initial-
ization for dense transformation algorithms like [5].
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