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Abstract In this article, we focus on the parameterization of
non-rigid geometrical deformations with a small number of
flexible degrees of freedom. In previous work, we proposed
a general framework calledpolyaffineto parameterize defor-
mations with a finite number of rigid or affine components,
while guaranteeing the invertibility of global deformations.
However, this framework lacks some important properties:
the inverse of a polyaffine transformation is not polyaffine
in general, and the polyaffine fusion of affine components
is not invariant with respect to a change of coordinate sys-
tem. We present here a novel general framework, calledLog-
Euclidean polyaffine, which overcomes these defects.

We also detail a simple algorithm, theFast Polyaffine
Transform, which allows to compute very efficiently Log-
Euclidean polyaffine transformations and their inverses on
regular grids. The results presented here on real 3D locally
affine registration suggest that our novel framework pro-
vides a general and efficient way of fusing local rigid or
affine deformations into a global invertible transformation
without introducing artifacts, independently of the way lo-
cal deformations are first estimated.
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1 Introduction

The registration of medical images is in general a difficult
problem, and numerous methods and tools have been al-
ready devised to address this task [13]. Still currently, much
effort continues to be devoted to finding adequate measures
of similarity, relevant parameterizations of geometricalde-
formations, efficient optimization methods, or realistic me-
chanical models of deformations, depending on the precise
type of registration considered.

In this article, we focus on the parameterization of non-
rigid geometrical deformations with a small number of flex-
ible degrees of freedom. This type of parameterization is
particularly well-adapted for example to the registrationof
articulated structures [16] and to the registration of histolog-
ical slices [18,1]. After aglobal affine (or rigid) alignment,
this sort of parameterization also allows a finerlocal regis-
tration withvery smoothtransformations [6,15,8,19].

In [1], we parameterized deformations with a small num-
ber ofrigid or affine components, which can model smoothly
a large variety of local deformations. We provided a general
framework to fuse these components into a global transfor-
mation, calledpolyrigid or polyaffine, whoseinvertibility is
guaranteed. However, this framework lacks some important
properties: the inverse of a polyaffine transformation is not
polyaffine in general. The invertibility of transformations is
important in registration problems as it ensures that one can
resample images and segmented structures. Guarantying in-
vertibility, and more generally the diffeomorphic nature of
transformations has been a goal promoted for a long time
in the medical image analysis community. Here the point is
not really about the invertibility itself, which is alreadyen-
sured by the previous poly-affine framework, but rather that
if the inverse of a polyaffine transformation should remains
a polyaffine transformation so that registering one image to
the other or the reverse could be considered in the same way.



2

This is necessary for instance to compute consistent statis-
tics on transformations. A second property which is lacking
is that the polyaffine fusion of affine components is not in-
variant with respect to a change of coordinate system (i.e.
is not affine-invariant). Here, we present a novel general
framework to fuse rigid or affine components, calledLog-
Euclidean polyaffine, which overcomes these defects and
yields transformations which can be very efficiently com-
puted.

The sequel of this article is organized as follows. In Sec-
tion 2, we present the Log-Euclidean polyaffine framework
and its intuitive properties. Then, we present theFast Polyaffine
Transform(FPT), which allows to compute very efficiently
Log-Euclidean polyaffine transformations (LEPTs) and their
inverses on a regular grid. Finally, we illustrate how FPTs
can be used in a real example of 3D registration based the
algorithm of [6].

2 A Log-Euclidean Polyaffine Framework

2.1 Previous Polyaffine Framework

Before presenting our novel polyaffine framework let us briefly
recall the original polyaffine framework, described originally
in [1]. The idea is to define transformations that exhibit a lo-
cally affine behavior, with nice invertibility properties.Fol-
lowing the seminal work of [12], we model here such trans-
formations by a finite numberN of affinecomponents. Pre-
cisely, each componenti consists of an affine transformation
Ti and of a non-negativeweight function wi(x) which mod-
els its spatial extension: the influence of theith component
at pointx is proportional towi(x). Furthermore, we assume
that for allx, ∑N

i=1wi(x) = 1, i.e. the weights are normalized.

2.1.1 Fusion of Displacements.

In order to obtain a global transformation from several weighted
components, the classical approach to fuse theN compo-
nents simply consists in averaging the associated displace-
ments according to the weights [20]:

T(x) =
N

∑
i=1

wi(x)Ti(x). (1)

The transformation obtained using (1) is smooth, but this ap-
proach has one major drawback: although each component
is invertible, the resulting global transformation isnot invert-
ible in general. To remedy this, we proposed in [1] to rely
on the averaging of someinfinitesimaldisplacements associ-
ated to each affine component instead. The resulting global
transformation is obtained by integrating an Ordinary Dif-
ferential Equation (ODE), which is computationally more

expensive but guarantees its invertibility and also yieldsa
simple form for its inverse. The nice invertibility properties
of this approach are illustrated in Fig. 1.

2.1.2 Polyaffine Framework.

The polyaffine approach can be decomposed into three steps:

– Step 1: Associating Velocity Vectors to Affine Trans-
formations. For each componenti, one defines a fam-
ily of velocity vector fields Vi(.,s) parameterized bys,
which is a time parameter varying continuously between
0 and 1.Vi(.,s) satisfy a consistency property withTi :
when integrated between time 0 and 1, they should give
back the transformationT. Hence the following defini-
tion:

Definition 1 The family of vector fieldsV(.,s), wheres
belongs to[0,1], is consistent with the transformationT
if and only if its integration between time 0 and 1 gives
back the transformationT:
1. for any initial conditionx0 one can integrate between

0 and 1 the differential equation ˙x = V(x,s) so that
x(1) exists.

2. x(1) is equal toT(x0).

Several possible choices exist to associate velocity vec-
tor to affine transformations. One of the main contribu-
tions of this work is precisely to propose a novel choice
for such speed vectors. Interestingly, we do not know at
present how many other choices exist and whether they
might have even better properties than the ones we have
found so far.

– Step 2: Fusing Velocity Vectors instead of Displace-
ments.The idea is then to average the vector fieldsVi(.,s)
according to the weight functionswi(x) to define an ODE
fusing theN components.

ẋ = V(x,s)
de f
= ∑

i
wi(x)Vi(x,s). (2)

This ODE is the infinitesimal analogous of the weighted
mean of displacements (Eq.1). Weight functions are very
important and model the influence in space of each com-
ponent. They control in particular the sharpness of tran-
sitions between the fused affine transformations. Also,
they can take into account the geometry of anatomical
regions of interest, as will be the case in the experimen-
tal results on 3D MRI data given in the sequel.

– Step3: Integration of the Polyaffine ODE.In this in-
finitesimal framework, the value at pointx0 of the global
transformationT fusing theN components is obtained
via the integration of Eq. (2) between 0 and 1, with the
initial conditionx(0) = x0.
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Fig. 1 Example result of the fusion of two affine transformation with the direct and the infinitesimal approaches.Two translations (on top)
and two rotation (on bottom) of opposite axis / angle are fused and we display here the resulting deformation of a regular grid with the direct
averaging of displacementson the left, and with the infinitesimal fusion of the transformations in the polyaffine frameworkon the right. One can
clearly see that the grid folds onto itself with the direct averaging method. This means that different physical points are mapped to the same space
point after deformation. Thus, the transformation is not invertible as the points where the grid overlap should be mapped to twodifferent locations.
On the contrary, the grid deformed by the infinitesimal method does not fold and remains invertible in this example. The two regions used were
centered at points(−2,0) and(+2,0), with the following weights that ensure a smooth transition between the two components (given here in
unnormalized form):wi(x) = 1/(1+ ((x1 − ci)/σ)2), wherec1 = −2, c2 = +2 andσ = 5. The affine transformations of the two components
where translationst1 = (3,1)T andt2 = (−1.5,3)T for the top images, and two rotations of opposite angles of magnitude 0.63 radians around the
origin of each region for the bottom images.

2.1.3 What Velocity Vectors for Affine Transformations at
Step 1?

Let us take an affine transformationsT = (M, t), whereM
is the linear part andt the translation. To define a family of
velocity vector fields consistent withT, it was proposed in
[1] to rely on thematrix logarithmof the linear partM of T.
More precisely, letL be the principal matrix logarithm ofM.
The family of speed vector fieldsV(.,s) we associated toT
writes:

V(x,s) = t +L.(x−st) for s∈ [0,1]. (3)

In practice, the matrix logarithm can be efficiently com-
puted using the ‘Inverse Scaling and Squaring’ method [5].
As for the ‘Scaling and Squaring’ method in the exponen-
tial case, this algorithm is based on the idea that computing
the logarithm of a matrixclose to the identitycan be done
very accurately and at a very small computational cost, for
instance using Padé approximants. In order to transform a
matrix into another matrix closer to the identity, the ‘Inverse
Scaling and Squaring’ method uses the computation of suc-
cessivesquare roots. Once the 2N

th
root of a matrixM has

been computed, one can use the following equality to com-
pute the logarithm ofM:

log(M) = 2N. log
(

M2−N
)

. (4)

More details on how square roots can be iteratively com-
puted and on the choice of the level of squaringsN can be
found in [5].

2.1.4 Well-Definiteness of the Principal Logarithm.

One should note that using principal logarithms of the linear
part of affine transformations at the first step of the polyaffine
framework is not always possible. The theoretical limitation
implied by this particular choice of velocity vectors is the
following: the principal logarithm of an invertible matrixM
is well-defined when the (complex) eigenvalues ofM do not
lie on the (closed) half-line of negative real numbers [5]. A
more detailed analysis of the necessary and sufficient con-
dition for a real matrix to have a real logarithm is given in
[9].

For rotations, this means quite intuitively that the amount
of (local) rotation present in each of the components should
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Fig. 2 Constraints imposed on affine transformations by the use ofthe principal matrix logarithm. Left: only affine transformations
whose (complex) eigenvalues do not lie on the (closed) half-line of negative real numbers have a principal logarithm and can be handled by our
framework. Intuitively, this corresponds to imposing that (local) rotations be smaller in magnitude thanπ radians. This can be seen more clearly on
the principal logarithms of theseadmissibleaffine transformations: the imaginary part of their eigenvaluesmust be smaller thanπ in magnitude.
This is illustrated on theright part of this figure. A more detailed discussion of this constraint is given in Subsection 2.1.

be strictly belowπ radians in magnitude. This can be clearly
seen in the domain of matrix logarithms, where this con-
straint corresponds to imposing that the imaginary part of
eigenvalues be less thenπ in magnitude. Fig. 2 illustrates
this general situation, which is not specific to rotations.

For general invertible linear transformations with posi-
tive determinant, the interpretation of this constraint oneigen-
values is not so clear, since rotational and non-rotationalde-
formations are intertwined. However, one should note the
closed half-line of negative number is a set of null (Lebesgue)
measure in the complex plane, which indicates that very
few linear transformations with positive determinant (cor-
responding to extremely large deformations) will not have a
principal matrix logarithm. From a practical point of view,
one can anyway just check whether the constraint is satisfied
by computing numerically the eigenvalues ofM, which only
amounts to solving a third degree polynomial equation for
3D affine transformations.

In the context of medical image registration, we do not
believe this restriction to be problematic, since a global affine
alignment of the images to be registered is always performed
first. This factors out the largest rotations and it would be
very surprising from an anatomical point of view to observe
very large deformations (e.g., local rotations close to 180
degrees) of an anatomical structure from one individual to
another after the affine alignment of the anatomies of these
individuals.

2.1.5 Heavy Computational Burden at Step 3.

Now, from a practical point of view, integrating the ODE
given by Eq. (2) with the velocity vectors of Eq. (3) is quite

computationally expensive, especially when one wishes to
do this for all the points of a 3D regular grid, for example a
256×256×100 grid, which is commonly in the case forT1-
weighted MR images. We will see in the rest of this section
how one can drastically reduce this complexity by slightly
modifying the speed vectors of Eq. (3).

2.2 Simpler Velocity Vectors for Affine Transformations

Let us now see how one can define much simpler velocity
vectors for affine transformations than the ones given in Eq.
(3). The basic idea is to rely on the logarithms of the trans-
formationsthemselves, and not only on the logarithms of
their linear parts. These logarithms can be defined in an
abstract way in the context of the theory of Lie groups, as
detailed in [2]. Interestingly, thanks to the faithful represen-
tation of these transformations obtained withhomogeneous
coordinates, these logarithms can be computed in practice
via matrix logarithms.

2.2.1 Homogeneous Coordinates.

Homogeneous coordinates are a classical tool in Computer
Vision. They are widely used to represent any n-dimensional
affine transformationT by (n+ 1)× (n+ 1) matrix, writ-
ten hereT̃. Such a representation is called by mathemati-
cians ‘faithful’ (in the sense of representation theory), which
means that there is no loss of information in this representa-
tion. T̃ takes the following form:

T ∼ T̃
de f
=

(

M t
0 1

)

, (5)
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whereM is the linear part ofT (n×n matrix) andt its trans-
lation. In this setting, pointsx of the ambient space are rep-
resented byn+1-dimensional vectors ˜x, adding an extra ‘1’
after their coordinates:

x∼ x̃
de f
=

(

x
1

)

.

This way, the action of the affine transformation on a point
x can be obtained simply in terms of matrix multiplication
and is given byT̃.x̃.

2.2.2 Principal Logarithms of Affine Transformations.

Using homogeneous coordinates, the principal logarithm of
the affine transformationsthemselvescan be computed in a
simple way.

The main point here is that the principal logarithm of
an affine transformationT is represented in homogeneous
coordinates by the matrix logarithm of its representationT̃.
This matrix logarithm takes the following form:

log
(

T̃
)

=

(

L v
0 0

)

,

where log stands for the principal matrix logarithm.L is an
n×n matrix andv ann-dimensional vector. Exactly as in the
former subsection,L is the principal matrix logarithm ofM.
But v is not equal in general to the translationt. Actually,
the difference between our novel approach and the previous
one resides essentially in thisv.

Interestingly, the well-definiteness of the principal loga-
rithm of an affine transformationT is equivalent to the well-
definiteness of the principal logarithm of its linear partM.
The reason for this is that the spectrum ofT̃ is exactly that of
its linear partM plus an extra eigenvalue equal to 1, thanks
to the form taken bỹT (see Eq. (5)). Hence the equivalence
of the existence of both principal logarithms.

2.2.3 Simpler Velocity Vectors for Affine Transformations at
Step 1 of the Polyaffine Framework.

Using now principal logarithms of affine transformations in-
stead of the principal logarithms of their linear parts, onecan
now associate to an affine transformationT a simpler family
of velocity vector fields than in Eq. (3) in the following way:

V(x,s) = V(x) = v+L.x for s∈ [0,1]. (6)

What is remarkable here is that the velocity vector field
at time s associated toT does not depend on s! To prove
the consistence of this speed vector withT, let us write the
associated ODE:

ẋ = v+L.x. (7)

While the mathematical form taken by (7) might seem un-
familiar, it is much simpler (and more familiar) when ex-
pressed in homogeneous coordinates. It simply writes:

˙̃x = log(T̃).x̃, (8)

which is this time alinear ODE. It is well-known from the
theory of linear ODEs [23] that Eq. (8) can be solved ana-
lytically and that its solutions are well-defined for all time.
With an initial conditionx0 at time 0, the valuex(s) of the
unique mappingx(.) satisfying Eq. (7) is given in terms of
matrix exponential by:

x̃(s) = exp
(

s. log
(

T̃
))

.x̃0. (9)

By letting s be equal to 1, we thus see that our new velocity
vectors are truly consistent with the transformationT.

The ODE of Eq. (7) is calledautonomous(or equiva-
lently stationary). Such ODEs have some very nice mathe-
matical properties, which can be expressed in terms ofone-
parameter subgroupsof transformations. These properties
are detailed in [2, Chapter 2]. In short, the flowΦ(.,s) of an
autonomousODE is aone-parameter subgroup of the group
of diffeomorphisms, which means the (possibly) large defor-
mations obtained at time 1 result of the composition of a
large number of arbitrarily small identical deformations.

2.2.4 One-Parameter Subgroups of Affine Transformations.

From the explicit form taken by the solutions of this ODE
(see Eq. (9)), we can see that the associated flow is simply
the family of affine transformations(Ts(.)), whereTs is the
affine transformation represented by exp(s. log(T̃)), i.e. the
sth power ofT.

From the general properties of flows associated to au-
tonomous ODEs, we know that the family of transforma-
tions(Ts(.)) is aone-parameter subgroupof diffeomorphisms.
From this point of view, its infinitesimal generator is the vec-
tor field V(x) = v+ L.x. From the viewpoint of theaffine
group (in contrast to diffeomorphisms),(Ts) is also a one-
parameter subgroup of affine transformations, whose infinites-
imal generator is this time the principal logarithm ofT. In-
terestingly, it can be shown with the classical tools of Lie
groups theory that all continuous one-parameter subgroups
of affine transformations are of this form [22].

2.3 Log-Euclidean Polyaffine Transformations

2.3.1 An Autonomous ODE for Polyaffine Transformations.

With the velocity vectors defined by Eq. (6), one can de-
fine a novel type of polyaffine transformations using the
steps 2 and 3 of the Polyaffine framework. In the sequel,
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we will refer to these new polyaffine transformations asLog-
Euclidean polyaffine transformations(or LEPTs). This name
comes from our work on diffusion tensors [3], where we
have already used principal logarithms to process another
type of data.

More precisely, let(Mi , ti) be N affine transformations,
and let(Li ,vi) be their respective principal logarithms. Then
one can fuse them according to the weightswi(x) with the
following ODE, which is this timeautonomous, i.e. without
any influence of the time parameters in the second member
of the equation:

ẋ = ∑
i

wi(x)(vi +Li .x) . (10)

Exactly as in the case of the non-autonomous polyaffine
ODE based on Eq. (3), solutions to this novel ODE are well-
defined for all times (i.e. never go infinitely far in a finite
time, do not ‘blow up’), regardless of the initial condition.
The proof is extremely similar (although simpler, in fact) to
that given in [1] for the previous polyaffine framework.

Now, we know from the general properties of station-
ary ODEs (which were presented above) that the flowT(s, .)
of this ODE forms aone-parameter subgroupof diffeomor-
phisms:T(0, .) is the identity andT(r, .) ◦T(s, .) = T(r +
s, .).

2.3.2 One-Parameter Subgroups of LEPTs.

Exactly like in the affine case, the ODE given by (10) defines
not only a one-parameter subgroup ofdiffeomorphisms, it
also yields a one-parameter subgroup ofLog-Euclidean polyaffine
transformations.More precisely, a simple change of variable
(s 7→ s

2) shows that the flow at time12, written hereT(1
2, .),

corresponds to a polyaffine transformation whose parame-
ters are the same weights as the original ones, but where
the affine transformations have been transformed into their
square roots (i.e. their logarithms have been multiplied by
1
2). Similarly, the flow at times, T(s, .) corresponds to a
polyaffine transformations with identical weights but with
thesth power of the original affine transformations.

As a consequence,T(s, .) can be interpreted as thesth

power of the Log-Euclidean polyaffine transformation de-
fined byT(1, .). In particular, the inverse ofT(1, .) (resp. its
square root) is given simply byT(−1, .) (resp.T(1/2, .)),
which is the polyaffine transformation with identical weights
but whose affine transformations have been inverted (resp.
have been transformed into their square roots).

One should note that our previous polyaffine transforma-
tions donot have the same remarkable algebraic properties
as Log-Euclidean polyaffine transformations. In our previ-
ous framework, the inverse of a polyaffine transformation
was not even in general a polyaffine transformation. LEPTs
have very intuitive and satisfactory properties, because they

are based on a fusion of velocity vectors much better adapted
to the algebraic properties of affine transformations than the
speed vectors we previously used.

In the next Section, we will see how this specificalge-
braic property of our novel framework can be used to al-
leviate drastically the computational cost of Step 3 of the
polyaffine framework (i.e. the cost of the integration of the
polyaffine ODE).

2.3.3 Affine-Invariance of LEPTs.

Contrary to the previous polyaffine framework, our novel
Log-Euclidean framework has another sound mathematical
property:affine-invariance. This means the Log-Euclidean
polyaffine fusion of affine transformations is invariant with
respect to any affine change of coordinate system. This type
of fusion is thus a fusion betweengeometric transformations
and notmatricessince it does not depend at all on the arbi-
trary choice of coordinate system chosen to represent them.

To see why this is so, let us see how the various ingredi-
ents of our framework are affected by a change of coordinate
system induced by an affine transformationA. In homoge-
neous coordinates, these changes are the following:

• a pointx̃ becomes ˜y = Ã.x̃
• a weight function ˜x 7→ wi(x̃) becomes ˜y 7→ wi(Ã−1.ỹ)
• an affine transformatioñTi becomes̃A.T̃i .Ã−1.

In our new coordinate system, the Log-Euclidean polyaffine
ODE writes in homogeneous coordinates:

˙̃y = ∑
i

wi(Ã
−1.ỹ) log

(

Ã.T̃i .Ã
−1) .ỹ. (11)

Then, using the property log
(

Ã.T̃i .Ã−1
)

= Ã. log
(

T̃i
)

.Ã−1,
the simple change of variable ˜y 7→ Ã.x̃ shows that a map-
ping s 7→ x̃(s) is a solution of the Log-Euclidean polyaffine
ODE (10) if and only ifs 7→ Ã.x̃(s) is a solution of (11). This
means that the solutions of the Log-Euclidean polyaffine
ODE in the new coordinate system are exactly the same as in
the original coordinate system: our novel polyaffine frame-
work is therefore not influenced by the choice of a coordi-
nate system. The previous polyaffine framework does not
have this property, because it does not take sufficiently into
account the algebraic properties of affine transformations.

2.3.4 Another Reason Why our Novel Polyaffine
Framework is Called Log-Euclidean.

In the special case where none of the weight functionswi(x)
depend onx, the Log-Euclidean polyaffine fusion of the affine
transformationTi simply yields an affine transformationsT,
which is given by the followingLog-Euclidean mean:

T = exp

(

∑
i

wi log(Ti)

)

.
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This is another reason why we refer to our novel polyaffine
framework as Log-Euclidean. Indeed, the use of a general-
ization to rigid and affine transformations of our Log-Euclidean
framework for tensors [4] is implicit in this novel frame-
work. More details on the Log-Euclidean framework for lin-
ear transformations can be found in [2, Chapter 6].

2.3.5 Synthetic Examples.

Examples of 2D LEPTs are shown in Figs. 3. In these ex-
amples, one can see how antagonistic affine transformations
(i.e. transformations whose direct fusion results in localsin-
gularities) can be globally fused into a regular and invertible
polyaffine transformation.

Interestingly, we have observed in our experiments that
the Log-Euclidean and the previous polyaffine frameworks
provide similar results. Fig. 4 illustrates the striking close-
ness between both frameworks. Notable differences only ap-
pear when very large deformations are fused.

Therefore, the advantage of our Log-Euclidean polyaffine
framework over the previous one does not reside in the qual-
ity of its results, which are very close to those of the previ-
ous one. Rather, it resides in its much better and more intu-
itive mathematical properties, which allow for much faster
computations, as will be shown in the next Section. This
situation is somehow comparable to the closeness between
the affine-invariant [17] and Log-Euclidean [3] Riemannian
frameworks used to process diffusion tensors. They also yield
very similar results, but in a simpler and faster way in the
Log-Euclidean case.

3 Fast Polyaffine Transform

In this Section, we show how one can use the specifical-
gebraicproperties of the Log-Euclidean polyaffine frame-
work to obtain fast computations of LEPTs. In particular, we
propose an efficient algorithm to evaluate a Log-Euclidean
polyaffine transformations on a regular grid. IfN is the num-
ber of intermediate points chosen to discretize the continu-
ous trajectory of each point, we present here an algorithm
only requiring log2(N) steps to integrate our autonomous
polyaffine ODE, provided that the trajectories of all the points
of the regular grid are computed simultaneously. This drastic
drop in complexity is somehow comparable to that achieved
by the ‘Fast Fourier Transform’ in its domain. The key to
this approach lies in the generalization to the non-linear case
of a popular method which is widely used to compute nu-
merically the exponential of a square matrix.

3.1 Matrix Exponential and the ‘Scaling and Squaring’
Method

The matrix exponential of a square matrix can be computed
numerically in a large number of ways, with more or less
efficiency [14]. One of the most popular of these numer-
ical recipes is called the ‘Scaling and Squaring’ method,
which is for example used by MatlabTM to compute ma-
trix exponentials [10]. Fundamentally, this method is very
efficient because it takes advantage of the very specific al-
gebraic properties of matrix exponential, which are in fact
quite simple, as we shall see now. For any square matrixM,
we have:

exp(M) = exp

(

M
2

)

.exp

(

M
2

)

= exp

(

M
2

)2

. (12)

This comes from the fact thatM commutes with itself in the
sense of matrix multiplication. Iterating this equality, we get
for any positive integerN:

exp(M) = exp

(

M
2N

)2N

, (13)

Then, the key idea is to realize that the matrix exponen-
tial is much simpler to compute for matricesclose to zero.
In this situation, one can for example use just a few terms of
the infinite series of exponential, since high-order terms will
be completely negligible. An even better idea is to use Padé
approximants, which provide excellent approximations by
rational fractions of the exponential around zero with very
few terms. For more (and recent) details on this topic, see
[10].

The ‘Scaling and Squaring’ Method for computing the
matrix exponential of a square matrixM can be sketched as
follows:

1. Scaling step: divideM by a factor 2N, so thatM
2N is close

enough to zero (according to some criterion based on the
level of accuracy desired: see [10] for more details).

2. Exponentiation step: exp
(

M
2N

)

is computed with a high
accuracy using for example a Padé approximant.

3. Squaring step: using Eq. (13), exp
(

M
2N

)

is squaredN
times (onlyN matrix multiplications are required.) to
obtain a very accurate estimation of exp(M).

In the rest of this Section, we will see how one can gen-
eralize this method to compute with an excellent accuracy
polyaffine transformations based on autonomous ODEs.

3.2 A ‘Scaling and Squaring’ Method for LEPTs

The goal of the method described below is to compute effi-
ciently and with a good accuracy the values of a Log-Euclidean
polyaffine transformation at the vertices of a regular n-dimensional
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Fig. 3 Fusing velocity vectors of two translations (top row), two rotations (middle row) and a translation and an anisotropicswelling
(bottom row). From left to right: Log-Euclidean polyaffine speed vectors computed from the two affine transformations with the novel framework,
fused speed vectors, and a regular grid deformed after integration of the autonomous ODE. The weights used for the fusion were twofunctions of
the first coordinate as in Fig. 1. Note how locally antagonisticdisplacements are fused in an invertible way, resulting in compressions or swelling
at the boundary between the two components.
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Fig. 4 Comparison between the new and the previous Log-Euclidean polyaffine framework. We superimpose here the deformation of a
regular grid resulting from the fusion of two rotations (as in Fig. 3) using the new log-Euclidean method and the previous poly-affine framework.
One cannot see any difference at a large scale (on the left): onehas to zoom quite intensively to see the very small difference (onthe right).
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(well, 2D or 3D in practice) grid. In the sequel, this method
will be referred to as the ‘Fast Polyaffine Transform’ (or
FPT).

3.2.1 Algebraic Properties of Log-Euclidean Polyaffine
Transformations Revisited.

LetT (s, .) be the flow associated to the autonomous polyaffine
ODE (10), as in Subsection 2.3. As mentioned before, this
flow is a one-parameter subgroup of LEPTs:

T (0, .) = Id and for allr,s: T (r, .)◦T (s, .) = T (r +s, .) .

As a consequence, Exactly as Eq. (12) for the matrix expo-
nential, we obtain forr = s= 1

2:

T (1, .) = T

(

1
2
, .

)

◦T

(

1
2
, .

)

= T

(

1
2
, .

)2

.

Iterating this equality, we get for any positive integerN:

T (1, .) = T

(

1
2N , .

)2N

. (14)

Intuitively, Eq. (14) means that what the deformation ob-
served at time 1 results of 2N times the repetition of the small
deformations observed at time12N . The total deformation is
entirely determined by the initial (and small) deformations
occurring just at the beginning of the integration of our ODE
(which is a well-known and general phenomenon with au-
tonomous ODEs).

3.2.2 Fast Polyaffine Transform.

We can now generalize the ‘Scaling and Squaring’ Method
to the Log-Euclidean polyaffine case. This method, called
the ‘Fast Polyaffine Transform’, follows the usual three steps:

1. Scaling step: divideV(x) (the field of velocity vectors)

by a factor 2N, so thatV(x)
2N is close enough to zero (ac-

cording to the level of accuracy desired).
2. Exponentiation step: T

(

1
2N , .

)

is computed using an ad-
equate numerical scheme.

3. Squaring step: using Eq. (14),T
(

1
2N , .

)

is squaredN
times (in the sense of the composition of transforma-
tions; onlyN compositions are required) to obtain an ac-
curate estimation ofT (1, .), i.e. of the polyaffine trans-
formation to be computed (e.g., an average relative error
of the order of 0.5%).

From a practical (or numerical) point of view, two points
remain to be clarified. First what numerical scheme can be
used to computeT

(

1
2N , .

)

with a good precision during the
‘exponentiation step’? Second, how should the composition
(which is the multiplication operator for transformations) be
performed during the ‘squaring step’?

3.2.3 Exponentiation Step.

Exactly as in the matrix exponential case, integrating an
ODE during a very short interval of time (short with respect
to the smoothness of the solution) is quite easy. We can use
any of the methods classically used to integrate ODEs dur-
ing short periods of times, like explicit schemes or Runge-
Kutta methods, which are based on various uses of the Tay-
lor development to compute solutions of ODEs (see [11] for
more details on these methods).

The simplest of these schemes is undoubtedly the first-
order explicit scheme. In our case, it simply consists in com-
puting the following value:

First Order Explicit Exponentiation Scheme (E.S):

T

(

1
2N ,x

)

E.S.

de f
= x+

1
2N .V(x).

Generalizing the ideas already developed in [1] for the pre-
vious polyaffine framework, we can also use a second-order
scheme which takes into account the affine nature of all
components, and which isexactin the case of a single com-
ponent. We will refer to this scheme as theaffine exponenti-
ation schemein the following. It writes:

Second Order Affine Exponentiation Scheme (A.S):

T

(

1
2N ,x

)

A.S.

de f
=

N

∑
i=1

wi(x).T
1

2N
i (x),

whereT
1

2N
i is the 2Nth root of the affine transformationTi .

We will see later in this Section that the accuracy of this
numerical scheme is slightly better than that of the explicit
scheme, probably because it takes into account the linear
nature of the components.

3.2.4 Composing Discrete Transformations.

In this work, we are evaluating our transformation at afinite
number of vertices of a regular grid. Practically, one has to
resort to some kind of interpolation/extrapolation technique
to calculate the value of such a transformation atanyspatial
position. Numerous possibilities exist in this domain, such
as nearest-neighbor interpolation, bi- or tri-linear interpo-
lation, continuous representations via the use of a basis of
smooth functions like wavelets, radial basis functions...In
the following, we use bi- and tri-linear interpolations, which
are simple tools guaranteeing a continuous interpolation of
our transformation. The best type of interpolation technique
for the purposes of our Fast Polyaffine Transform remains
to be determined and will be the subject of future work.
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3.2.5 Algorithmic Complexity.

Note that to compute polyaffine transformations using the
FPT, the weight functions need only be evaluatedonceper
voxel, and not atevery stepof the integration of the ODE,
as was done in [1]. When weight functions are stored in
the computer memory as 3D scalar images, this offers the
opportunity of removing them from the computer RAM af-
ter the exponentiation step. This could be particularly useful
when a large number of affine components are used on high-
resolution images.

Furthermore, the equivalent of 2N intermediate points
is achieved in onlyN steps, in contrast with the 2N steps
required by a traditional method. After the 2Nth root has
been computed, onlyN compositions between transforma-
tions need to be computed, which is an operation based on
interpolation techniques and therefore not very computation-
ally expensive. LetNvox be the number of voxels and letNpts

be the number of intermediary points chosen to integrate the
polyaffine ODE. The complexity of our new algorithm is
thus O(Nvox. log2(Npts)), whereas the complexity of tradi-
tional methods of integration of this ODE isO(Nvox.Npts).

3.2.6 Computing the Inverse of a Polyaffine
Transformation.

As pointed out in Subsection 2.3, in our new framework the
inverse of a polyaffine transformation is simply the polyaffine
transformation associated with the opposite vector field (i.e.
the polyaffine transformation with the same weights but in-
verted affine components). As a consequence, the inverse of
a polyaffine transformation can be also computed using the
Fast Polyaffine Transform. Actually, any power (square root,
etc.) a polyaffine transformation can be computed this way.

3.3 2D Synthetic Experiments

Throughout this results Section, we measure the accuracy of
our results by computing the relative difference of the re-
sults with respect to accurate estimations of the real (contin-
uous) transformations. These reference transformations are
obtained by a classical integration (i.e., a fixed time step was
used) of the Log-Euclidean polyaffine ODE for each of the
pixels of the grid, using a small time step: 2−8.

One should note that several parameters influence the
accuracy of the results:

• the scaling 2N

• the geometry of the regular grid
• the interpolation method
• the extrapolation method.

Thus, compared to the classical estimation method with a
fixed time step, our fast transform possesses three new sources

of numerical errors: the geometry of the regular grid (the
transformation is evaluated only at a finite number of points,
the more points the more precise the result will be), the inter-
polation method and the fact that regardless of the extrapo-
lation method, some part of the information about what hap-
pens outside of the regular grid is lost. It is therefore impor-
tant to check that the accuracy of the results obtained with
the FPT are not spoiled by these new sources of error.

3.3.1 A Typical FPT.

Figs. 5 and 6 display the results of a typical Fast Polyaffine
Transform, using two rotations of opposite angles, and a
scaling of 26 (and therefore 6 squarings). The regular grid
chosen to sample the transformation is of 50× 40 pixels.
The affine exponentiation scheme is used.

On average, the results are quite good: the average rel-
ative error is approximately equal to 0.6%. However, much
higher errors (around 11%) are obtained at the boundary,
which comes from the fact that the bi-linear interpolation
we use here does not take into account the rotational behav-
ior of the transformation outside of the grid.

Image of FPT error at iteration i=6

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
Accuracy of FPT

 

 

mean error
maximal error

Fig. 6 Fast polyaffine transform for two rotations: error locali za-
tion and evolution. Left: the errors at the vertices of our 50×40 reg-
ular grid are displayed as an image, after a FPT with 6 squarings. The
maximal relative errors are concentrated on the boundary of our grid.
This is due to the inaccuracy of our extrapolation technique, which is
only bi-linear and does not deal very precisely with the affinenature
of the polyaffine transformation.Right: the evolution of errors along
squarings is displayed. The relative error of the resulting estimation of
the polyaffine transformation is below 0.6% on average and the maxi-
mal relative error is below 11%.

3.3.2 Using Bounding Boxes to Correct Boundary Effects.

The numerical errors stemming from the loss of information
at the boundary of the regular grid can be drastically reduced
for example by enlarging the regular grid used. A simple
idea consists in adding to the regular grid some extra points
so that it contains the points of boundary deformed by Eu-
clidean fusion of the affine components. A simple method to
compute the bounding box is to rely on the direction fusion
of the vector speed, as illustrated by Fig. 7.
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Fig. 5 Fast polyaffine transform for two rotations. A scaling factor of 26 was used in this experiment, and there are therefore 6 squaring steps.
Note how the deformation is initially very small, and increases exponentially. The accuracy of the FPT results was measured withrespect to the
results given by a classical integration (voxel by voxel) of thepolyaffine ODE with 28 intermediate points. The relative error of the resulting
estimation of the polyaffine transformation is below 0.6% on average and the maximal relative error, as expected, is made at the boundary and is
below 11%.
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Bounding box

Fig. 7 An extended grid for accurate discrete polyaffine trans-
forms. Internal plus signs: the bounding box of the original regular
grid used to sample the Log-Euclidean polyaffine fusion between two
rotations.Stars: its deformation by the direct fusion of the two rota-
tions, which can be computed at a very low computational cost.Ex-
ternal plus signs: bounding box of the extended regular grid which
now contains all the star points. This enlarging procedure considerably
reduces the impact on the Fast Polyaffine Transform of the loss of in-
formation beyond the boundaries of the regular grid, as shown in Fig.
8.

Fig. 8 presents the accuracy of the results given by the
FPT using such an extended regular grid. This time, errors
are much lower: the relative accuracy of the resulting es-

timation of the polyaffine transformation is on average of
0.21% (instead of approximately 0.6% previously), and the
maximal relative error is below 3.2% (instead of 11% pre-
viously). This simple and efficient technique, which drasti-
cally reduces the effect of boundary effects on the FPT, is
used systematically in the sequel.

Image of FPT error at iteration i=6
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Fig. 8 Using an enlarged sampling grid: impact on errors local-
ization and evolution for the fast polyaffine transform for two ro-
tations. Left: the errors at the vertices of our 50×40 regular grid are
displayed as an image, after a FPT with 6 squarings. Note how the
maximal errors are concentrated this time on the region of highest com-
pression.Right: the evolution of errors along squarings is displayed.
This time, errors are much lower: the relative error of the resulting es-
timation of the polyaffine transformation is on average below 0.21%
(instead of below 0.6% without an enlarged grid), and the maximal
relative error is below 3.2% (instead of 11% wihtout an enlarged grid).
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Fig. 9 Fast polyaffine transform for two rotations: influence of the scaling. Left: regular grids deformed by polyaffine transformations
obtained with the FPT using scaling factors of (from left to right on top): 21, 22, 24, and (from left to right on bottom): 26, 210 and 215. Note how
close the results are when the number of squaringsN > 6. Right: One can see that the accuracy of the results is extremelystablefor N > 6: it is
not necessary to use larger scalings in the example considered here. Even more remarkably, using larger scalingsdoes not degradesthe results: our
FPT is very stable.

3.3.3 Influence of Scaling.

What scaling should be chosen when the FPT is used? Of
course, this depends on the quantity of high frequencies present
in the polyaffine transformations. The more sharp changes,
the smaller the scaling should be and the finer the sampling
grid should also be.

Fig. 9 displays the performance in accuracy of the FPT
when the number of iterationsN varies. In this experiment,
we use the same fusion of rotations as in the previous exper-
iment. In this case, the optimal scaling is 25. Larger scalings
do not result in better accuracy, essentially because of the
missing information at the boundary.

We observed in the experiments on real 3D medical im-
ages described in the sequel that even much smaller scal-
ings (typically 23 or 22) could be used without sacrificing
the accuracy of the result. In short, introducing even a small
number of intermediate points substantially regularizes the
fused transformation with respect to the direct fusion, since
this suffices to remove singularities in practice. Using more
intermediary points, i.e. 5 or more squarings, offers the pos-
sibilities to be very close to the ideal polyaffine transforma-
tion, which provides a simple way to compute the inverse of
the fused transformation with an excellent accuracy, as will
be shown in this subsection.

Moreover, one should also note from Fig. 9 that our Fast
Polyaffine Transform is verystable: using unnecessary iter-
ations (or equivalently a very large scaling) does not result
in numerical instabilities. The result is mostly independent
of N for N > 6. The relative error of the resulting estimation
of the polyaffine transformation converges toward 0.2% on
average and the maximal relative error converges toward 2%
for largeNs. The residual maximal error is essentially due

to the sampling of the transformation on a grid and the use
of an interpolation method between the points of the grid,
since an extended grid is used to drastically reduce errors at
the boundary of the grid.

3.3.4 Comparison between Numerical Schemes.

Here, we compare the explicit affine exponentiation schemes.
We perform this comparison on our three favorite examples:
the fusion of two rotations, the fusion of two antagonistic
translations, and the fusion between a translation and an
anisotropic swelling as in Fig. 3. The accuracy of the FPT
using both numerical schemes is compared in all three cases.
Fig. 10 shows the results.

Both numerical schemes make the FPT converge toward
the same accuracy as the number of squarings increases, but
the convergence is slightly faster in the affine exponentia-
tion case: the average error is 40% smaller in the affine case
for scalings smaller than 26. Interestingly, the two numerical
schemes are identical for the fusion of the two translations,
because the linear parts of these two affine translations are
equal to the identity.

3.3.5 Inverting Polyaffine Transformations with the FPT.

As pointed out previously, in our novel framework, the in-
verse of a polyaffine transformation is simply (and quite in-
tuitively) the polyaffine transformation with the same weights
and with inverted affine components. This inverse can also
be computed using the Fast Polyaffine Transform, and in this
experiment we tested the accuracy of the inversion obtained
this way. The affine exponentiation scheme was used for ex-
ponentiation along with a 50×40 grid.
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Fig. 11 presents with deformed grids the evolution of the
accuracy of inversion when the number of squarings varies,
in our example of fusion between two rotations. Fig. 12
presents the quantitative results in the three cases of fusion
used in the previous experiment. We thus see that an ex-
cellent quality of inversion can be achieved using a small
number of squarings, typically 6.

3.4 3D Registration Example

In [1] we showed how it is possible to optimize the param-
eters of polyrigid or polyaffine transformations in medical
image registration experiments. However, this leads in prac-
tice to a high computational cost. To obtain short computa-
tion times (typically 10 minutes for whole 3D volumes in the
locally affine case), we proposed in [6,7] a multi-resolution
and robust block-matching scheme for the locally affine reg-
istration of multiple components. This algorithm estimates
affine components using thedirect fusion. The FPT is used
in afinal stepto ensure the invertibility of the final transfor-
mation, as well as to compute its inverse. We have observed
experimentally that this yields quite satisfactory results, as
we will see below.

Let us consider a real 3D example: the registration, of
an atlas of 216× 180× 180 voxels to aT1-weighted MR
image. Seven structures of interest are considered to define
the locally affine transformation: eyes (1 affine component
each), cerebellum (2 components), brain stem (2 compo-
nents), optic chiasm (1 component), 1 supplementary com-
ponent (set to the identity) elsewhere. Weight functions are
defined in the atlas geometry using mathematical morphol-
ogy and a smoothing kernel in a preliminary step and remain
unchanged during the registration process.

Philosophy of our Locally Affine Algorithm.The idea is to
register finely our structures of interest, withvery smooth
local transformations. In contrast, many registration algo-
rithms are able to registerthe intensitiesall over the im-
ages of two anatomies, but this is done in most cases at the
cost of the regularity of the resulting spatial transformation.
This lack of smoothness leads to serious doubts regarding
the anatomical likelihood of such transformations.

Fig. 13 provides a comparison between the typical smooth-
ness of dense transformation and locally affine registration
results. Interestingly, much smoother deformations are ob-
tained in the locally affine case with an accuracy in the struc-
tures of interest which is comparable to the dense transfor-
mation case of [21]. More details on this subject can be
found in [7].

LEPTs as a Powerful Post-Processing Tool.As we men-
tioned before, our locally affine registration algorithm es-
timates affine components using thedirect fusion. The FPT

Fig. 13 Comparison of the smoothness of deformations for our lo-
cally affine vs. a dense deformation algorithm.An atlas containing a
MR T1 image of a reference subject and the segmentation of structures
of interest (eyes, brain stem, cerebellum, optic chiasm) is registered to
the MR T1 image of a patient using a dense transformation algorithm
[21] on the left and the locally affine registration algorithm based on
the fast polyaffine framework proposed in [7]on the right. We display
on top: the deformation of a regular grid by both transformation on an
axial slice. One can clearly see that there are locally very large defor-
mations with the dense deformation algorithm while the deformation
remains globally very smooth with the locally affine algorithm.Mid-
dle and bottom: we display the contours of the structures of interest of
the atlas deformed into the geometry of the patient image. The contours
appear to be smoother in the locally affine case, although the accuracy
is comparable with both methods.

is used in afinal stepto ensure the invertibility of the final
transformation, as well as to compute its inverse. Here, the
scaling used in 28 and the FPT is computed in 40son a Pen-
tium4 XeonTM2.8 GHz on a 216×180×180 regular grid.

As shown by Fig. 14, the direct fusion of components
estimated by our locally affine algorithm can lead to sin-
gularities, which is not the case when the FPT is used. Re-
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Fig. 10 Comparison between numerical schemes. From left to right and then from top to bottom: fusion between two rotations, two
translation and finally a translation and an anisotropic swelling. A.S. stands for ‘affine exponentiation scheme’ and E.S. for ‘explicit exponentiation
scheme’. Interestingly, the two numerical schemes are identical for the fusion of the two translations, because the linear parts ofthese two affine
translations are equal to the identity. Both numerical schemes make the FPT converge toward the same accuracy as the number of squarings
increases, but the convergence is substantially faster in the caseof the affine exponentiation scheme: in the two cases where the schemes yield
different results, the average relative error is 40% smaller in the affine case for scalings smaller than 26.
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Fig. 11 Inverting a polyaffine transformation with the FPT. From left to right and then from top to bottom: our regular grid is deformed
by the composition between the FPT of the fusion between two rotations and the FPT of its inverse, for different numbers of squaringsN. One can
see that an excellent accuracy of inversion is already achieved with 6 squarings.
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Fig. 12 Inverting a polyaffine transformation with the FPT: quantitative results. From left to right and then from top to botto m: fusion
between two rotations, two translation and finally a translation and an anisotropic swelling. The composition between the FPT ofthe transformation
of the FPT of its inverse is carried out, for different numbers of squarings. The errors displayed are relative with respect the polyaffine transforma-
tion considered: the displacements are expected to be close to zero (i.e. the resulting transformation is expected to be close to the identity), and the
errors are measured with respect to the displacements observed originally. One can see that an excellent accuracy of inversion isalready achieved
with 6 squarings. As expected, the maximal errors are observed at the boundary of the grid, which can be fixed for example by using a larger grid
to compute the FPT.
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markably, both fusions are very closeoutsideof regions with
singularities. This means that no artifacts are introducedby
the FPT, which justifiesa posteriorithe estimation of affine
components with the (faster) direct fusion.

Fig. 14 Singularity removal with LEPTs. A 3D regular grid is de-
formed with the locally affine transformation obtained with thealgo-
rithm of [6,7], two different axial slices are displayed on topand bot-
tom.On the left: result of the direct fusion. One can notice small loops
that locally disrupt the regular structure of the grid at the boundary
of two regions of influence. They indicate places where the deforma-
tion is not diffeomorphic.On the right: result of the polyaffine fu-
sion. These singularities of the direct fusion disappeared with LEPTs,
without modifying much the deformation outside the regions where the
singularities were located.

4 Conclusion and Perspectives

In this work, we have presented a novel framework to fuse
rigid or affine components into a global transformation, called
Log-Euclidean polyaffine. Similarly to the previous polyaffine
framework of [1], it guarantees theinvertibility of the re-
sult. However, contrary to the previous framework, this is
achieved with very intuitive properties: for example the in-
verse of a LEPT is a LEPT with identical weights and in-
verted affine components. Moreover, this novel fusion isaffine-
invariant, i.e. does not depend on the choice of coordinate
system. We have also shown that remarkably, and contrary
to previous polyaffine transformations, the specific proper-
ties of LEPTs allow their fast computations on regular grids,

with an algorithm called the ‘Fast Polyaffine Transform’,
whose efficiency is somehow comparable to that of the Fast
Fourier Transform.

In the example of locally affine 3D registration presented
here, we use LEPTs in a final step to fuse the affine compo-
nents estimated during the algorithm of [6]. With the FPT,
this is done very efficiently. Remarkably, the novel fusion
is very closeto the direct fusion in regions without singu-
larities. This suggests that our novel framework provides a
general and efficient way of fusing local rigid or affine de-
formations into a global invertible transformation without
introducing artifacts,independentlyof the way local affine
deformations are first estimated.
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