BACK TO INDEX

Publications of year 2021

Thesis

  1. Clément Abi Nader. Modelling and Simulating the Progression of Alzheimer's Disease through the Analysis of Multi-modal Neuroimages and Clinical Data. Theses, INRIA Sophia Antipolis - Méditerranée ; Université Côte d'Azur, June 2021. Keyword(s): Alzheimer's disease, clinical trials, Magnetic Resonance Imaging, Positron Emission Tomography, machine learning, Gaussian processes, variational autoencoder, dynamical systems, maladie d'Alzheimer, essais cliniques, Imagerie par Résonance Magnétique, Tomographie par Émission de Positons, apprentissage automatique, processus Gaussiens, autoencoder variationel, systèmes dynamiques. [bibtex-entry]


  2. Luigi Antelmi. Statistical Learning on Heterogeneous Medical Data with Bayesian Latent Variable Models: Application to Neuroimaging Dementia Studies. Theses, INRIA Sophia Antipolis - Méditerranée ; Université Côte d'Azur, July 2021. Keyword(s): Alzheimer ' s disease, Neuroimaging, Mri, Positron emission tomography - PET, Variational auto-encoder, Multi-task Learning, High dimensional Data, Alzheimer - Maladie d, Neuroimagerie, Irm, Tomographie à Emission de Positons TEP, auto-encodeur variationnel, Apprentissage multi-Tâche, données de haute dimension. [bibtex-entry]


  3. Jaume Banus. Heart \& Brain: Linking Cardiovascular Pathologies and Neurodegeneration with a Combined Biophysical and Statistical Methodology. Theses, Université Côte d'Azur, May 2021. Keyword(s): medical imaging, cardiovascular modelling, neurodegeneration, lumped models, machine learning, variational autoencoder, Gaussian process, personalisation, imagerie médicale, modélisation cardiovasculaire, neurodégénérescence, modèles regroupés, apprentissage automatique, autoencodeur variationnel, processus Gaussien, personnalisation. [bibtex-entry]


  4. Jaume Banus Cobo. Heart \& Brain. Linking cardiovascular pathologies and neurodegeneration with a combined biophysical and statistical methodology. Theses, Université Côte d'Azur, May 2021. Keyword(s): Medical imaging, Cardiovascular modelling, Neurodegeneration, Lumped models, Machine learning, Variational autoencoder, Gaussian process, Personalisation, Imagerie médicale, Modélisation cardiovasculaire, Neurodégénérescence, Modèles regroupés, Apprentissage automatique, Autoencodeur variationnel, Processus Gaussien, Personnalisation. [bibtex-entry]


Articles in journal, book chapters

  1. Clément Abi Nader, Nicholas Ayache, Giovanni B Frisoni, Philippe Robert, and Marco Lorenzi. Simulating the outcome of amyloid treatments in Alzheimer's Disease from multi-modal imaging and clinical data. Brain Communications, February 2021. Keyword(s): Alzheimer's Disease, Clinical trials, Disease progression, Amyloid hypothesis, Mental State Examination, FAQ = Functional Assessment Questionnaire, RAVLT = Rey Auditory Verbal Learning Test, CDRSB = Clinical Dementia Rating Scale Sum of Boxes. [bibtex-entry]


  2. Tania Bacoyannis, Buntheng Ly, Nicolas Cedilnik, Hubert Cochet, and Maxime Sermesant. Deep Learning Formulation of ECGI Integrating Image \& Signal Information with Data-driven Regularisation. EP-Europace, 23(Supplement_1):i55-i62, March 2021. Keyword(s): Deep learning, Computational Modelling, Electrocardiographic Imaging, Inverse Problem, Generative Model. [bibtex-entry]


  3. Irene Balelli, Santiago Silva, and Marco Lorenzi. A Probabilistic Framework for Modeling the Variability Across Federated Datasets of Heterogeneous Multi-View Observations. Information processing in medical imaging : proceedings of the ... conference., 2021. Keyword(s): Federated Learning, Hierarchical Generative Model, Heterogeneity. [bibtex-entry]


  4. Jaume Banus, Marco Lorenzi, Oscar Camara, and Maxime Sermesant. Biophysics-based statistical learning: Application to heart and brain interactions. Medical Image Analysis, 72, August 2021. Keyword(s): Lumped model, Cardiovascular modelling, Personalisation, White matter damage, Atrial fibrillation, Heart-Brain interaction. [bibtex-entry]


  5. Paul Blanc-Durand, Simon Jégou, Salim Kanoun, Alina Berriolo-Riedinger, Caroline M Bodet-Milin, Françoise Kraeber-Bodéré, Thomas Carlier, Steven Le Gouill, René-Olivier Casasnovas, Michel Meignan, and Emmanuel Itti. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. European Journal of Nuclear Medicine and Molecular Imaging, pp 1362-1370, 2021. Keyword(s): U-net, Total metabolic tumour volume, Segmentation, Positron emission tomography, Lymphoma, Convolutional neural network, Deep learning. [bibtex-entry]


  6. Nicolas Guigui and Xavier Pennec. Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. Foundations of Computational Mathematics, June 2021. [bibtex-entry]


  7. Julian Krebs, Hervé Delingette, Nicholas Ayache, and Tommaso Mansi. Learning a Generative Motion Model from Image Sequences based on a Latent Motion Matrix. IEEE Transactions on Medical Imaging, February 2021. Keyword(s): motion model, deformable registration, conditional variational autoencoder, gaussian process, latent variable model, motion interpolation, motion simulation, tracking. [bibtex-entry]


  8. Alice Le Brigant, Nicolas Guigui, Sana Rebbah, and Stéphane Puechmorel. Classifying histograms of medical data using information geometry of beta distributions. IFAC-PapersOnLine, June 2021. Keyword(s): histogram analysis, clustering, medical imaging, Information geometry, classification. [bibtex-entry]


  9. Sarah Montagne, Dimitri Hamzaoui, Alexandre Allera, Malek Ezziane, Anna Luzurier, Raphaële Quint, Mehdi Kalai, Nicholas Ayache, Hervé Delingette, and Raphaele Renard Penna. Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology. Insights into Imaging, 12(1), June 2021. Keyword(s): Prostate, MRI, Segmentation, Zones, Atlas. [bibtex-entry]


  10. Talia M Nir, Jean-Paul Fouche, Jintanat Ananworanich, Beau M Ances, Jasmina Boban, Bruce J Brew, Joga R Chaganti, Linda Chang, Christopher R K Ching, Lucette A Cysique, Thomas Ernst, Joshua Faskowitz, Vikash Gupta, Jaroslaw Harezlak, Jodi M Heaps-Woodruff, Charles H Hinkin, Jacqueline Hoare, John A Joska, Kalpana J Kallianpur, Taylor Kuhn, Hei Y Lam, Meng Law, Christine Lebrun-Frénay, Andrew J Levine, Lydiane Mondot, Beau K Nakamoto, Bradford A Navia, Xavier Pennec, Eric C Porges, Lauren E Salminen, Cecilia M Shikuma, Wesley Surento, April D Thames, Victor Valcour, Matteo Vassallo, Adam J Woods, Paul M Thompson, Ronald A Cohen, Robert Paul, Dan J Stein, and Neda Jahanshad. Association of Immunosuppression and Viral Load With Subcortical Brain Volume in an International Sample of People Living With HIV. JAMA Network Open, 4(1):e2031190, January 2021. [bibtex-entry]


  11. Maxime Sermesant, Hervé Delingette, Hubert Cochet, Pierre Jaïs, and Nicholas Ayache. Applications of artificial intelligence in cardiovascular imaging. Nature Reviews Cardiology, March 2021. [bibtex-entry]


  12. Zihao Wang, Clair Vandersteen, Thomas Demarcy, Dan Gnansia, Charles Raffaelli, Nicolas Guevara, and Hervé Delingette. Inner-ear Augmented Metal Artifact Reduction with Simulation-based 3D Generative Adversarial Networks. Computerized Medical Imaging and Graphics, October 2021. Keyword(s): Artifact Reduction, Deep Learning, GAN. [bibtex-entry]


  13. Zhifei Xu, Zihao Wang, Yin Sun, Chulsoon Hwang, Hervé Delingette, and Jun Fan. Jitter Aware Economic PDN Optimization with a Genetic Algorithm. IEEE Transactions on Microwave Theory and Techniques, June 2021. Note: Corresponding authors: Zihao Wang; Chulsoon Hwang. Keyword(s): PDN, Jitter, PSIJ, Decoupling capacitor, Genetic algorithm, Power integrity. [bibtex-entry]


  14. Xavier Pennec. Statistical analysis of organs' shapes and deformations: the Riemannian and the affine settings in computational anatomy. In Jean-François Uhl, Joaquim Jorge, Daniel Simoes Lopes, and Pedro F Campos, editors, Digital Anatomy - Applications of Virtual, Mixed and Augmented Reality, Human--Computer Interaction Series. Springer Nature, March 2021. [bibtex-entry]


Conference articles

  1. Hind Dadoun, Hervé Delingette, Anne-Laure Rousseau, Eric De Kerviler, and Nicholas Ayache. Combining Bayesian and Deep Learning Methods for the Delineation of the Fan in Ultrasound Images. In ISBI 2021 - International Symposium on Biomedical Imaging, Nice, France, April 2021. Keyword(s): pre-processing, Ultrasound fan area detection, Deep Learning, Ultrasound imaging. [bibtex-entry]


  2. M Di Folco, Nicolas Guigui, Patrick Clarysse, Pamela Moceri, and Nicolas Duchateau. Investigation of the impact of normalization on the study of interactions between myocardial shape and deformation. In FIMH 2021 - 11th International Conference on Functional Imaging and Modeling of the Heart, Stanford, United States, pages In press, June 2021. Keyword(s): Cardiac imaging, manifold learning, myocardial strain, heart shape. [bibtex-entry]


  3. Yann Fraboni, Richard Vidal, and Marco Lorenzi. Free-rider Attacks on Model Aggregation in Federated Learning. In AISTATS 2021 - 24th International Conference on Artificial Intelligence and Statistics, San Diego, United States, April 2021. [bibtex-entry]


  4. Nicolas Guigui, Elodie Maignant, Alain Trouvé, and Xavier Pennec. Parallel Transport on Kendall Shape Spaces. In GSI 2021 - 5th conference on Geometric Science of Information, volume 12829 of Lecture Notes in Computer Science, Paris, France, pages 103-110, July 2021. Springer. [bibtex-entry]


  5. Nicolas Guigui, Pamela Moceri, Maxime Sermesant, and Xavier Pennec. Cardiac Motion Modeling with Parallel Transport and Shape Splines. In ISBI 2021 - International Symposium on Biological Imaging, Nice, France, April 2021. Keyword(s): Shape Analysis, Cardiac Modelling, LDDMM. [bibtex-entry]


  6. Nicolas Guigui and Xavier Pennec. A reduced parallel transport equation on Lie Groups with a left-invariant metric. In GSI 2021 - 5th conference on Geometric Science of Information, volume 12829 of Lecture Notes in Computer Science, Paris, France, pages 119-126, July 2021. Springer, Cham. [bibtex-entry]


  7. Yann Thanwerdas and Xavier Pennec. Geodesics and Curvature of the Quotient-Affine Metrics on Full-Rank Correlation Matrices. In GSI 2021 - 5th conference on Geometric Science of Information, volume 12829 of Proceedings of Geometric Science of Information, Paris, France, pages 93-102, July 2021. Springer, Cham. Keyword(s): Correlation matrices, SPD matrices, Quotient manifold, Quotient-affine metric, Riemannian geometry. [bibtex-entry]


  8. Paul Tourniaire, Marius Ilie, Paul Hofman, Nicholas Ayache, and Hervé Delingette. Attention-based Multiple Instance Learning with Mixed Supervision on the Camelyon16 Dataset. In COMPAY 2021- 3rd MICCAI workshop on Computational Pathology, Strasbourg, France, September 2021. Keyword(s): Histopathology, Mixed Supervision, Attention Mechanism. [bibtex-entry]


Patents, standards

  1. Julian Krebs, Hiroshi Ashikaga, Tommaso Mansi, Bin Lou, Katherine Chih-ching Wu, and Henry Halperin. Risk prediction for sudden cardiac death from image derived cardiac motion and structure features. US20210059612A1, United States, March 2021. [bibtex-entry]


  2. Julian Krebs, Tommaso Mansi, and Bin Lou. Patient specific risk prediction of cardiac events from image-derived cardiac function features. US20210057104A1, United States, February 2021. [bibtex-entry]


Miscellaneous

  1. Luigi Antelmi, Nicholas Ayache, Philippe Robert, Federica Ribaldi, Valentina Garibotto, Giovanni B Frisoni, and Marco Lorenzi. Combining Multi-Task Learning and Multi-Channel Variational Auto-Encoders to Exploit Datasets with Missing Observations -Application to Multi-Modal Neuroimaging Studies in Dementia. Note: Working paper or preprint, May 2021. Keyword(s): Multi Task Learning, Missing Data, Variational Autoencoders, Multimodal Data Analysis, OPAL-Meso. [bibtex-entry]


  2. Quentin Clairon, Chloé Pasin, Irene Balelli, Rodolphe Thiébaut, and Mélanie Prague. Parameter estimation in nonlinear mixed effect models based on ordinary differential equations: An optimal control approach. Note: Working paper or preprint, September 2021. Keyword(s): Dynamic population models, Ordinary differential equations, Optimal control theory, Clinical trial analysis. [bibtex-entry]


  3. Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning. Note: Working paper or preprint, May 2021. Keyword(s): Client sampling, federated learning, sampling variance, data representativity. [bibtex-entry]


  4. Talia Nir, Jean-Paul Fouche, Jintanat Ananworanich, Beau Ances, Jasmina Boban, Bruce Brew, Linda Chang, Joga Chaganti, Christopher R.K. Ching, Lucette Cysique, Thomas Ernst, Joshua Faskowitz, Vikash Gupta, Jaroslaw Harezlak, Jodi Heaps-Woodruff, Charles Hinkin, Jacqueline Hoare, John Joska, Kalpana Kallianpur, Taylor Kuhn, Hei Lam, Meng Law, Christine Lebrun-Frenay, Andrew Levine, Lydiane Mondot, Beau Nakamoto, Bradford Navia, Xavier Pennec, Eric Porges, Cecilia Shikuma, April Thames, Victor Valcour, Matteo Vassallo, Adam Woods, Paul Thompson, Ronald Cohen, Robert Paul, Dan Stein, and Neda Jahanshad. Smaller limbic structures are associated with greater immunosuppression in over 1000 HIV-infected adults across five continents: Findings from the ENIGMA-HIV Working Group. Note: Working paper or preprint, January 2021. [bibtex-entry]


  5. Yann Thanwerdas and Xavier Pennec. O(n)-invariant Riemannian metrics on SPD matrices. Note: Working paper or preprint, September 2021. Keyword(s): 58D17, 53C22, 15A63, 53B20, Symmetric Positive Definite matrices, Riemannian geometry, Invariance under orthogonal transformations, Families of metrics, Log-Euclidean metric, Affine-invariant metric, Bures-Wasserstein metric, Kernel metrics. [bibtex-entry]


  6. Zihao Wang and Hervé Delingette. Attention for Image Registration (AiR): an unsupervised Transformer approach. Note: Working paper or preprint, May 2021. Keyword(s): Transformer, Images Registration, Deep Learning. [bibtex-entry]


  7. Zihao Wang and Hervé Delingette. Quasi-Symplectic Langevin Variational Autoencoder. Note: Working paper or preprint, June 2021. [bibtex-entry]



BACK TO INDEX

Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Last modified: Mon Sep 27 12:30:03 2021
Author: epione-publi.

This document was translated from BibTEX by bibtex2html