BACK TO INDEX
Publications of Irene Balelli
Articles in journal, book chapters |
-
Quentin Clairon,
Chloé Pasin,
Irene Balelli,
Rodolphe Thiébaut,
and Mélanie Prague.
Parameter estimation in nonlinear mixed effect models based on ordinary differential equations: An optimal control approach.
Computational Statistics,
September 2023.
Keyword(s): Dynamic population models,
Ordinary differential equations,
Optimal control theory,
Mechanistic models,
Nonlinear mixed effects models,
Clinical trial analysis.
[bibtex-entry]
-
Irene Balelli,
Santiago Silva,
and Marco Lorenzi.
A Differentially Private Probabilistic Framework for Modeling the Variability Across Federated Datasets of Heterogeneous Multi-View Observations.
Journal of Machine Learning for Biomedical Imaging,
April 2022.
[bibtex-entry]
-
Irene Balelli,
Santiago Silva,
and Marco Lorenzi.
A Probabilistic Framework for Modeling the Variability Across Federated Datasets of Heterogeneous Multi-View Observations.
In International Conference on Information Processing in Medical Imaging,
Information processing in medical imaging: proceedings of the 27th International Conference, IPMI 2021,
Bornholm, Denmark,
June 2021.
Keyword(s): Federated Learning,
Hierarchical Generative Model,
Heterogeneity.
[bibtex-entry]
-
Safaa Al-Ali,
Jordi Llopis-Lorente,
Maria Teresa Mora,
Maxime Sermesant,
Beatriz Trénor,
and Irene Balelli.
A causal discovery approach for streamline ion channels selection to improve drug-induced TdP risk assessment.
Note: Working paper or preprint,
2023.
Keyword(s): Causal discovery,
Drug safety,
Ions channel,
TdP risk.
[bibtex-entry]
-
Irene Balelli,
Aude Sportisse,
Francesco Cremonesi,
Pierre-Alexandre Mattei,
and Marco Lorenzi.
Fed-MIWAE: Federated Imputation of Incomplete Data via Deep Generative Models.
Note: Working paper or preprint,
2023.
Keyword(s): Missing data,
Federated learning,
Federated pre-processing,
Variational autoencoders,
Deep Learning.
[bibtex-entry]
-
Francesco Cremonesi,
Marc Vesin,
Sergen Cansiz,
Yannick Bouillard,
Irene Balelli,
Lucia Innocenti,
Santiago Silva,
Samy-Safwan Ayed,
Riccardo Taiello,
Laetita Kameni,
Richard Vidal,
Fanny Orlhac,
Christophe Nioche,
Nathan Lapel,
Bastien Houis,
Romain Modzelewski,
Olivier Humbert,
Melek Önen,
and Marco Lorenzi.
Fed-BioMed: Open, Transparent and Trusted Federated Learning for Real-world Healthcare Applications.
Note: Working paper or preprint,
April 2023.
Keyword(s): Machine learning,
Biomedical Application,
Healthcare,
Federated Learning Framework.
[bibtex-entry]
BACK TO INDEX
Disclaimer:
This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein
are retained by authors or by other copyright holders.
All person copying this information are expected to adhere to
the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted
without the explicit permission of the copyright holder.
Les documents contenus dans ces répertoires sont rendus disponibles
par les auteurs qui y ont contribué en vue d'assurer la diffusion
à temps de travaux savants et techniques sur une base non-commerciale.
Les droits de copie et autres droits sont gardés par les auteurs
et par les détenteurs du copyright, en dépit du fait qu'ils présentent
ici leurs travaux sous forme électronique. Les personnes copiant ces
informations doivent adhérer aux termes et contraintes couverts par
le copyright de chaque auteur. Ces travaux ne peuvent pas être
rendus disponibles ailleurs sans la permission explicite du détenteur
du copyright.
Last modified: Tue Oct 3 00:30:08 2023
Author: epione-publi.
This document was translated from BibTEX by
bibtex2html