BACK TO INDEX

Publications of year 2023

Articles in journal, book chapters

  1. Nicolas Guigui, Nina Miolane, and Xavier Pennec. Introduction to Riemannian Geometry and Geometric Statistics: from basic theory to implementation with Geomstats. Foundations and Trends in Machine Learning, 2023. Keyword(s): Riemannian Geometry, Geometric Statistics, Python Library.
    @article{guigui:hal-03766900,
    TITLE = {{Introduction to Riemannian Geometry and Geometric Statistics: from basic theory to implementation with Geomstats}},
    AUTHOR = {Guigui, Nicolas and Miolane, Nina and Pennec, Xavier},
    url-hal= {https://hal.inria.fr/hal-03766900},
    JOURNAL = {{Foundations and Trends in Machine Learning}},
    PUBLISHER = {{Now Publishers}},
    YEAR = {2023},
    KEYWORDS = {Riemannian Geometry ; Geometric Statistics ; Python Library},
    PDF = {https://hal.inria.fr/hal-03766900/file/Riemannian%20Geometry%20with%20Geomstasts.pdf},
    HAL_ID = {hal-03766900},
    HAL_VERSION = {v1},
    
    }
    


  2. Yann Thanwerdas and Xavier Pennec. O(n)-invariant Riemannian metrics on SPD matrices. Linear Algebra and its Applications, 661:163-201, March 2023. Keyword(s): 53B20, Symmetric Positive Definite matrices, Riemannian geometry, Invariance under orthogonal transformations, Families of metrics, Log-Euclidean metric, Affine-invariant metric, Bures-Wasserstein metric, Kernel metrics.
    @article{thanwerdas:hal-03338601,
    TITLE = {{O(n)-invariant Riemannian metrics on SPD matrices}},
    AUTHOR = {Thanwerdas, Yann and Pennec, Xavier},
    url-hal= {https://hal.archives-ouvertes.fr/hal-03338601},
    JOURNAL = {{Linear Algebra and its Applications}},
    PUBLISHER = {{Elsevier}},
    VOLUME = {661},
    PAGES = {163-201},
    YEAR = {2023},
    MONTH = Mar,
    DOI = {10.1016/j.laa.2022.12.009},
    KEYWORDS = {53B20 ; Symmetric Positive Definite matrices ; Riemannian geometry ; Invariance under orthogonal transformations ; Families of metrics ; Log-Euclidean metric ; Affine-invariant metric ; Bures-Wasserstein metric ; Kernel metrics},
    PDF = {https://hal.archives-ouvertes.fr/hal-03338601v3/file/LAA_YT_XP_O_n_invariant_metrics_v3%20%282%29.pdf},
    HAL_ID = {hal-03338601},
    HAL_VERSION = {v3},
    
    }
    


Conference articles

  1. Morten Pedersen, Xavier Pennec, and Stefan Sommer. Tangent phylogenetic PCA. In Scandinavian Conference on Image Analysis 2023, Levi Ski Resort (Lapland), Finland, April 2023.
    @inproceedings{pedersen:hal-03842847,
    TITLE = {{Tangent phylogenetic PCA}},
    AUTHOR = {Pedersen, Morten and Pennec, Xavier and Sommer, Stefan},
    url-hal= {https://hal.inria.fr/hal-03842847},
    BOOKTITLE = {{Scandinavian Conference on Image Analysis 2023}},
    ADDRESS = {Levi Ski Resort (Lapland), Finland},
    YEAR = {2023},
    MONTH = Apr,
    PDF = {https://hal.inria.fr/hal-03842847/file/2208.12730.pdf},
    HAL_ID = {hal-03842847},
    HAL_VERSION = {v1},
    
    }
    



BACK TO INDEX

Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Last modified: Mon Jan 30 12:30:04 2023
Author: epione-publi.

This document was translated from BibTEX by bibtex2html