PmWiki
Results

Hybridized DG methods

Results.HDG History

Hide minor edits - Show changes to output

April 29, 2015, at 02:36 PM by 134.94.123.1 -
Changed line 17 from:
!!!Related publications
to:
!!! Related publications
April 29, 2015, at 02:35 PM by 134.94.123.1 -
Changed line 13 from:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.\\\
to:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2D case) : asymptotic convergence with non-uniform triangular meshes.\\\
April 29, 2015, at 02:34 PM by 134.94.123.1 -
Added lines 5-6:
This study is conducted in collaboration with Jay Gopalakrishnan (Department of Mathematics and Statistics, Portland State University, USA), Liang Li (School of Mathematical Sciences,  University of Electronic Science and Technology of China), Nicole Olivares (Department of Mathematics and Statistics, Portland State University, USA) and Ronan Perrussel (Laplace Laboratory, UMR CNRS 5213).\\
Deleted lines 9-11:

This study is conducted in collaboration with Jay Gopalakrishnan (Department of Mathematics and Statistics, Portland State University, USA), Liang Li (School of Mathematical Sciences,
University of Electronic Science and Technology of China), Nicole Olivares (Department of Mathematics and Statistics, Portland State University, USA) and Ronan Perrussel (Laplace Laboratory, UMR CNRS 5213).\\
April 24, 2015, at 04:00 PM by 138.96.201.175 -
Added lines 1-2:
(:title Hybridized DG methods:)
April 21, 2015, at 07:54 AM by 138.96.201.175 -
Changed line 32 from:
%newwin% [[http://dx.doi.org/10.1016/j.cpc.2015.02.017 | Comput. Phys. Comm. (2015)]]\\
to:
%newwin% [[http://dx.doi.org/10.1016/j.cpc.2015.02.017 | Comput. Phys. Comm., Vol. 192, pp. 23-31 (2015)]]\\
April 17, 2015, at 05:34 PM by 138.96.201.175 -
Changed lines 7-8 from:
This study is conducted in collaboration with Jay Gopalakrishnan (), Liang Li (), Nicole Olivares () and Ronan Perrussel ().\\
to:
This study is conducted in collaboration with Jay Gopalakrishnan (Department of Mathematics and Statistics, Portland State University, USA), Liang Li (School of Mathematical Sciences,
University of Electronic Science and Technology of China), Nicole Olivares (Department of Mathematics and Statistics, Portland State University, USA) and Ronan Perrussel (Laplace Laboratory, UMR CNRS 5213
).\\
Changed line 36 from:
%newwin% [[http://arxiv.org/abs/1503.06223 | Available on arXiv]]\\
to:
%newwin% [[http://arxiv.org/abs/1503.06223 | Available on arXiv (2015)]]\\
April 17, 2015, at 05:23 PM by 138.96.201.175 -
Added lines 29-35:
L. Li, S. Lanteri and R. Perrussel\\
A class of locally well-posed hybridizable discontinuous Galerkin methods for the solution of time-harmonic Maxwell's equations\\
%newwin% [[http://dx.doi.org/10.1016/j.cpc.2015.02.017 | Comput. Phys. Comm. (2015)]]\\

J. Gopalakrishnan, S. Lanteri, N. Olivares and R. Perrussel\\
Stabilization in relation to wavenumber in HDG methods\\
%newwin% [[http://arxiv.org/abs/1503.06223 | Available on arXiv]]\\
April 17, 2015, at 05:09 PM by 138.96.201.175 -
Changed line 5 from:
HDG methods  introduce an additional  ''hybrid'' variable on the  faces of the  elements, on  which the  definition of  the  local (element-wise) solutions is based.  A  so-called ''conservativity condition'' is imposed on the numerical trace, whose definition involved the hybrid variable, at  the interface  between  neighboring elements.  As  a result,  HDG methods produce a linear system in terms of the DOFs of the additional hybrid variable  only.  In  this way, the  number of  globally coupled DOFs is reduced.  The local values of the  electromagnetic fields can be  obtained by  solving local  problems element-by-element.  In this work,  for the  system  of 3d  time-harmonic  Maxwell's equations,  we propose  a HDG  formulation  taking the  tangential  component of  the magnetic  field as  the hybrid  variable.  We show  that the  reduced system  of    the  hybrid  variable    has  a  wave-equation-like characterization,  and  the  tangential  components of  the  numerical traces  for  both  electric  and magnetic  fields  are  single-valued. Moreover,  numerical results  seems to  indicate that  the approximate solutions for both '''E''' and '''H''' have optimal convergence orders.\\\
to:
HDG methods  introduce an additional  ''hybrid'' variable on the  faces of the  elements, on  which the  definition of  the  local (element-wise) solutions is based.  A  so-called ''conservativity condition'' is imposed on the numerical trace, whose definition involved the hybrid variable, at  the interface  between  neighboring elements.  As  a result,  HDG methods produce a linear system in terms of the DOFs of the additional hybrid variable  only.  In  this way, the  number of  globally coupled DOFs is reduced.  The local values of the  electromagnetic fields can be  obtained by  solving local  problems element-by-element.  In this work,  for the  system  of 3d  time-harmonic  Maxwell's equations,  we propose  a HDG  formulation  taking the  tangential  component of  the magnetic  field as  the hybrid  variable.  We show  that the  reduced system  of    the  hybrid  variable    has  a  wave-equation-like characterization,  and  the  tangential  components of  the  numerical traces  for  both  electric  and magnetic  fields  are  single-valued. Moreover,  numerical results  seems to  indicate that  the approximate solutions for both '''E''' and '''H''' have optimal convergence orders.\\
April 17, 2015, at 05:08 PM by 138.96.201.175 -
Changed lines 5-7 from:
HDG methods  introduce an additional  ''hybrid'' variable on the  faces of the  elements, on  which the  definition of  the  local (element-wise) solutions is based.  A  so-called ''conservativity condition'' is imposed on the numerical trace, whose definition involved the hybrid variable, at  the interface  between  neighboring elements.  As  a result,  HDG methods produce a linear system in terms of the DOFs of the additional hybrid variable  only.  In  this way, the  number of  globally coupled DOFs is reduced.  The local values of the  electromagnetic fields can be  obtained by  solving local  problems element-by-element.  In this work,  for the  system  of 3d  time-harmonic  Maxwell's equations,  we propose  a HDG  formulation  taking the  tangential  component of  the magnetic  field as  the hybrid  variable.  We show  that the  reduced system  of    the  hybrid  variable    has  a  wave-equation-like characterization,  and  the  tangential  components of  the  numerical traces  for  both  electric  and magnetic  fields  are  single-valued. Moreover,  numerical results  seems to  indicate that  the approximate solutions for both '''E''' and '''H''' have optimal convergence orders.
to:
HDG methods  introduce an additional  ''hybrid'' variable on the  faces of the  elements, on  which the  definition of  the  local (element-wise) solutions is based.  A  so-called ''conservativity condition'' is imposed on the numerical trace, whose definition involved the hybrid variable, at  the interface  between  neighboring elements.  As  a result,  HDG methods produce a linear system in terms of the DOFs of the additional hybrid variable  only.  In  this way, the  number of  globally coupled DOFs is reduced.  The local values of the  electromagnetic fields can be  obtained by  solving local  problems element-by-element.  In this work,  for the  system  of 3d  time-harmonic  Maxwell's equations,  we propose  a HDG  formulation  taking the  tangential  component of  the magnetic  field as  the hybrid  variable.  We show  that the  reduced system  of    the  hybrid  variable    has  a  wave-equation-like characterization,  and  the  tangential  components of  the  numerical traces  for  both  electric  and magnetic  fields  are  single-valued. Moreover,  numerical results  seems to  indicate that  the approximate solutions for both '''E''' and '''H''' have optimal convergence orders.\\\

This study is conducted in collaboration with Jay Gopalakrishnan (), Liang Li (), Nicole Olivares () and Ronan Perrussel ().\\
April 17, 2015, at 05:06 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.\\
to:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.\\\
April 17, 2015, at 05:05 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.
to:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.\\
April 17, 2015, at 05:04 PM by 138.96.201.175 -
Added lines 12-25:

!!!Related publications

(:linebreaks:)

L. Li, S. Lanteri and R. Perrussel\\
Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic  Maxwell’s equations\\
%newwin% [[http://dx.doi.org/10.1108/03321641311306196 | COMPEL, Vol. 2, No. 3, pp. 1112-1138 (2013)]]\\
Available as %newwin% [[http://hal.inria.fr/inria-00601979 | INRIA RR-7649 on Hyper Article Online]]\\

L. Li, S. Lanteri and R. Perrussel\\
A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations\\
%newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | J. Comput. Phys., Vol. 256, pp. 563–581 (2014)]]\\
Available as %newwin% [[http://hal.inria.fr/hal-00795125 | INRIA RR-8251 on Hyper Article Online]]\\
April 17, 2015, at 05:01 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=750px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.
to:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.
April 17, 2015, at 05:01 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.
to:
%lfloat text-align=center width=750px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.
April 17, 2015, at 05:00 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
to:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case) : asymptotic convergence with non-uniform triangular meshes.
April 17, 2015, at 04:59 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=650px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
to:
%lfloat text-align=center width=700px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
April 17, 2015, at 04:59 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=650px% http://www-sop.inria.fr/nachos/pics/results/hdg/pw_conv_ug.jpg | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
to:
%lfloat text-align=center width=650px% http://www-sop.inria.fr/nachos/pics/results/hdg/hdg_conv.png | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
April 17, 2015, at 04:43 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=550px% http://www-sop.inria.fr/nachos/pics/results/hdg/pw_conv_ug.jpg | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
to:
%lfloat text-align=center width=650px% http://www-sop.inria.fr/nachos/pics/results/hdg/pw_conv_ug.jpg | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
April 17, 2015, at 04:42 PM by 138.96.201.175 -
Changed line 9 from:
%lfloat text-align=center width=250px% http://www-sop.inria.fr/nachos/pics/results/hdg/pw_conv_ug.jpg | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
to:
%lfloat text-align=center width=550px% http://www-sop.inria.fr/nachos/pics/results/hdg/pw_conv_ug.jpg | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
April 17, 2015, at 04:42 PM by 138.96.201.175 -
Added lines 6-9:

(:linebreaks:)

%lfloat text-align=center width=250px% http://www-sop.inria.fr/nachos/pics/results/hdg/pw_conv_ug.jpg | Propagation of a plane wave in vacuum (2d case). Asymptotic convergence with non-uniform triangular meshes.
April 17, 2015, at 04:30 PM by 138.96.201.175 -
Changed line 3 from:
Discontinuous Galerkin  (DG) methods have  been extensively considered for obtaining approximate solution  of Maxwell's equations.  Thanks to the discontinuity of the approximation,  this kind of methods has many advantages, such  as adaptivity to complex geometries  through the use of unstructured  possibly non-conforming meshes,  easily obtained high order  accuracy,  hp-adaptivity  and  natural  parallelism.  However, despite  these  advantages,  DG  methods  have  one  main  drawback particularly sensitive for (psuedo)-stationary problems: the number of globally coupled  degrees of freedom  (DOFs) is much greater  than the number of DOFs  required by conforming finite element  methods for the same  accuracy.  Consequently, DG  methods are  expensive in  terms of both  CPU time  and memory  consumption, especially  for time-harmonic problems.  Hybridization of  DG methods  is devoted  to  address this issue while keeping  all the advantages of DG  methods.  The design of such  a  hybridizable  discontinuous  Galerkin (HDG)  method  for  the discretization of  the system of 3d  time-harmonic Maxwell's equations is considered here.\\\
to:
Discontinuous Galerkin  (DG) methods have  been extensively considered for obtaining approximate solution  of Maxwell's equations.  Thanks to the discontinuity of the approximation,  this kind of methods has many advantages, such  as adaptivity to complex geometries  through the use of unstructured  possibly non-conforming meshes,  easily obtained high order  accuracy,  hp-adaptivity  and  natural  parallelism.  However, despite  these  advantages,  DG  methods  have  one  main  drawback particularly sensitive for (psuedo)-stationary problems: the number of globally coupled  degrees of freedom  (DOFs) is much greater  than the number of DOFs  required by conforming finite element  methods for the same  accuracy.  Consequently, DG  methods are  expensive in  terms of both  CPU time  and memory  consumption, especially  for time-harmonic problems.  Hybridization of  DG methods  is devoted  to  address this issue while keeping  all the advantages of DG  methods.  The design of such  a  hybridizable  discontinuous  Galerkin (HDG)  method  for  the discretization of  the system of 3d  time-harmonic Maxwell's equations is considered here.\\
April 17, 2015, at 04:30 PM by 138.96.201.175 -
Changed lines 3-37 from:
Discontinuous Galerkin  (DG) methods have  been extensively considered
for obtaining approximate solution  of Maxwell's equations.  Thanks to
the discontinuity of the approximation,  this kind of methods has many
advantages, such  as adaptivity to complex geometries  through the use
of unstructured  possibly non-conforming meshes,  easily obtained high
order  accuracy,  hp-adaptivity  and  natural  parallelism.  However,
despite  these  advantages,  DG  methods  have  one  main  drawback
particularly sensitive for (psuedo)-stationary problems: the number of
globally coupled  degrees of freedom  (DOFs) is much greater  than the
number of DOFs  required by conforming finite element  methods for the
same  accuracy.  Consequently, DG  methods are  expensive in  terms of
both  CPU time  and memory  consumption, especially  for time-harmonic
problems.  Hybridization of  DG methods  is devoted  to  address this
issue while keeping  all the advantages of DG  methods.  The design of
such  a  hybridizable  discontinuous  Galerkin (HDG)  method  for  the
discretization of  the system of 3d  time-harmonic Maxwell's equations
is considered here.\\\

HDG methods  introduce an additional  ''hybrid'' variable on the  faces of
the  elements, on  which the  definition of  the  local (element-wise)
solutions is based.  A  so-called ''conservativity condition'' is imposed
on the numerical trace, whose definition involved the hybrid variable,
at  the interface  between  neighboring elements.  As  a result,  HDG
methods produce a linear system in terms of the DOFs of the additional
hybrid variable  only.  In  this way, the  number of  globally coupled
DOFs is reduced.  The local values of the  electromagnetic fields can
be  obtained by  solving local  problems element-by-element.  In this
work,  for the  system  of 3d  time-harmonic  Maxwell's equations,  we
propose  a HDG  formulation  taking the  tangential  component of  the
magnetic  field as  the hybrid  variable.  We show  that the  reduced
system  of    the  hybrid  variable    has  a  wave-equation-like
characterization,  and  the  tangential  components of  the  numerical
traces  for  both  electric  and magnetic  fields  are  single-valued.
Moreover,  numerical results  seems to  indicate that  the approximate
solutions for both '''E''' and '''H''' have optimal convergence orders.
to:
Discontinuous Galerkin  (DG) methods have  been extensively considered for obtaining approximate solution  of Maxwell's equations.  Thanks to the discontinuity of the approximation,  this kind of methods has many advantages, such  as adaptivity to complex geometries  through the use of unstructured  possibly non-conforming meshes,  easily obtained high order  accuracy,  hp-adaptivity  and  natural  parallelism.  However, despite  these  advantages,  DG  methods  have  one  main  drawback particularly sensitive for (psuedo)-stationary problems: the number of globally coupled  degrees of freedom  (DOFs) is much greater  than the number of DOFs  required by conforming finite element  methods for the same  accuracy.  Consequently, DG  methods are  expensive in  terms of both  CPU time  and memory  consumption, especially  for time-harmonic problems.  Hybridization of  DG methods  is devoted  to  address this issue while keeping  all the advantages of DG  methods.  The design of such  a  hybridizable  discontinuous  Galerkin (HDG)  method  for  the discretization of  the system of 3d  time-harmonic Maxwell's equations is considered here.\\\

HDG methods  introduce an additional  ''hybrid'' variable on the  faces of the  elements, on  which the  definition of  the  local (element-wise) solutions is based.  A  so-called ''conservativity condition'' is imposed on the numerical trace, whose definition involved the hybrid variable, at  the interface  between  neighboring elements.  As  a result,  HDG methods produce a linear system in terms of the DOFs of the additional hybrid variable  only.  In  this way, the  number of  globally coupled DOFs is reduced.  The local values of the  electromagnetic fields can be  obtained by  solving local  problems element-by-element.  In this work,  for the  system  of 3d  time-harmonic  Maxwell's equations,  we propose  a HDG  formulation  taking the  tangential  component of  the magnetic  field as  the hybrid  variable.  We show  that the  reduced system  of    the  hybrid  variable    has  a  wave-equation-like characterization,  and  the  tangential  components of  the  numerical traces  for  both  electric  and magnetic  fields  are  single-valued. Moreover,  numerical results  seems to  indicate that  the approximate solutions for both '''E''' and '''H''' have optimal convergence orders.
April 17, 2015, at 04:21 PM by 138.96.201.175 -
Added lines 1-2:
(:linebreaks:)
Changed lines 37-40 from:
solutions for both '''E''' and '''H''' have optimal convergence orders.
to:
solutions for both '''E''' and '''H''' have optimal convergence orders.

(:linebreaks:)

April 17, 2015, at 04:21 PM by 138.96.201.175 -
Added lines 1-35:
Discontinuous Galerkin  (DG) methods have  been extensively considered
for obtaining approximate solution  of Maxwell's equations.  Thanks to
the discontinuity of the approximation,  this kind of methods has many
advantages, such  as adaptivity to complex geometries  through the use
of unstructured  possibly non-conforming meshes,  easily obtained high
order  accuracy,  hp-adaptivity  and  natural  parallelism.  However,
despite  these  advantages,  DG  methods  have  one  main  drawback
particularly sensitive for (psuedo)-stationary problems: the number of
globally coupled  degrees of freedom  (DOFs) is much greater  than the
number of DOFs  required by conforming finite element  methods for the
same  accuracy.  Consequently, DG  methods are  expensive in  terms of
both  CPU time  and memory  consumption, especially  for time-harmonic
problems.  Hybridization of  DG methods  is devoted  to  address this
issue while keeping  all the advantages of DG  methods.  The design of
such  a  hybridizable  discontinuous  Galerkin (HDG)  method  for  the
discretization of  the system of 3d  time-harmonic Maxwell's equations
is considered here.\\\

HDG methods  introduce an additional  ''hybrid'' variable on the  faces of
the  elements, on  which the  definition of  the  local (element-wise)
solutions is based.  A  so-called ''conservativity condition'' is imposed
on the numerical trace, whose definition involved the hybrid variable,
at  the interface  between  neighboring elements.  As  a result,  HDG
methods produce a linear system in terms of the DOFs of the additional
hybrid variable  only.  In  this way, the  number of  globally coupled
DOFs is reduced.  The local values of the  electromagnetic fields can
be  obtained by  solving local  problems element-by-element.  In this
work,  for the  system  of 3d  time-harmonic  Maxwell's equations,  we
propose  a HDG  formulation  taking the  tangential  component of  the
magnetic  field as  the hybrid  variable.  We show  that the  reduced
system  of    the  hybrid  variable    has  a  wave-equation-like
characterization,  and  the  tangential  components of  the  numerical
traces  for  both  electric  and magnetic  fields  are  single-valued.
Moreover,  numerical results  seems to  indicate that  the approximate
solutions for both '''E''' and '''H''' have optimal convergence orders.