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Composites consisting of metal nanoparticles (NPs) embedded in dielectric media may
present large nonlinear optical response due to electronic transitions in the NPs. When
the metal NPs are suspended in liquids or embedded in solid substrates, the obtained
composites may present high-order optical nonlinearities (HON) beyond the third-order
nonlinearity, usually studied for most materials. Moreover, it is observed that the mag-
nitude and phase of the effective high-order susceptibilities can be controlled by adjust-
ing the light intensity, I , and the volume filling fraction, f , occupied by the NPs.
Therefore, the sensitivity to the values of I and f allowed the development of a non-
linearity management procedure for investigation and control of various phenomena,
such as self- and cross-phase modulation, spatial modulation instability, as well as bright
and vortex solitons stabilization, in media presenting relevant third-, fifth-, and seventh-
order susceptibilities. As a consequence, it is reviewed in this paper how the exploitation
of HON in metal–dielectric nanocomposites may reveal new ways for optimization of
all-optical switching devices, light-by-light guiding, as well as the control of solitons
propagation for long distances. Also, theoretical proposals and experimental works
by several authors are reviewed that may open the possibility to identify new high-
order phenomena by applying the nonlinearity management procedure. Therefore,
the paper is focused on the properties of metal nanocomposites and demonstrates that
these plasmonic composites are versatile platforms for high-order nonlinear optical
studies. © 2017 Optical Society of America
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High-order optical nonlinearities
in plasmonic nanocomposites—a
review
ALBERT S. REYNA AND CID B. DE ARAÚJO

1. INTRODUCTION

The behavior of metal–dielectric nanocomposites (MDNCs)—dielectric hosts with
embedded metal nanoparticles (NPs)—is receiving much attention at the present time
and far-reaching consequences of technological developments are foreseen in the fu-
ture. Currently, highly nonlinear (NL) MDNCs can be fabricated using a large variety
of methods [1–7]. As a result, the study of optical properties of MDNCs has been a
topical theme in the past few years aiming at their application in devices such as lasers,
color displays, plasmonic solar cells, channel waveguides, among other applications.
In addition, both linear and NL optical properties of the MDNCs can be enhanced by
orders of magnitude if a judicious selection of host and metallic NPs is made.

The NL optical response of MDNCs can be described by the induced electrical polari-
zation as a power series of the incident electric field with effective susceptibilities,
χ�N�
eff , N � 1; 2; 3;…, as the coefficients of the series expansion, analogously to

the conventional description for homogeneous materials [8]. Accordingly, in systems
with inversion symmetry, due to the vector character of the electric polarization, all
even-order susceptibilities are null. Therefore the NL response of centro-symmetric
composites is associated with the odd-order nonlinear susceptibilities, χ�2N�1�

eff ,
N � 1; 2; 3;…, that include contributions of the host material and the NPs. In addi-
tion, χ�2N�1�

eff depends on the mismatch between the dielectric functions of the NPs and
the host, and the excitation of localized surface plasmons (LSPs) of the NPs [9] may
enhance the NL response of the MDNCs by orders of magnitude.

A large number of centro-symmetric MDNCs presents high-order nonlinearities
(HONs) that can be investigated even using lasers of moderate intensities. For exam-
ple, in the case of metal nanocolloids or glasses doped with metallic NPs, it is
possible to detect phenomena up to the seventh order using lasers with intensities
of few GW∕cm2 in diluted samples containing NPs that occupy volume fractions
of 10−5 < f < 10−4 as illustrated in this paper. The effective NL susceptibilities
depend on the nature, shape and sizes of the NPs; the value of f ; the laser wavelength,
λ; and the mismatch between the complex dielectric functions of the NPs, εNP, and
their host, εh. Larger optical response can be observed when the optical frequency is
near the LSP resonance frequency, ωLSP.

From the basic point of view MDNCs are interesting physical systems, because their
electronic response can be understood and controlled by changing f , the light inten-
sity, I , and the NP host. For a given host, by changing f and/or I it is possible to
observe and control constructive or destructive interferences between NL optical sus-
ceptibilities of different orders. This nonlinearity management procedure enables the
preparation of samples with the total effective susceptibility controlled at will as, for
example, the fabrication of a MDNC with suppressed Re χ�3�eff and enhanced Re χ

�2N�1�
eff

with N ≥ 2.

In this paper we review and discuss HON assisted phenomena in MDNCs consisting
of metal nanocolloids. Several phenomena will be investigated including: (i) the
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observation of spatial modulation instability due to the quintic nonlinearity; (ii) the
spatial self- and cross-phase modulation (XPM) due to quintic and septimal nonlinear-
ities; (iii) the observation of bright spatial solitons propagating in a medium managed
to present fifth-seventh (focusing–defocusing) refractive nonlinearity with suppressed
third-order refractive index; (iv) an optimization procedure for design of ultrafast all-
optical switches (AOSs) based on MDNCs; (v) the observation of light confinement
and guiding induced by an optical vortex soliton in a cubic–quintic (defocusing–
focusing) metal nanocolloid. Studies on the polarization instability of an optical field
propagating in a medium with HON will also be presented as well as results related
to the stability of optical vortices propagating in metal nanocolloids with managed
nonlinearity.

The data reported are compared with analytical and numerical calculations including
HON with dissipative terms related to multiphoton absorption processes. The sam-
ples’ parameters used for numerical simulations were obtained from independent
experiments and good agreement between the theoretical and numerical results with
the experimental data are presented.

The paper is organized as follows. In Section 2, we briefly review the optical proper-
ties of metallic NPs considering their intrinsic behavior as well as the influence of the
dielectric host on their optical response. In Section 3 we discuss the origin of the NP
nonlinearity, the influence of the environment on the optical behavior of silver nano-
colloids, and a comment is made on the experiments to measure the susceptibilities
associated to HON. In Section 4 we present an effective medium approximation to
describe the NL optical properties of metal nanocolloids which are the prototypes of
the MDNCs of our main interest. In Section 5 we discuss a nonlinearity management
procedure to control HON in MDNCs. In Section 6 we present experiments analyzed
with basis on the standard formalism of nonlinear optics with samples prepared by
nonlinearity management. In Section 7 the possibility of new studies based on theo-
retical proposals and recent experiments by various authors are discussed aiming at the
extension of the nonlinearity management procedure in new directions. Finally, in
Section 8 we present a summary of the main results and a discussion of possible future
works with nonlinear MDNCs.

2. OPTICAL PROPERTIES OF METAL NANOPARTICLES

The optical properties of metal NPs have been exploited from time immemorial in
sculptures and paintings. The most famous example is the Lycurgus cup (4th century
AD) that is exposed in the British Museum of London. The cup is a decorative Roman
artifact made of a dichroic glass containing gold–silver alloyed NPs that reflects
(transmits) green (red) when illuminated with white light. In the Middle Age the
Roman glass-manufacturing technology became widespread and stained glass was
used in many churches, monuments, and pottery objects. However, the first scientific
study is attributed to Faraday that was able to prepare stable colloidal gold and
recognized their beautiful colors as due to the suspended particles in the liquid [10].
The ability to characterize the particles in colloids and in solid-state MDNCs, such as
in the Lycurgus cup, was developed with the invention of transmission electron
microscopy, atomic force microscopy, scanning tunneling microscopy, and other
modern techniques in the 20th century.

From a classical point of view the optical response of the NPs can be described using
the Mie theory [11] that enables calculation of the NPs’ extinction coefficient
considering its complex dielectric function, εNP, embedded in a host presenting the
dielectric function εh. In a microscopic description we consider that noble metal NPs
exhibit large optical response due to the interaction of the electrons with the optical

Review Vol. 9, No. 4 / December 2017 / Advances in Optics and Photonics 723



field and the relevant physical processes are: (i) transitions associated with the con-
duction band electrons (intraband transitions), and (ii) electron transitions from the
valence to the conduction band (interband transitions). For silver NPs, for example,
the dominant electronic transitions can be understood by examining the bulk band
structure. It can be concluded that for photon energies up to ∼2 eV the light absorption
is dominated by intraband transitions. For photons of ∼3 eV the main contribution for
optical absorption is due to the LSP resonance, while for photon energies larger than
∼4 eV the interband transitions strongly influence the optical response.

The contribution of intraband transitions for εNP can be understood using the Drude
model with an additional term describing the high frequency part, εib (associated with
the interband transitions) [12], by the expression

εNP�ω� � εib − ω2
p

ω2 � iγω
; (1)

where ω is the angular frequency of light, ωP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne2∕ε0me

p
is the bulk plasma fre-

quency, N is the density of free electrons, e is the electron charge, ε0 is the vacuum
permittivity, me is the electron effective mass, and γ � vf ∕Rbulk is the electron colli-
sion frequency, with vf being the Fermi velocity and Rbulk the mean-free-path of
conduction electron in the metal. εib is an empirical parameter that allows tuning of
the resonance on a wide frequency range in order to match the theoretical with ex-
perimental results. The contribution of the interband transitions can be understood
physically by adding the Lorentzian terms into the Drude expression (Drude–
Lorentz model), given by [13]

εNP�ω� � 1 − f 0ω
2
p

ω2 � iγ0ω
−Xm

j�1

f jω
2
p

�ω2 − ω2
j � � iγjω

; (2)

where m corresponds to the total number of the oscillators, each with lifetime γj,
strength f j, and modified plasma frequency

ffiffiffiffi
f j

p
ωp. Figure 1 shows a comparison

between experimental (black points) and theoretical (solid lines) results of the dielec-
tric function of semitransparent gold films with thickness of 250 Å. The theoretical
analysis was performed using the Drude model, considering εib � 1 (blue line) and
εib � 11.5 (red line), and the Drude–Lorentz model (green line). In both the real and
imaginary parts of the dielectric function, the Drude–Lorentz model is able to
adequately reproduce the experimental results in the UV-visible region by adding
the contributions of interband transitions.

Figure 1

Real and imaginary parts of the dielectric function of a thin semitransparent gold film.
Comparison between Drude model with εib � 1 (blue lines), εib � 11.5 (red lines),
Drude–Lorentz (DL, green lines), and experimental data (black points). Reprinted
with permission from [14]. Copyright 2013 MDPI.
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When the NPs’ dimensions are much smaller than λ, the light field is uniform across
the particle and the collective electrons oscillation is described by a dipolar polariz-
ability represented by

α � �1� η�ε0V
�εNP − εh�
�εNP � ηεh�

; (3)

where V is the NP volume and η is a geometric factor that depends on the NP shape
(η � 2 for spherical NPs but assumes larger values for particles with different geom-
etry) [15]. When Re�εNP � ηεh� � 0, the polarizability of the NPs becomes maximum
and the corresponding frequency is the LSP resonance frequency, ωLSP, given by

ωLSP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ne2

meε0 Re�εib � ηεh�
− γ2

s
: (4)

The LSP has a hybrid electromagnetic wave and surface charge character giving origin
to a field component (perpendicular to the NP surface) that decays exponentially with
distance from the NP. The excitation of LSP occurs in the ultraviolet-to-near-infrared
region for interfaces between metal and dielectrics (glass, water, air, polymers, etc.).
The LSP resonance frequency of nonspherical NPs is generally smaller than the LSP
frequency of spherical NPs [9,15]. Notice from Eq. (4) that the LSP resonance
wavelength is redshifted when the particles are embedded in a host with larger
Re�εh� (corresponding to large linear refractive index, n0).

The absorptive response, described by Im�εNP�, is mainly due to electron–phonon
collisions and electron-surface scattering [9]. Radiative decay of energy is relevant
only for large particles with sizes comparable with the light wavelength. Thus, solving
the problem of absorption and scattering of light by a small particle involves solving
Maxwell’s equations with the correct boundary conditions. For the particular case of
spherical nanoparticles, according to Mie theory [16], assuming a negligible value of
Im�εh�ω��, the NP optical extinction coefficient has the form

αext �
18πVNP

λ
�εh�ω��3∕2

Im�εNP�ω��
�Re�εNP�ω�� � 2εh�ω��2 � Im�εNP�ω��2

; (5)

where VNP is the particle volume and αext describes contributions from absorption and
light scattering. However, for particles with dimensions much smaller than λ, the light
scattering is not relevant [17]. Equation (5) shows that the extinction coefficient is
influenced by the particle size only with respect to its amplitude. However, experi-
mental studies show that the position and bandwidth of the LSP resonance varies with
the particles shape and size, when the particle dimensions are smaller than the elec-
trons mean-free-path. Therefore, Mie theory was modified to introduce a size depend-
ence of the dielectric function of spherical metal NPs, εNP�ω;R�, where the particle
radius, R, was introduced in the electron collision frequency γ � γbulk � vf ∕R. Thus,
based on the Mie theory and by using the Drude–Lorentz model considering the lim-
itations of the mean-free-path, it is possible to observe that the LSP resonance wave-
length shifts toward the blue region as the particle size is reduced, followed by
broadening of the LSP bandwidth.

Figure 2 illustrates the extinction coefficient of gold NPs, with different sizes, calcu-
lated using the Mie theory [Eq. (5)], based on the Drude model [Eq. (1)] and Drude–
Lorentz model [Eq. (2)]. Figures 2(a) and 2(b) show that both models behave
analogously for energies smaller than 1.6 eV and exhibit good agreement with the
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experimental results shown in Fig. 2(c). However, for the spectra with extinction peaks
of larger frequencies, corresponding to smaller NPs, the Drude–Lorentz model pro-
vides better results in comparison with the experimental data due to the interband
transitions contributions.

Also with the purpose of explaining the size dependence of the LSP resonance in
metal NPs, different quantum models were developed that also predict the 1∕R
dependence of the electron relaxation rate [12,16,18–23]. These models assume that
the particle dimensions are comparable to the Fermi wavelength of the electrons and
consequently the electronic motion is spatially confined with the electronic energies
assuming a discrete set of values; such an effect is commonly known as quantum
confinement.

In addition, the extinction spectra of metal NPs may provide information on the kind
of metal being studied, as well as the size and shape of the particles. In order to pro-
ceed with such an analysis it is needed to identify three important characteristics from
the spectrum: (i) the full width at half-maximum, (ii) the LSP resonance frequency,
and (iii) the amplitude of the LSP resonance curve. In [24] the authors illustrate how
the LSP band and the contributions due to interband and intraband transitions may
contribute for the spectrum profile. For different metals the LSP resonance frequency
and the contribution of interband transitions on the optical absorption spectrum
are different. For silver NPs both transitions do not overlap, whereas for gold NPs
the contributions of interband and intraband transitions are superimposed [25].
Nonetheless, by a careful analysis of the spectrum and by using Mie theory it is pos-
sible to estimate the particles size (assuming a spherical shape), but one should be
aware that the particle size determined in this way is sensitive to the LSP resonance
line shape. It is also well known that the size dispersion of the NPs in an ensemble

Figure 2

(a),(b) Theoretical and (c) experimental extinction efficiency of gold NPs having dif-
ferent diameters. (a) Drude–Lorentz model and (b) Drude model with εib � 11.5.
Adapted with permission from [14]. Copyright 2013 MDPI.
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produces broadening of the LSP absorption band and deviation from the NP sphericity
shifts the LSP resonance to larger wavelengths.

For an individual NP the electric field in its vicinity is the sum of the incident field, E0,
plus the field generated by the electrons oscillation. At the NP surface, in the dipolar
limit, the field is

ENP � �1� η�εh
�εNP � ηεh�

E0: (6)

For a silver NP with a diameter of 20 nm the intensity enhancement, jENPj2∕jE0j2, due
to the LSP resonance can reach ∼104. Then, the electronic transitions of atoms or
molecules located in the proximity of the NPs, with frequency around ωLSP, can be
largely enhanced as observed, for example, in processes such as optical absorption and
photoluminescence [26] and harmonic generation and surface Raman scattering [27].
However, as the particle size increases the intensity enhancement reduces.

For nonspherical particles the intensity enhancement can be much larger than for a
spherical NP due to the “lightning rod effect” [28].

Presently, various chemical and physical techniques are available for fabrication of
noble metal NPs having a large variety of shapes, such as nanoprisms, nanoshells,
nanorods, etc., and the corresponding LSP frequencies span the whole visible and
near-infrared spectrum as indicated in Fig. 3 [29].

Figure 4 shows the two plasmon bands related to the transverse and longitudinal elec-
tron oscillations in nanorods [30]. The aspect ratio (longitudinal dimension/transverse
dimension) is an important parameter to characterize the optical properties of such
particles. The relative amplitude of the bands depends on the aspect ratio; the longi-
tudinal (transverse) LSP wavelength is blueshifted (redshifted) when the aspect ratio is
increased [30,31]. It is important to notice that even small deviations from the spheri-
cal shape may produce large color changes in the particles.

The calculated polarizability, extinction cross section, and the polarizability tuning
spectra are shown in Fig. 5 for aqueous solution of gold nanorods with an aspect ratio
equal to 2 and for silica–gold core–shell particles with a shell thickness of 15 nm [32].

Figure 3

Tuning the LSP wavelengths by varying the size and shape of the nanoparticles.
Reprinted with permission from [29]. Copyright 2007 SPIE.
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Figure 6 shows the colors and absorption spectra of silver nanoprisms with various
dimensions, prepared by illuminating spherical NPs using different wavelengths in
order to shape the particles in an appropriate way [33].

Figure 4

Absorbance of a colloid containing gold nanorods (aspect ratio: 4.1). Reprinted with
permission from Link and El-Sayed, J. Phys. Chem. B, 103, 8410–8426 (1999) [30].
Copyright 1999 American Chemical Society.

Figure 5

Calculated polarizability of (a) gold nanorods—sample 1 (length: 100 nm; width:
50 nm) and (d) silica–gold core–shell particles—sample 2 (core radius: 60 nm; shell
thickness: 15 nm) suspended in water. The blue and red curves represent the real and
imaginary parts of the polarizability, αR and αIm, respectively. The calculated and mea-
sured normalized extinction cross section for samples 1 and 2 are shown in (b) and (e),
respectively. (c) Tunability of αR for gold nanorods as a function of the rod length with
a fixed width of 50 nm. (f) Tuning of αR for silica–gold core–shell particles similar to
those in sample 2 as a function of the silica core size for a fixed shell thickness of
15 nm. The vertical lines indicate the wavelength at 532 nm. Reprinted with permis-
sion from Fardad et al., Nano Lett. 14, 2498–2504 (2014) [32]. Copyright 2014
American Chemical Society.
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For particles with dimensions comparable (or larger) to the light wavelength the field
across the particle is nonuniform. Then, two effects should be considered: (i) the phase
retardation that broadens the dipole resonance, and (ii) the presence of multipole res-
onances that can be excited even in spherical NPs [34]. Different approaches are avail-
able for calculation of the absorption spectrum, polarizability, extinction coefficient,
and intensity enhancement corresponding to NPs with different sizes, geometrical
shapes, and when they are interacting with other NPs [28,34]. Among the most com-
monly used methods to compute scattering and absorption of electromagnetic waves
by particles of arbitrary geometry, different sizes and composition are the Mie Theory
[11,16], discrete dipole approximation (DDA) [35], finite-difference time-domain
(FDTD) [36], and Whitney form finite element (WF-FE) method [37]. The choice of
the method to be used depends on the NP characteristics [38]. For example, Mie
theory shows large limitations to nonspherical particles which can be adequately mod-
eled using the other three methods. In general, the DDA, FDTD, and WF-FE methods
simulate the particles using discrete elements (cubic for DDA and FDTD, and tetra-
hedral for WF-FE) small compared to the particle size but large compared to the size
of an atom. Numerical calculations show that the DDA method is more sensitive to
refractive index shifts [39]. Small changes in the DDAmethod to incorporate the exist-
ence of multipoles in the calculations allow the use of this model for a wide variety of
particle shapes, sizes, and refractive indices [34,40]. The numerical simulations based
on the DDA method (for example, discrete dipole scattering [41]) present errors usu-
ally smaller than 10%, mainly at positions near the particle surface [35]. The FDTD
method is a more general and accepted method that provides more exact results but it
demands long simulations to avoid phase errors due to the discretization intervals. The
same limitation is observed for the WF-FE method, but more exact results can be
obtained mainly in positions near the particle surfaces. Other methods for different
nanostructures are reported in the literature [42–45].

Concerning the optical properties of very small metal NPs due to the quantum confine-
ment effects, the time-dependent density functional theory (TDDFT) [46] based on the
jellium model presents satisfactory results for the plasmon energies of small NPs and

Figure 6

(a) Photograph shows the colors of aqueous colloids containing silver nanoprisms
with average sizes from 30 to 150 nm. The yellow sample was not irradiated and
contains the NPs used as seeds for the nanoprisms preparation. The numbers in
the vials indicate the light wavelength used to shape the nanoprisms. (b) Extinction
spectra exhibiting the normalized absorption bands for the samples irradiated by LEDs
with emission wavelengths indicated in the inset. Reprinted with permission from
[33]. Copyright 2014, with permission from Elsevier.

Review Vol. 9, No. 4 / December 2017 / Advances in Optics and Photonics 729



good agreement with experimental results for metal nanocluster with few atoms [47].
It is important to emphasize that the TDDFT is applicable to NPs with different
shapes [48,49].

The design and fabrication of metallic nanostructures with tunable LSP resonances is
described, for example, in [1,7,29,50] with comments on several potential photonic
applications.

3. OPTICAL NONLINEARITY OF SPHERICAL NANOPARTICLES
SUSPENDED IN A LIQUID

The interest in the NL properties of metal nanocolloids increased after demonstration
of the giant enhancement of the effective third-order susceptibility owing to the con-
tribution of local field effects [51,52]. In these papers the authors measured the third-
order response of gold NPs either in aqueous solutions or embedded in silica glass.
They have shown that the fast nonlinearity is enhanced due to the proximity between
the laser and LSP frequencies and developed a model to describe the resonant
enhancement. Besides the characterization of the NL response as due to electronic
transitions in the NPs, they report that the third-order susceptibility of the samples
varied with the inverse of the third power of the NP radius.

Presently it is known that the optical response of metal NPs is highly influenced by
their environment since the majority of the atoms are in the NPs–host interface. For
example, for a spherical silver NP with a diameter of 4 nm, about 30% of the atoms are
in the surface. The influence of the environment on the NP linear optical behavior was
investigated in the past (see, for example, [16,53]), but up until recently not many
systematic studies were reported with respect to the dependence of the effective
NL susceptibility. In the case of silver nanocolloids the experiments reported in
[54,55] demonstrated quantitatively the influence of molecules attached to the NP
surface as well as the sensitivity of the NL response to the solvent where the particles
were suspended. The optical dephasing of the LSP is also very sensitive to the
different capped molecules on the NP surface [56]. More recently this effect was in-
vestigated for individual NPs [57] and a good understanding of the surface broadening
effects and their morphology dependence was obtained.

The experimental results of [12,58] were understood considering the size dependence
of εNP�ω� described by an empirical model [59,60] which assumes that for a NP with
radius R smaller than the bulk electron mean-free-path, the dielectric function is given

by εNP�ω� � εbulk�ω� � i
�ω2

LSP

ω3

��AvF
R

�
, where vF is the Fermi velocity and A is a phe-

nomenological parameter that depends on the NP shape and the NPs–host interface
because the NPs in a colloid have to be capped by adsorbed molecules (AMs) to
prevent their aggregation. The bulk electron mean-free-path in silver is 53.3 nm
and it is 37.7 nm in gold [61].

The influence of the stabilizing agents and solvents on the NL susceptibility of nano-
colloids with silver NPs capped with sodium citrate, poly(N-vinylpyrrolidone), and
polyvinyl alcohol in aqueous solutions, methanol, acetone, and ethylene glycol was
discussed in [54,55]. The colloids were prepared following the method introduced by
[62] and the size homogeneity of the NPs was obtained by laser ablation following the
procedure described in [63]. The results achieved using the Z-scan technique [64]
showed variations of χ�3�NP up to ∼300% by changing either the AM or the host solvent.
The influence of the stabilizing agents was understood recalling that the AM originate
dipolar layers on the NP surface that interact with the electromagnetic field and the
effect of the solvent is due to the electric dipole moment of the molecules in the sol-
vent that affect very much the electron density of states of the NPs and the local field
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in the proximity of the NPs. Details of the experiments and a discussion on the results
are given in [54,55] with the particles being considered as metallo-organic complexes.

Many publications related to the basic characteristics of metal nanocolloids and solid-
state metal composites appeared in the past years [65–78]. In the majority of the ex-
periments the authors focused on the third-order properties of the materials. The area
is still very active and studies of MDNCs based on glasses and colloids were reported
by many authors concerning the NL behavior of other metals than silver and gold as
well as other NP geometries. The two NL optical techniques mostly used were the
pump-and-probe and the Z-scan technique in various versions, as described in [79].
Although the environment influence has not been much considered, its influence may
be one of the reasons for scattering of the values reported for silver and gold MDNCs.

The HON of diluted silver colloids was revealed not long ago [67,80,81] and system-
atic studies to exploit the HON of silver nanocolloids were reported in the past three
years. A discussion based on such experiments will be presented in the following
sections.

4. MAXWELL–GARNET METAL–DIELECTRIC NANOCOMPOSITES

One approach to describe the optical properties of MDNCs consists of assuming the
NPs and their host as a homogeneous medium having an effective complex dielectric
function, εeff . Although several effective medium models can be used to understand
the physical properties of composites [82–86], we will consider here the Maxwell–
Garnet model, which is very appropriate to describe the two-phase mixture effective
dielectric function, εeff , represented by MDNCs with small concentration of isolated
metallic NPs suspended in a dielectric host. Then, considering NPs with diameter a
smaller than their relative distance b, a < b < λ, and assuming no interactions among
the NPs, the complex effective dielectric function is obtained from

εeff − εh
εeff � 2εh

� f
εNP − εh
εNP � 2εh

; (7)

where f is the volume filling fraction (the volume fraction of the sample occupied by
the NPs).

To describe MDNCs with larger filling fractions than the ones considered in this work,
other approaches have been used. For instance, the Bruggeman model [87] emerges as
a homogenization approach to analyze more than one type of inclusion with concen-
trations having the same order of magnitude in the MDNC. This method is particularly
adequate to describe the optical properties of MDNCs at the percolation threshold,
where the conductivity becomes nonzero. However, for large volume fractions the
LSP resonance cannot be described by the Bruggeman model [88].

Some extensions are available to the Maxwell–Garnet model to analyze mixtures with
anisotropic inclusions [89] and even consider the influence of particle interactions on
the local electric field [90]. Other models, such the coherent-potential approximation
[91] and power-law approximation (Birchak model [92] and Looyenga model
[93]), are also used to model the dielectric function of MDNCs adapted to different
conditions.

In nonlinear optics, the Maxwell–Garnet model was originally applied to describe the

effective third-order optical susceptibility, χ�3�eff , of a composite in [94], where the au-
thors were able to demonstrate its validity for a large range of f values. The model was
successfully applied to interpret the results of third-order experiments with metal
nanocolloids and solid-state MDNCs [95–97]. More recently the Maxwell–Garnet
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model was extended to include the contributions of χ�3�eff , χ
�5�
eff , and χ�7�eff , considering

f ≪ 1 and spherical NPs [98]. Other models, such as the generalized T -matrix
approach [99] and two-temperature model for hot electrons [81], may be used in order
to identify HON contributions in metal NPs. However, both models were used to
derive expressions for the high-order susceptibilities from the third-order nonlinearity
(cascade-like contributions) neglecting the intrinsic NP susceptibilities.

The generalized Maxwell–Garnet model was developed considering the optical
polarization in the quasi-static approximation as P � Ph � 1

V

PNp
i�1 pi, where Ph is

associated with the host; Np is the number of NPs inside the volume V ;
pi � 3viβεhE0, where vi is the NP volume; β � εNP−εh

εNP�2εh
, and E0 is the optical field.

Therefore the optical polarization is written as

P � εLh

�
εh
εLh

�
χh �

3βf

1 − βf

��
E0 � εLhχ�jE0j2�E0; (8)

where χh is the host susceptibility.

Expressions for εNP and εh were obtained as a sum of the linear and NL contributions
as εh;NP � ε�L�h;NP � ε�NL�h;NP, where ε�L�h;NP represent the linear part of the dielectric func-
tion, described through Eqs. (1)–(7), and the NL terms are

ε�NL�NP � ε�L�h

�
3

4
χ�3�NPhjENPj2i �

5

8
χ�5�NP�hjENPj2i�2 �

35

64
χ�7�NP�hjENPj2i�3

�
; (9)

ε�NL�h � ε�L�h

�
3

4
χ�3�h hjE0j2i � ϑ�E0�

�
; (10)

where hjEij2i, i � 0;NP, correspond to the mean square modulus of the electric field
and the numerical coefficients of both equations correspond to the degeneracy factors
for the i-th order process according to the convention of [100]. The term ϑ�E0� cor-
responds to the HON of the host. Considering f ≪ 1 and expressing εeff as a power
series of hjE0j2i, we obtain

χ�3�eff � f L2jLj2χ�3�NP � χ�3�h ; (11)

χ�5�eff � f

�
L2jLj4χ�5�NP − 6

10
L3jLj4�χ�3�NP�2 − 3

10
LjLj6jχ�3�NPj2

�
; (12)

χ�7�eff � f

�
L2jLj6χ�7�NP �

12

35
L4jLj6�χ�3�NP�3 − 3

35
jLj8�4jLj2χ�3�NP � jLj2�χ�3�NP���jχ�3�NPj2

− 4

7
LjLj6�2 L2χ�3�NP � jLj2�χ�3�NP���χ�5�NP

�
; (13)

where L � 3ε�L�h ∕�ε�L�NP � 2ε�L�h �. The terms proportional to f n, n ≥ 2, were neglected
as well as the fifth- and seventh-order contributions due to the host.

Since L is a complex number, Eqs. (11)–(13) show that the values of both Re χ�2N�1�
eff

(refractive nonlinearity) and Im χ�2N�1�
eff (absorptive nonlinearity) depend simultane-

ously on the real and imaginary parts of the NP susceptibilities. Notice that by adjust-
ing the value of f it is possible to cancel either Re χ�3�eff or Im χ�3�eff , as first demonstrated
in [101], but in either case the other nonlinearities are not necessarily suppressed.
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Moreover, as will be shown in Section 5, by adjusting f and the laser intensity it is
possible to cancel the contribution of two nonlinearities leaving not null the third one.

5. NONLINEARITY MANAGEMENT PROCEDURE TO EXPLOIT HIGH-ORDER
NONLINEARITIES

Nonlinearity management procedures in nonlinear optics appeared as a strategy to
achieve stable propagation of intense optical beams in layered Kerr media [102].
The collapse arrest of ��2� 1�D� two-dimensional soliton in Kerr-type optical media
[102,103], as well as in Bose–Einstein condensate [104], were among the various
motivations to develop nonlinearity management procedures.

When applied to the study of MDNCs, the nonlinearity management can be done by
varying f and the incident laser intensity [98,105]. Indeed, due to large nonlinearity
of metallic NPs, small changes in the filling fraction may produce significant mod-
ifications of the effective NL response of the nanocomposite [72,101,106,107].
Remarkable is the observation that when the metallic NPs and the host have NL sus-
ceptibilities with opposite signs, it is possible to increase, decrease, and even suppress
the effective NL response of MDNCs by adjusting the values of f and I [98,101,105].

Since metallic NPs exhibit relevant HON [67,80,81], interesting cases were reported
with silver nanocolloids behaving as exotic materials with unique NL properties. For
instance, nanocolloids consisting of spherical silver NPs (average diameter ∼9 nm)
suspended in acetone exhibit large third- and fifth-order contributions, when excited
by the second harmonic of a Q-switched and mode-locked Nd:YAG laser (80 ps,
532 nm) for peak intensities in the range of 1–10 GW∕cm2 [105]. Single pulses
(selected using a pulse-picker), operating at low repetition rates (5–10 Hz), were used
in all experiments described in this section, in order to prevent cumulative effects due
to the thermal nonlinearity.

The NL characterization of silver nanocolloids, for different volume fractions of silver
NPs, was reported in [98,105] by using the well-established Z-scan technique [64]. By
applying that technique the effective NL refractive indices were obtained by meas-
uring the transmitted beam intensity, through a small aperture placed in front of a
photodetector in the far field [closed-aperture (CA) scheme], of a sample moving
along the beam propagation direction (Z-axis) in the region where the laser beam
is focused. Similarly, measurements of the effective NL absorption coefficients were
performed by capture of all the light transmitted by the sample when the small aperture
is removed [open-aperture (OA) scheme]. All measurements were calibrated by using
liquid carbon disulfide (CS2), whose NL refractive index at 532 nm is known for
moderate intensities �neff2 � �3.1 × 10−14 cm2∕W� [108].
An extension of the Gaussian decomposition method [64] used to analyze the Z-scan
curves, was presented in [67] to obtain expressions for the normalized CA and OA
transmittances at the far field, given by

CA scheme :T�z;ΔΦNL� ≅ 1�
X
N�1

�4N�ΔΦ�2N�1�
0 �z∕z0�

��z∕z0�2 � �2N � 1�2���z∕z0�2 � 1�N ; (14)

OA scheme :T�z; q0� ≅
1ffiffiffiffiffiffiffi
πq0

p
Z

∞

−∞
ln�1� q0 exp�−τ2��dτ; (15)

where the induced NL phase variation �ΔΦNL� corresponds to the sum of the (2N � 1)

th-order phase shift, ΔΦNL � P
N�1ΔΦ

�2N�1�
0 with ΔΦ�2N�1�

0 � kneff2N I
NL�N�

eff , and

q0 � αNLIL
�1�
eff �1� �z∕z0�2�−1 with αNL � P

Nα
eff
2NI

N . I is the incident intensity,
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L�N�
eff � �1 − exp�−Nα0L��∕�Nα0� is the effective length of the medium, L is the sample

thickness, k � 2πn0∕λ, λ is the laser wavelength, z0 is the Rayleigh length of the
focused beam, neff2N and αeff2N are the effective �2N � 1�th- order refractive index and
effective �2N � 1�th-order absorption coefficient, respectively. However, to deter-
mine the effective NL coefficients there are a large number of parameters that must
be fitted to the experimental results leading to significant errors. Then, in order to
improve the fit procedure, a better way is to express the peak-valley transmittance
variation, ΔTp;v, as a function of the incident intensity of the form [67]

CA scheme :
ΔTp;v

I
≅ 0.406kneff2 L�1�eff � 0.210kneff4 IL�2�eff � 0.130kneff6 I2L�3�eff �…;

(16)

OA scheme :
ΔTp;v

I
≅ �2�−3

2L�1�eff �αeff2 � αeff4 I � αeff6 I2 �…�; (17)

that reduce the number of terms to be fitted, through a polynomial function.
Equations (16) and (17) reveal that the ratio ΔTp;v∕I as a function of I will be constant
in cubic media while it shows a linear dependence with the intensity in cubic–quintic
media. When a medium exhibits higher nonlinearity than fifth-order, a polynomial
dependence of ΔTp;v∕I as a function of the intensity is observed.

Therefore, a suitable procedure for obtaining the effective NL parameters is to mea-
sure the transmittance variation, ΔTp;v, from the experimental CA and OA Z-scan
curves, plot a graphic of ΔTp;v∕I versus the intensity, and then fit them using
Eqs. (16) and (17), respectively. Finally, these coefficients are used in Eqs. (14)
and (15) to model the CA and OA Z-scan curves, corroborating the values previously
found. This was the procedure followed to determine the high-order NL parameters in
nanocolloids containing either silver nanospheres [67] or gold nanoshells [80].

5.1. Scope and Limitations of the Nonlinearity Management in Metal–Dielectric
Nanocomposites

One of the objectives of the nonlinearity management procedure is the control of the
effective NL susceptibilities contributing to the optical response of a system. The data
presented in Fig. 7 illustrate how this goal can be reached by varying the incident
intensity and the volume fraction of silver NPs suspended in acetone and CS2.

Due to the opposite signs of Re χ�3� in acetone and silver NPs, the effective third-order
refractive index, neff2 ∝ Re χ�3�eff , may be canceled by adjusting f and the result is inde-
pendent of the laser intensity, as shown in Eq. (11). Nevertheless, for I > 6 GW∕cm2,
the fifth-order NL contributions are very important, as shown in Fig. 7(a). Notice that
for f � 1.6 × 10−5 we have n2 � 0 and n4 � �3.2 × 10−25 cm4∕W2.

The nonlinearity management can be useful also to control the absorptive response of
the nanocomposites. For example, silver nanocolloids display a saturated absorption
behavior when the laser frequency ω is near-resonance with ωLSP. The linear depend-
ence of effective third- and fifth-order absorption coefficients (αeff2 ∝ Im χ�3�eff and
αeff4 ∝ Im χ�5�eff ) with f can be observed in Fig. 7(b). However, no sign reversal of
αeff2 was observed because the NL absorption coefficient of the host (acetone) is
negligible for the experimental conditions considered here.

The nonlinearity management procedure was also applied to silver NPs (average
diameter: ∼6 nm) suspended in CS2. In this case, because the silver NPs are smaller
than in the previous case, the NL susceptibilities are larger [109] allowing the
observation of the seventh-order susceptibility contribution [98]. Figure 7(c) shows
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that for f � 3.3 × 10−5 and I � 0.1 GW∕cm2, it is obtained a defocusing septimal
medium neff6 � −1.1 × 10−30 cm6∕W3, due to destructive interference between the
third- and fifth-order susceptibilities. On the other hand, destructive interference be-

tween neff2 ∝ Re χ�3�eff and n
eff
6 ∝ Re χ�7�eff in a nanocolloid with f � 1.5 × 10−5 produces

a focusing quintic medium with neff4 � �1.1 × 10−22 cm4∕W2, as shown in Fig. 7(d).
In addition, management of the NL absorption coefficients can be performed by
varying f and controlling the incident intensity, as shown in Fig. 7(e). In particular,
for f � 1.2 × 10−5 and I � 0.25 GW∕cm2, it is obtained an absorptive septimal
medium with αeff6 � −7.5 × 10−27 cm5∕W3.

Therefore, the nonlinearity management procedure presented here is a simple, but
efficient, methodology to control the optical response of a MDNC in order to obtain

Figure 7

Dependence of the effective NL parameters as a function of the volume fraction, f .
For silver NPs suspended in acetone: (a) neff2 and neff4 I (focusing quintic medium with
f � 1.6 × 10−5); (b) αeff2 and αeff4 I with I � 9 GW∕cm2. Adapted figure with permis-
sion from [105]. Copyright 2014 by the American Physical Society. For silver NPs
suspended in CS2: (c) neff2 � neff4 I and neff6 I2 (defocusing septimal medium with f �
3.3 × 10−5); (d) neff2 � neff6 I2 and neff4 I (focusing quintic medium with f � 1.5 × 10−5)
with I � 0.1 GW∕cm2; (e) αeff2 � αeff4 I and αeff6 I2 (absorptive septimal medium with
f � 1.2 × 10−5) with I � 0.25 GW∕cm2. Adapted with permission from [98].
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appropriate conditions to study particular high-order phenomena. Although the
conditions to increase, decrease, or eliminate specific NL refractive indices or NL
absorption coefficients were identified, an easier control of both coefficients may
be achieved dealing with multicomponent MDNCs, although such applications were
not reported yet.

Finally, we emphasize that in all experiments considered here the validity conditions
of the Maxwell–Garnet model were obeyed, that is, the particles size was smaller than
their separation distance, which is also considerably smaller than the wavelength used,
leading to very small volumetric fractions (f ≪ 1). Studies of MDNCs having larger
values of f would require approaches based on other effective models mentioned in
Section 4. It is important to mention that for larger NP densities, phenomena not con-
sidered here, such as tunneling, clustering, and multiple light scattering, may play an
important role affecting the NL behavior of the MDNCs. In particular, for some
specific large values of f and appropriate NP sizes, one may find very large local
field amplitudes, inter-NP interactions, and efficient scattering of light that may lead
to optical behaviors related to a variety of phenomena and possible applications, such
as localization of light [110], coherent energy transport along NP arrays [111],
and light trapping [112,113]. In such cases the Maxwell–Garnet model and the
nonlinearity management procedure herein presented cannot be applied.

6. APPLICATIONS OF THE NONLINEARITY MANAGEMENT PROCEDURE

This section illustrates how the nonlinearity management procedure can be used to
investigate effects due to HON under different experimental conditions. In the spatial
regime we review the effects of self- and cross-phase modulation, modulation insta-
bility, and soliton propagation. In the temporal regime we analyze the electric field
polarization instability of a laser beam propagating in a silver nanocolloid. The ex-
perimental results illustrate how to use the nonlinearity management to compensate
the diffraction (dispersion), in the spatial (temporal) regime, by selecting the appro-
priate values of f and I . Finally, the nonlinearity management procedure is applied to
show how to optimize all-optical switches.

6.1. Spatial Self-Phase Modulation
The interaction of an intense coherent beam with a medium that presents an intensity-
dependent refractive index produces changes in the beam phase that are manifested on
the transverse beam profile [8,114]. This effect, known as spatial self-phase modu-
lation (SSPM), generates a concentric ring intensity pattern observed in the far field
[Fig. 8(a)]. The first observation of SSPM was reported in CS2, illuminated by a
He–Ne laser, due to refractive index modulation induced by thermal effects [115].
Subsequently, several studies were reported in media exhibiting thermal nonlinearities
[116–123], Kerr-type media [124–127], photorefractive crystals [128], nematic liquid
crystals [129–131], and a variety of other physical systems [132–136]. The SSPM
effect in MDNCs has been studied by several authors [121–126] but only low-order
nonlinearities were investigated.

An experimental report on SSPM induced in a MDNC with NL response dominated
by the quintic nonlinearity was published in [98]. The MDNC used was a silver
nanocolloid with f � 1.6 × 10−5 that, according to Fig. 7(a), is a focusing quintic
NL medium (neff4 > 0) with suppressed refractive cubic nonlinearity (neff2 � 0).
The far-field diffraction patterns were produced by focusing a Gaussian laser beam

)532 nm, pulse duration: 80 ps, 10 Hz, beam waist: 7 μm) on the input face of a glass
cuvette (thickness: 1 mm) containing silver NPs in acetone, as indicated in Fig. 8(a).
The dependence of the intensity patterns with the wavefront curvature radius (R) was
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analyzed by locating the sample (S) in three positions: the focal plane of the lens L
where R → ∞, 0.3 mm before (R < 0), and 0.3 mm after (R > 0) the focal plane.

Figures 8(b)–8(d) show the diffraction patterns in the far field (20 cm from the exit
plane of the sample) for intensities of 70, 90, and 100 GW∕cm2, when the sample is
located in the focal point. Because of the intensity dependence of the NL phase shift,
the diffraction patterns consist of concentric rings that vary in number, thickness, and
separation distance with the laser intensity. It is observed that higher intensities,
corresponding to larger NL phase shift induced by HON, produce larger number
of rings in the far field. Therefore, the SSPM effect is enhanced because the
HON contributions depend on the high powers of the incident electric field
�IN ∝ jEj2N ;N � 1; 2; 3;…�. Figures 8(e) and 8(f) show the intensity patterns, in
the far field, for the same intensity as Fig. 8(b) �I � 70 GW∕cm2�, but with the sam-
ple located before (R < 0) and after (R > 0) the focal point, respectively. The diffrac-
tion patterns depend on the sign of the product between the wavefront curvature radius
and the NL phase shift as it was predicted for cubic media [137].

Calculations based on the Fraunhofer approximation of the Fresnel–Kirchhoff diffrac-
tion integral were made to reproduce the SSPM patterns. The intensity distribution in
the far field was modeled by

I � I0

				
Z

∞

0

J 0�kθr� exp
�
− r2

w2
in

− iϕ�r�
�
rdr

				2; (18)

where I0 � 4π2jE�0; z0� exp�−α0L∕2�∕�iλD�j, E�0; z0� is the electric field at the
beam axis, z0 is the focal plane position, r is the radial distance from the laser axis,
θ is the far-field diffraction angle, and J 0�kθr� is the first-kind zero-order Bessel
function. The total phase-shift, ϕ�r� � kn0r

2∕�2R� � ΔΦNL exp�−2r2∕w2
in�, includes

the Gaussian phase due to the linear propagation plus the NL phase shift,

Figure 8

(a) Experimental setup of SSPM effect: lens (L) with focal distance �f L � 20 mm�
focusing a laser beam on a NL sample (S). (b) Far-field diffraction patterns produced
by the MDNC, with NL response dominated by the quintic nonlinearity, placed in
(b)–(d) the focal plane and (e) before and (f) after the focal plane. Laser peak intensities
of (b),(e),(f) 70 GW∕cm2, (c) 90 GW∕cm2, and (d) 100 GW∕cm2. (g)–(k) Experimental
intensity distributions (black lines) corresponding to (b)–(f), respectively. Red lines
show the numerical simulations obtained from Eq. (18), using the NL coefficients
obtained by Z-scan technique. Adapted with permission from [98].
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ΔΦNL � P
N�1kn

eff
2NI

N �1 − exp�−Nα0L��∕Nα0. The parameter win is the beam radius
at the entrance plane of the sample and D is the distance from the exit plane of the cell
to the detection plane.

The black lines in Figs. 8(g)–8(k) display the intensity distributions obtained from
Figs. 8(b)–8(f), respectively; the red lines correspond to the numerical results obtained
from Eq. (18), with the NL coefficients obtained by the Z-scan technique (Fig. 7),
showing that the number of rings, their thickness and spacing are in good agreement
with the numerical results. However, the experimental results exhibit a low-intensity
background produced by linear light scattering.

6.2. Spatial Modulation Instability
Spatial modulation instability (SMI) is a phenomenon that appears due to competition
between nonlinearity and diffraction effects being enhanced by the exponential
growth of the optical field amplitude and phase noise [110]. The SMI may be strongly
affected by high-order dispersive effects [138,139], saturation of the nonlinearity
[140], nonlocal nonlinearity [141,142], and coherence properties of optical beams
[143,144]. The instability growth produces changes in the transverse beam profile,
along the light beam propagation, which may lead to a filamentation regime [145].

The study of SMI induced by XPM involving HON was investigated in various theo-
retical works [146–149] but it was demonstrated only recently [98,105] thanks to the
nonlinearity management of the silver nanocolloids. For this purpose, experiments
were performed to analyze the response of the MDNCs managed to present cubic,
quintic, and septimal nonlinearities. The pump and probe Gaussian beams with an
intensity ratio of 10∶1 were aligned to counter-propagate along a sample having a
thickness of 5 cm. Temporal and spatial overlap of the laser pulses were adjusted
carefully and constantly monitored. Figure 9 illustrates the XPM transverse SMI
for three volume filling fractions of silver NPs suspended in acetone. Because the
pump beam intensity is 2 GW∕cm2, the three columns of Fig. 9 correspond to a re-
fractive cubic medium �f � 0.5 × 10−5�, refractive quintic medium �f � 1.6 × 10−5�,
and cubic–quintic medium �f � 2.5 × 10−5�, respectively. Figures 9(a)–9(c) display
the probe beam transverse profiles, after propagation through the MDNCs, in the pres-
ence of the pump beam. In these images it is possible to appreciate two characteristic
SMI features. The first one is the difference in the three beams spot size, which is
understood because the contributions of cubic and quintic nonlinearities have opposite
signs. The second feature refers to the formation of new spatial frequencies induced by
the SMI effect that can be identified by the intensity decrease in the center of the probe
beam profile.

Figures 9(d)–9(f) show the probe beam intensity profiles corresponding to
Figs. 9(a)–9(c), versus the normalized radial coordinate. It is possible to observe that
the SMI effect is enhanced in the quintic medium [Fig. 9(e)] and in the medium ex-
hibiting third- and fifth-order NL contributions [Fig. 9(f)]. Figures 9(g)–9(i) show the
result of numerical simulations based on two-coupled NL Schrödinger equations
(NLSEs) considering the contributions of HON, for each sample, as described below
[Eq. (19)]. It can be seen that there is an excellent agreement between the experimental
and numerical results.

Another experiment was reported with silver NPs suspended in CS2, in order to
study the SMI induced by XPM in a MDNC with dominant defocusing septimal non-
linearity [98]. In this case the spatial transverse overlap between the pump and probe
beams was varied in a controlled way and changes in the probe beam profile can be
observed. To fabricate a refractive septimal medium the metal nanocolloid was
prepared with f � 3.3 × 10−5 and the pump beam intensity was 0.1 GW∕cm2.
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Figures 10(a)–10(c) show the probe beam profile distortions produced by XPM for
different relative distances between the beams’ centers. The relative positions of the
beams can be identified in Figs. 10(a)–10(c), where the pump and probe beams
are represented by the white and pink lines, respectively. The black lines in
Figs. 10(d)–10(f) correspond to the intensity profiles of the probe beam in the presence
of the pump beam, obtained from Figs. 10(a)–10(c). The dashed red lines represent
the output probe beam profiles in the absence of the pump beam, i.e., the probe beam
being affected only by the linear diffraction. Figures 10(a) and 10(d), corresponding to
the optimum spatial overlap of the beams, show the generation of new spatial frequen-
cies as in Fig. 9(b), but induced by the septimal effective nonlinearity. A clear focusing
of the probe beam induced by the pump beam is observed in Fig. 10(e), although the
sample is a defocusingmedium �neff6 < 0�. This behavior is analogous to the third-order
effect predicted in [150] and observed in a defocusing cubic medium [151].

The output beams’ profiles were described by modeling the light propagation of the
probe and pump beams using the two-coupled equations considering the NL contri-
butions up to the seventh order, given by

�−1�j2ik ∂Ej

∂z
�ΔEj

� −ω2

c2

8>><
>>:

3χ�3�eff �2�jE1j2 � jE2j2�− jEjj2�
�10χ�5�eff �3�jE1j2 � jE2j2�2 − 2jEjj4�
�35χ�7�eff �4�jE1j2 � jE2j2�3 � 3jEjj2�2�jE1j4 � jE2j4�− 3jEjj4��

9>>=
>>;Ej; (19)

Figure 9

Transverse profile of the probe beam due to XPM-induced transverse SMI in (a) cubic,
(b) quintic, and (c) cubic–quintic media. (d)–(f) Normalized intensity distributions ver-
sus normalized radial coordinate obtained from (a)–(c), respectively. (g)–(i) Numerical
results obtained from Eq. (19) using the susceptibility values from Figs. 7(a) and 7(b).
Pump beam intensity: 2 GW∕cm2; probe beam intensity: 0.2 GW∕cm2. Reprintedwith
permission from [105]. Copyright 2014 by the American Physical Society.
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with j � 1; 2. E1 and E2 are the field amplitudes of the pump and probe beams, re-
spectively. Δ is the transverse Laplacian operator, ω is the laser frequency, and c is the
speed of light in vacuum. The susceptibility values were obtained from Fig. 7, con-

sidering χ�3�eff � 2ε0n
2
0c∕3�2neff2 � iαeff2 c∕ω�, χ�5�eff � 2ε20n

3
0c

2∕5�2neff4 � iαeff4 c∕ω�, and
χ�7�eff � 8ε30n

4
0c

3∕35�2neff6 � iαeff6 c∕ω� [67], where ε0 is the permittivity of free-space.

Since analytical solutions of the NLSE are known only for a few cases—the properties
of solutions are normally investigated by numerical methods—in order to understand
the dynamics of pulse propagation, perturbation theory was adopted to understand
most of the phenomena described in this review. Another way that may offer accurate
solutions is the Volterra series transfer function (VSTF) approach [152], which is gen-
erally used to model the pulse propagation through optical fibers in the frequency
domain, including contributions of cubic nonlinearities. Nevertheless, its complex
analytical form and its divergence analysis not only make its physical interpretation
difficult, but also less attractive in terms of computational time compared to the
well-known split-step Fourier method. To our knowledge, solutions of NLSEs with
contributions of HON using the VSTF approach have not been reported in the liter-
ature yet.

Figures 10(g)–10(i) show the intensity distributions of the probe beam, obtained by
numerical solutions of Eq. (19) using neff2 � neff4 � 0 and neff6 �−1.1×10−30 cm6∕W3.
The numerical simulations corroborate that the experimentally observed SMI effects
are due to the seventh-order NL contributions.

Figure 10

Transverse profile of the probe beam, due to XPM-induced transverse SMI in a sep-
timal medium, for beams separation of (a) 0, (b) w0, and (c) 2.2w0, between the centers
of the incident pump (white line) and probe (pink line) beams, where w0 is the beam
waist. (d)–(f) Normalized intensity distributions of the probe beam in the presence
(black lines) and absence (red lines) of the pump beam, obtained from (a)–(c), respec-
tively. (g)–(i) Numerical results obtained from Eq. (19) using neff2 � neff4 � 0 and
neff6 � −1.1 × 10−30 cm6∕W3. Pump beam intensity: 0.1 GW∕cm2; probe beam
intensity: 0.01 GW∕cm2. Reprinted with permission from [98].
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Therefore, the experimental and numerical results of Figs. 9 and 10 illustrate the im-
portant contributions of HON to SMI. Of course tracking down these results was pos-
sible thanks to the application of the nonlinearity management procedure, which
allows the discrimination among the different NL order contributions.

Other applications of the nonlinearity management are extremely attractive since
the SMI effect has important connections with various NL processes. A particular
example is the stable propagation of spatial solitons, which will be discussed in
Subsection 6.3. One relation between SMI and spatial solitons is manifested in the fact
that the filaments that emerge from the SMI process have the behavior of solitary waves
that under certain conditions may travel without suffering deformation [142].

6.3. Bright and Vortex Solitons
Optical spatial solitons are self-trapped light beams that remain with their shape and
transverse dimension invariant along propagation, due to the balance between diffrac-
tion and NL interaction [153–156]. Nowadays, several families of spatial solitons sup-
ported by different types of nonlinearities are theoretically and experimentally
recognized [156]. In this section we will focus our attention on the study of the spatial
solitons propagation in silver nanocolloids.

In self-focusing media, spatial bright solitons (SBSs) are stable in one transverse di-
mension ��1� 1�D� and their propagation is modeled by the cubic NLSE, resulting in
a commonly known hyperbolic-secant shaped beam [157,158]. On the contrary, in
two transverse dimensions ��2� 1�D�, SBSs are not stable when only the instanta-
neous cubic nonlinearity is present and catastrophic collapse is observed [159–161].
However, several works show alternative methods to arrest the beam collapse, such as
considering saturation of the nonlinearity [162], the presence of HON [163,164], non-
local nonlinearity [165], and inclusion of dissipative terms [166,167]. Our special
interest in this section is the stable propagation of �2� 1�D SBSs in MDNCs exhib-
iting HON. Therefore the experiment described below was inspired by recent experi-
ments: (i) the observation of robust �2� 1�D SBS propagation in liquid CS2 due to
the simultaneous contributions of focusing cubic and defocusing quintic nonlinearities
[168]; and (ii) four-wave mixing experiments, based on the competition of cubic and
quintic nonlinearities, performed to demonstrate the stabilization, for long distances,
of �2� 1�D SBS in a rarefied gas [169] and in a nonresonant Kerr glass [170]. Notice
that SBS could not propagate in the silver nanocolloids exhibiting cubic–quintic non-
linearities because the NL response would be dominated by the defocusing cubic non-
linearity. Nevertheless, the nonlinearity management procedure allows the fabrication
of a silver nanocolloid presenting effective quintic–septimal (focusing–defocusing)
refractive nonlinearities with suppressed cubic refractive nonlinearity. Therefore, the
stable propagation of �2� 1�D SBSs, for ∼10 Rayleigh lengths, became possible, as
reported in [171]. Figure 11(a) displays the experimental setup used that consisted of a
pulsed laser (80 ps; 532 nm), with transverse Gaussian profile, focused at the input
face of the sample with a beam waist of ∼7 μm. The beam propagation along the
sample was recorded by two CCD cameras placed on the laser beam axis and in
the direction perpendicular to the beam axis. For the analysis of the images collected
in the transverse direction the scattered light imaging method (SLIM) [172,173]
was used.

Figure 11(b) displays the behavior of the output beam radius as a function of the
incident intensity, after the beam passed through a 2 mm long cell (∼8 Rayleigh
lengths), containing the quintic–septimal medium. The results show that for low inten-
sities the beam diverges rapidly due to the linear diffraction. However, the beam di-
vergence decreases when the intensity is increased, until reaching a minimum beam
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radius of 7 μm, for I ≥ 60 GW∕cm2, that corresponds to the beam waist at the en-
trance face of the cell. That is, the beam propagates without deformation along the
sample. Such interpretation was confirmed by analyzing the beam side-view images,
shown in Fig. 11(c). For I > 20 GW∕cm2, it is possible to observe regions where the
beam radius remains constant. The maximum propagation distance of ∼2.3 mm with
constant beam radius was observed for I ≥ 70 GW∕cm2. Numerical simulations
based on the quintic–septimal NLSE [Fig. 11(d)] were performed considering the
intensities used in the experiments (7 GW∕cm2 ≤ I ≤ 85 GW∕cm2) and using the NL
susceptibilities corresponding to f � 1.6 × 10−5 according to the results displayed
in Figs. 7(a) and 7(b) (χ�3�eff � −i6.3 × 10−22 m2∕V2, χ�5�eff � 3.7 × 10−38�
i3.3 × 10−37 m4∕V4, and χ�7�eff � −4.2 × 10−54 − i3.5 × 10−54 m6∕V6). It should be
noted that the seventh-order contributions for silver NPs in acetone are negligible
for I < 20 GW∕cm2, and for this reason they do not appear explicit in Figs. 7(a)
and 7(b).

Figures 11(e) and 11(f) show the evolution of the experimental and theoretical beam
radius along the propagation, obtained from the side-view images of Figs. 11(c) and
11(d), respectively. The shaded rectangles display the regions of stable SBS propa-
gation showing very good agreement between the experimental and theoretical results.

Therefore the results of Fig. 11 show a direct application of the nonlinearity manage-
ment procedure aiming the stable propagation of �2� 1�D SBSs, obtained by
managing the silver nanocolloid to present a quintic–septimal (focusing–defocusing)

Figure 11

(a) Experimental setup for analysis of �2� 1�D SBS in a quintic–septimal medium.
(b) Dependence of the transmitted laser beam radius, after 2 mm long cell, as a func-
tion of the input intensity. (c) Experimental and (d) theoretical side-view images of the
SBS propagation, for different intensities. (e) Experimental and (f) theoretical beam
radius as a function of propagation distance obtained from (c) and (d), respectively.
Adapted figure with permission from [171]. Copyright 2014 by the American Physical
Society.
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response with suppressed cubic refractive nonlinearity. These results corroborate the
theoretical predictions of using HON to arrest the catastrophic self-focusing. Although
in the present case the simultaneous contributions of HON enable to avoid the beam
collapse in �2� 1�D, one should be aware that under certain specific conditions HON
contributions can produce critical [174] or supercritical beam collapse [175], even
in �1� 1�D.
On the other hand, self-defocusing media support the stable propagation of optical
dark and vortex solitons [156,176,177]. Spatial dark solitons (SDSs) show an intensity
dip with a phase jump across it, in the axis of an extended bright beam. Theoretically,
�1� 1�D SDS was first proposed as a solution to the exactly integrable NLSE equa-
tion with negative cubic nonlinearity [178]. The experimental observation of quasi-
�1� 1�D SDSs was reported in self-defocusing sodium vapor [179]. However, the
�2� 1�D SDSs are affected by the transverse SMI [180] leading to their bending
and eventual decay into vortices [181].

Optical vortices are �2� 1�D axisymmetric beams with a phase singularity and zero
amplitude at the pivot, which carry a nonzero orbital angular momentum (OAM)
[176,177,182]. A light beam carrying OAM has a phase in the transverse plane of
θ�r;ϕ� � exp�ilϕ�, where ϕ is the angular coordinate and l can be any integer, pos-
itive or negative. For a given l, the beam has l intertwined phase fronts, as illustrated in
Fig. 12; the handedness of the beam is determined by its sign.

A simple way to produce an OAM carrying beam is passing a Gaussian beam through
a spiral phase plate—a piece of polymer with helical surface, as illustrated in Fig. 13.
The optical thickness of the plate varies with the azimuthal coordinate according to
lλϕ∕�2π�n − 1��, where n is the refractive index of the polymer. Shaped optical vor-
tices with arbitrary spatial profile can be obtained using a liquid-crystals-based spatial
light modulator [183].

In self-defocusing media, vortex beams can behave as optical vortex solitons (OVSs)
when the diffraction effect is balanced by the defocusing nonlinearity [184,185]. In
general, spatial solitons have large potential for applications in optical data storage,
transmission, and data processing [156,176]. However, OVSs are highlight by their

Figure 12

Representations of beams carrying optical angular momentum. The Poynting vector is
not parallel to the propagation direction and follows a spiral trajectory around the
beam axis. Helical phase fronts for (a) l � 0, (b) l � 1, (c) l � 2, and (d) l � 3.
Reprinted with permission from [182]. Copyright 2011 Optical Society of America.

Review Vol. 9, No. 4 / December 2017 / Advances in Optics and Photonics 743



direct applications in the interaction of light with matter such as the OAM transfer
[182]. Moreover, OVSs also contribute in applications based on the control of light-
by-light. Due to their ring-like intensity profile, OVSs are used to induce waveguide in
order to confine and guide light inside the vortex core [186,187].

Recently, an experimental demonstration of the stable OVS propagation was reported
in a cubic–quintic medium by using the nonlinearity management procedure in a col-
loid consisting of silver NPs suspended in acetone [188]. A schematic of the exper-
imental setup is shown in Fig. 14. The excitation (pump) beam was the second
harmonic of a Nd:YAG laser (532 nm, 80 ps, 10 Hz, maximum pulse energy of
10 μJ) and the probe beam was obtained from a HeNe laser (632.8 nm, 10 mW).
The optical vortex beam at 532 nm was produced using one spiral phase plate with
l � 1. The vortex beam was focused by a lens on the input face of a cell containing the
silver nanocolloid and a set of lenses was used to adjust the probe beam waist to be
approximately equal to the vortex core radius. Cells with thicknesses of 3, 5, and
10 mm were used. A special scheme to synchronize the detected HeNe laser signal
with the pump pulses was used, as described in [188].

Figure 13

Spiral phase plate used to generate beams carrying optical angular momentum.
Reprinted with permission from [182]. Copyright 2011 Optical Society of America.

Figure 14

Experimental setup: P, polarizer; T, telescope; VPP, vortex phase plate; M, mirror; SF,
spatial filter; BS, beam splitter; spherical lenses with f 1 � 5 mm (L1) and f 2 � 5 mm

(L2). Camera CCD1 produced the transmitted-beam spatial profile. Cylindrical lenses
with f � 40 mm (CL1) and f � 80 mm (CL2), and CCD2 were used in the SLIM
setup. The cell’s length is 10 mm. Reprinted with permission from [188].
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The silver colloid was prepared in order to exhibit a dominant defocusing cubic
nonlinearity with focusing quintic NL contribution by choosing f � 3 × 10−5,
which corresponds to χ�3�eff � −�8.3� i2.7� × 10−21 m2∕V2 and χ�5�eff � �2.8� i0.2�×
10−35 m4∕V4, as in Figs. 7(a) and 7(b). Figure 15(a) shows the experimental trans-
verse vortex beam images, for a propagation distance over 10 mm (∼6 Rayleigh
lengths), inside the cubic–quintic medium. Invariance of the shape and the external
radius size of the vortex beam was observed for I � 3 GW∕cm2. The vortex core
presented a slight divergence in the beginning of the propagation and then remains
constant, giving rise to the stable OVS propagation.

The stable OVS propagation illustrated by Fig. 15(a) is corroborated by the numerical
calculations based on the cubic–quintic NLSE shown in Fig. 15(b). For low intensity
�I � 0.1 GW∕cm2� the vortex beam diverges due to the linear diffraction. However,
for I � 3 GW∕cm2 the stable propagation of OVSs over 10 mm is observed. Here, the
simultaneous contributions of cubic and quintic nonlinearities are important to
maintain both vortex core size and Gaussian background size invariant along the
propagation [188].

Figure 15(c) shows the transverse beam profiles of the weak Gaussian beam being
guided by the OVS illustrated by Fig. 15(a), with their respective intensity distribu-
tions. The Gaussian beam size in the entrance face of the cell was approximately equal
to the vortex core size. With the simultaneous propagation of both beams, it is possible
to observe that the central region of the Gaussian beam is guided by the OVS, along

Figure 15

(a) Transverse vortex beam profiles behave as OVS, along 10 mm propagation dis-
tance. (b) Numerical simulation of the vortex beam propagation for intensities of
0.1 GW∕cm2 (linear behavior) and 3 GW∕cm2 (soliton-type behavior). (c) Transverse
beam profiles and intensity distributions of a weak Gaussian beam being guided by the
OVS described in (a). Adapted with permission from [188].
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the 10 mm long cell. The light ring observed in the transverse beam profiles shown in
Fig. 15(c) is due to an imperfect coupling of the Gaussian beam into the vortex core,
and to the small refractive index difference induced between the core and the bright
region of the OVS, but it can be further improved by a more appropriate choice of the
beams’ sizes. The propagation of both beams was modeled by using two coupled
cubic–quintic NLSEs and the results are illustrated by the red lines in Fig. 15(c).

Hence, the proof-of-principle experiment of [188], summarized in Figs. 14 and 15,
illustrates the possible application in fast dynamic circuitry based on spatial solitons,
since the NPs present a fast NL response based on the excitation of electronic local
nonlinearities.

6.4. Polarization Instability Due to High-Order Nonlinearities
The motivation for developing fibers based MDNCs is due to the possible use in
devices such as all-optical switches, wavelength converters, optical parametric ampli-
fiers, etc. (see, for example, [189]). In principle, ultrafast optical devices require a
high NL material with ultrafast time response and a setup compatible with the
silica-fiber-based optical communication systems.

The use of metal NPs in photonic devices will require the development of suitable
solid-state hosts. MDNCs based on inorganic glasses and some special polymers
may be appropriate materials for the majority of applications because they present
high transparency, large durability, low cost, high chemical stability, and low sensibil-
ity to moisture. The requirement of higher NL materials is justified because the
minimization of dispersive effects would be achieved in short pieces of fibers.

Trials to develop optical fibers based on silicate glasses and polymers incorporated
either with silver or gold NPs were reported [190–193], but only third-order experi-
ments were performed using such fibers. However, as shown below, the exploitation of
the fifth-order nonlinearity may be helpful for all-optical switching operations.

The interaction of an intense laser beam with a NL medium can produces changes in
its polarization state, induced by the intensity-dependent refractive index of the
material. One of the main effects related to the intensity-dependent polarization state
is the NL birefringence, which produces the optical polarization rotation along the
propagation through the NL medium [194]. This phenomenon was evidenced for
the first time in liquids exhibiting cubic nonlinearity when they were excited with
intense elliptically polarized light [195]. Subsequently, the NL birefringence was re-
ported for different systems [196–200] and new proposals, based on HON contribu-
tions, were reported [201,202]. Indeed the NL birefringence effect was widely studied
in optical fibers, being caused by the NL coupling among the various electromagnetic
propagation modes [194]. When the NL contributions are large, the NL birefringence
contributes to the polarization instability of the light beam [203,204] that is manifested
by an enhanced sensitivity of the output state of polarization to small changes in the
input power and/or the input polarization. Although the NL birefringence phenome-
non has been successfully exploited for operation of all-optical devices [185], the
main limitation for further exploitation of the effect is the long propagation distance
required for observation of induced changes in the polarization of the light field. In
this sense the experimental work of [205] indicates that optical fibers with HON may
generate large variations in the polarization state in short propagation distances.

Figure 16(a) shows the experimental setup for the studies of NL polarization coupling
and polarization instabilities, induced by HON, in a hollow capillary (length: 9 cm)
filled with silver NPs suspended in CS2. In the experiment the linearly polarized laser
beam passes through a λ∕2 phase plate and a polarizer used to control the incident
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intensity. A second λ∕2 plate allows the rotation of the optical field linear polarization
by an azimuth angle θ. Two microscope objectives couple the light at the entrance of
the capillary and collimate the transmitted light, which is detected by two fast detec-
tors to analyze the transmittance variations as a function of incident azimuthal angle
and intensity. A polarizing beam splitter was used to separate the vertical (V) and
horizontal (H) polarization components.

The self-induced polarization rotation due to the silver nanocolloid was observed, as
illustrated in Fig. 16(b), which shows results for samples with three different NP
volume fractions. Notice that the normalized transmittance changes as a function
of the incident polarization azimuth angle and exhibits drastic changes for different
intensities. For low intensities �I ≤ 6 MW∕cm2� the samples behave as a linear
isotropic medium. Consequently, the normalized transmittance corresponding to
the V-polarization (black circles) and H-polarization (red squares) exhibits a
cos2 θ and sin2 θ dependence, respectively. For moderate intensity �24 MW∕cm2 ≤
I ≤ 60 MW∕cm2�, values of θ where the transmittance varies rapidly are observed
due to the NL contributions. It is possible to note that the modulation effects are
stronger when the medium presents quintic NL contributions. For the intensities used,
the septimal NL contributions are negligible.

Figure 16

(a) Experimental setup for observation of the polarization instability effect.
(b) Normalized transmittance as a function of the incident polarization azimuth angle
for cubic, quintic, and cubic–quintic media. From top to bottom, the incident peak
intensities are 6, 24, 42, and 60 MW∕cm2. (c) Gain spectra of modulation instability
versus the frequency shift along the fast axis cubic (black line), quintic (red line), and
cubic–quintic (blue line) media. Incident intensity: 42 MW∕cm2. (d) Vertical (black
circles) and horizontal (red squares) polarization transmittance as a function of the
incident peak intensities. Solid lines in (b) and (d) were obtained by numerical
simulation of Eq. (20). Adapted with permission from [205].
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The solid lines in Fig. 16(b) correspond to the numerical solutions of two coupled NL
equations that describe the evolution of the right- �A�� and left-circular polarization
�A−� along the capillary filled with either a cubic, quintic, or cubic–quintic isotropic
medium. The equations describing the optical polarization are

∂A	
∂z

� i

2
β�2�

∂2A	
∂τ2

� α0
2
A	

� i

2
�Δβ0�A
 � i

ω

n0c
F�1�χ�3�xxxx��jA�j2 � jA−j2� � jA
j2�A	
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12n0c
F�2�χ�5�xxxxxxf4�jA� � A−j2�A� � A−�� 
 jA� − A−j2�A� − A−���A


� �jA� � A−j4 � jA� − A−j4�gA	; (20)

where n0, α0, β�2�, andΔβ0 are the linear refractive index, linear absorption coefficient,
second-order dispersion coefficient, and the modal birefringence of the capillary,
respectively. ω is the laser frequency and c is the speed of light in vacuum. The quan-
tities represented by F�j�, j � 1; 2, are F�1� � �RR jF�0�j4dxdy�∕�RR jF�0�j2dxdy�2 and
F�2� � �RR jF�0�j6dxdy�∕�RR jF�0�j2dxdy�3, where F�0� is a fiber modal distribution,
which was assumed as a Gaussian distribution for single-mode capillaries.

Figure 16(c) shows the gain spectra of the modulation instability induced by HON
versus the frequency shift obtained by using a perturbation analysis on the Gaussian
pulse amplitude in Eq. (20). The black line refers to a cubic medium with a very small
fifth-order NL contribution corresponding to f � 10−5, as in Fig. 7(c). The red line
refers to the quintic medium and the blue line is associated with a cubic–quintic
medium and exhibits the relevant contribution of the effective fifth-order susceptibil-
ity. It is possible to identify that the growth rate of modulation instability is very much
enhanced in the presence of the quintic nonlinearity. Distortions in the sidebands are
attributed to linear losses [148].

The enhancement of the polarization instability effects can also be seen in media
exhibiting only quintic nonlinearity, as shown in Fig. 16(d). Here, significant varia-
tions in the transmitted light intensity, corresponding to V- (black circles) and
H-polarization (red squares), are observed for small changes in the incident intensity.
The experimental results are corroborated by numerical simulations of Eq. (20),
represented by the solid lines of Fig. 16(d).

In conclusion, we remark that large NL phase shift (∼20π) was observed in diluted
silver nanocolloids with f � 10−5 showing that MDNC-based fibers or channel wave-
guides have very large potential for applications in all-optical switches.

6.5. All-Optical Switches Based on Metal–Dielectric Nanocomposites
The large growth of global communications requires data processing devices even
faster than the ones already available. Then, all-optical devices for processing signals
at bit rates of hundreds of GB/s up to TB/s are needed [206] and, for this reason, the
identification of suitable NL materials is extremely important. Of course MDNCs are
strong candidates due to their high NL refractive behavior and fast response, but the
NL absorption may impair their application in devices such as AOSs. This problem is
common of all materials with large nonlinearity, since normally large NL refractive
index corresponds to large NL absorption coefficient [207]. Therefore, to identify suit-
able materials for AOSs, two figures of merit are considered: T � jα2λ�n2�−1j and
W � jΔn�α0λ�−1j, where Δn is the maximum variation of the refractive index that
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can be induced in the NL material, and to be useful the material have to present T < 1

and W > 1 [208,209].

Recently, the optimization of the figures of merit associated with MDNCs was re-
ported with basis on the nonlinearity management procedure discussed in the previous
sections [210]. Accordingly, since MDNCs present HON, one of the figures of merit
should be redefined to be T � jαNLλ�nNL�−1j, where nNL � neff2 � neff4 I � neff6 I2 and
αNL � αeff2 � αeff4 I � αeff6 I2. Therefore a systematic study of the figures of merit is
presented in this section in a search for AOS optimization. The results obtained
by studying silver nanocolloids with various NP volume filling fractions are illustrated
in Fig. 17(a). For NL refraction, it is possible to observe that the value of jnNLj
increases with increasing intensity. Nevertheless, for the NL absorption, jαNLj is
nullified for intensity of 8.6 GW∕cm2. This behavior was corroborated with the
open-aperture Z-scan measurements [Fig. 17(b)], where a transmittance variation
was not observed for I � 8.6 GW∕cm2. Cancellation of NL absorption is due to
destructive interference between the imaginary parts of the third-, fifth-, and sev-
enth-order susceptibilities. As a consequence, the ratio T−1 ∝ nNL∕αNL increases dras-
tically, optimizing the figure of merit, shown in Fig. 17(c). The figure of merit W is
greater than 1 for intensities larger than 7 GW∕cm2. However, the value of T was
reduced by about 2 orders of magnitude for I � 8.6 GW∕cm2. Notice that it was plot-
ted the values of T−1 instead of T , i.e., T−1 > 1 is required for a suitable material to
be used.

To certify the fast NL response of the MDNCs, a Kerr shutter experiment [79,211] was
performed under the same conditions used in previous experiments. Figure 17(d)
shows the Kerr shutter signal due to the fast NL response of the free electrons in
the NPs. NL response time of tens of picoseconds was measured for silver colloids,
being limited by the incident pulse duration of 80 ps. However, other experimental

Figure 17

(a) Refractive and absorptive NL coefficients of silver colloids considering cubic,
quintic, and septimal nonlinearities. (b) Open-aperture Z-scan profiles for silver col-
loids with f � 5.9 × 10−5. (c) Figures of merit (W and T−1) for AOS. (d) Kerr signals
for silver colloids using a picosecond laser at 532 nm. Adapted with permission
from [210].
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work, carried out with shorter light pulses, reported NL response times of silver NPs
of a few femtoseconds [212].

Therefore, the results shown in the Subsections 6.1–6.5 demonstrate that MDNCs
are excellent materials for applications in ultrafast optical devices due to their fast
response, high NL susceptibility, and the possibility of manipulating their NL
response by changing the NP volume fraction and incident intensity.

7. FORESEEN ADVANCES IN THE STUDY OF HIGH-ORDER OPTICAL
PHENOMENA

Many theoretical studies related to phenomena associated with HON can be found in
the literature and the number of proposals is increasing due to the possible observation
of new effects in MDNCs and analogies with atomic systems. Therefore, some theo-
retical and experimental results that can be considered for future experiments with
MDNCs will be discussed in this section.

7.1. Stability Conditions for One-Dimensional Optical Solitons in
Cubic–Quintic–Septimal Media

The stable propagation of spatial solitons, under various specific conditions, has been
one of the topics of large interest in the past years. Usually the authors include in their
models external potentials and look for stability conditions or assume that the medium
of interest presents HON. For example, a special case studied from the theoretical
point of view is the critical collapse in quintic media when the cubic nonlinearity
is null. It was demonstrated that an external potential would allow arresting of the
beam collapse in one-transverse dimension medium [213] and two-transverse dimen-
sion case [214]. When cubic–quintic media were considered it was shown that the
cubic nonlinearity lifts the degeneracy of the Townes’ solitons making their propa-
gation stable [215]. Hence, a detailed study of soliton propagation in cubic–
quintic–septimal media is important to complement the previous investigations
and to foresee new research routes. In [175], the conditions for stable propagation
of one-transverse dimension bright spatial solitons in media with HON up to the
seventh-order was investigated. In this case the normalized cubic–quintic–septimal
nonlinear Schrödinger equation (CQS-NLSE) describing the light propagation along
the z direction has the form

i
∂ψ
∂z

� 1

2

∂2ψ
∂x2

� g3ψ jψ j2 � g5ψ jψ j4 � ψ jψ j6 � 0; (21)

where ψ � ψ�x; z� represents the normalized field amplitude, while g3, g5, and
g7 � 1 are coefficients related to the third-, fifth-, and seventh-order effective suscep-
tibility, respectively. The stability of spatial solitons was investigated by varying g3
and g5.

Stationary solutions of the CQS-NLSE with a real propagation constant k having the
form ψ�x; z� � eikzϕ�x� were considered. A variational approximation based on the
raised-sech Ansatz, ϕ�x� � Λ�sech�

ffiffiffiffiffi
2k

p
x��δ [216], where Λ and δ are variational

parameters, and the Vakhitov–Kolokolov (VK) stability criterion [217] were used
to identify regions of stable and unstable soliton propagation. The dependence of
the propagation constant on the total power, obtained from the stationary solution
of Eq. (21) and using the VK criterion, is represented in Fig. 18. According to the
VK criterion, the stability regions correspond to ∂P∕∂k > 0, with P � R∞−∞ jϕ�x�j2dx
representing the total power.

Figure 18(a) shows that, for g3 � �1, g7 � �1, and g5 � 0, −1 and �1, there are
regions of stability corresponding to different values of the total power. In particular
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we note that the maximum power for the stable soliton propagation corresponds to
g5 � −1. Physically this occurs because the self-focusing effect due to the third- and
seventh-order nonlinearity is compensated by the negative fifth-order nonlinearity.
Numerical results were also reported for −1.5 ≤ g5 ≤ 1.5 with g3 � �1. For each
value of g5 the maximum power that allows stable soliton propagation was determined
and the results, indicated in Fig. 18(b), show that large negative values of g5 help to
stabilize the spatial soliton. Also in [175] the beam propagation was investigated by
solving numerically the CQS-NLSE using the split-step compact finite-difference
method [218] using the raised-sech Ansatz as input for the numerical simulations.
The results corroborate the conclusions based on the VK criterion. Moreover, the
numerical calculations helped to identify the conditions for supercritical collapse
induced by the seventh-order nonlinearity.

Of course the nonlinearity management procedure described in the previous sections
may allow the verification of the theoretical results of [175] provided that a correct
choice of nanoparticle volume filling fraction, laser wavelength, and light intensity is
identified in order to obtain the appropriate values for gn �n � 3; 5; 7�.

7.2. Low-Intensity Excitation of Plasmonic Solitons in Metal Nanocolloids
Following a different approach than the one used for the experiments of Section 6,
experimental works have been pursued by various authors aiming at the observation
and manipulation of spatial solitons in plasmonic nanocolloids subject to excitation by
low-power continuous-wave (CW) lasers. In [32] the authors used metallic nanopar-
ticles (gold nanorods, silica–gold nanoshells, and gold and silver spheres) having
volumes ∼102 to ∼103 larger than the ones used in the experiments described in
Section 6. A CW laser operating at 532 nm, delivering powers up to 250 mW,
was used. The response of the nanocolloids to the laser beam under the experimental
conditions of [32] was manifested by the thermal response, light scattering, and gra-
dient forces acting on the nanoparticles. The evolution of optical beams propagating
through the nanocolloids was understood by analyzing a modified NLSE that includes
the thermal contribution, light scattering, and the effect of a gradient force represented

Figure 18

(a) The soliton propagation constant k versus the total power P for media with focusing
third-order nonlinearity (g3 � 1). Discrete points correspond to the stationary solution of
Eq. (21) with g5 � −1 (red circles), 0 (blue triangles) , and�1 (black squares). Dashed
lines were obtained using the variational approximation. (b) The maximum power Pmax

admitting the stable soliton propagation inmedia, as per the VK criterion, with the focus-
ing cubic nonlinearity (g3 � 1) and different values of the quintic coefficient g5. Adapted
with permission from [175]. Copyright 2015 by the American Physical Society.
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by ~Fgrad � 1
4
αR∇j~Ej2, where ~E is the electric field and αR represents the real part of the

particle’s polarizability. Assuming no particle–particle interactions, it is possible to
show that the particle concentration along the beam pathway is intensity dependent
and is given by ρ � ρ0 exp�αRI∕�4kBT��, where kBT is the thermal energy and ρ0 is
the unperturbed uniform particle density. After manipulations following the procedure
described in [219], the wave propagation can be described by

i
∂ψ
∂z

� 1

2k0nh
∇2

⊥ψ � k0�nNP − nh�ρVNPψ � iσρ

2
ψ − k0jΔnT jψ � 0; (22)

where k0 � 2π∕λ0 is the vacuum wavenumber, and σ is the Rayleigh scattering cross
section [220]. The third, fourth, and fifth terms in Eq. (22) represent a Kerr-type non-
linearity, scattering losses, and thermal defocusing response, respectively. The volume
fraction along the beam pathway is given by f �I� � f �0� exp�αI∕�4kBT��, and ΔnT �
�∂nh∕∂T��T − T 0��1 − f � represents the variation of the colloid refractive index due
to the temperature change that occurs because of the light absorption by the nano-
particles. T is the spatial temperature distribution in the presence of the laser beam
and T0 is the initial temperature of the colloid. In [32] the values of ΔnT in the experi-
ments with the nanorods and nanoshells were negligible because of the large detuning
between the laser frequency and ωLSP. However, the thermal contribution was impor-
tant in the experiments with nanospheres because of the large optical absorption at the
laser wavelength used. The intensity dependence of ρ is due to the attraction (repul-
sion) of the nanoparticles toward (away from) the beam according to the sign of αR.
As can be seen in Fig. 5, the value of αR at 532 nm is negative for the nanorods and
nanoshells and the particles are expelled from the highest intensity region. In the nano-
spheres the opposite occurs, as demonstrated in [32]. Figure 19 illustrates the effects
of attraction and repulsion of the nanoparticles with respect to the laser beam that
contributes to the expression given above for f �I�.
In both cases the spatial rearrangement of the particles produces a self-focusing non-
linearity that induces trapping of the optical beam.

Figures 20 and 21 illustrate the beam trapping in the colloids with nanorods and nano-
shells, respectively.

Recently the experiments of [32] were further extended and the results in [221] dem-
onstrated the possibility of guiding a strong infrared beam (at 1064 nm) through a
weak soliton-forming beam (at 532 nm) with basis on the effects included in
Eq. (22). Experiments of cross-phase modulation with both beams contributing
simultaneously to the self-focusing nonlinearity were also reported.

More recently the possibility of self-structuring of a laser beam propagating in a metal
nanocolloid was proposed [222] by considering the gradient forces as in Eq. (22).

Figure 19

High-intensity beam (a) attracting nanoparticles with positive polarizabilities and
(b) repelling nanoparticles with negative polarizabilities. Adapted with permission
from [219].
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However, optical gain was considered assuming the addition of dye molecules dis-
solved in the nanocolloid. By analyzing the competition between diffraction and non-
linearity together with compensation between gain and loss, the authors demonstrated
theoretically the possibility of dissipative breathing vortex solitons formation, which
they propose to be used for selective dynamic photonic tweezing of nanoparticles.

One conclusion deduced from [32,221,222] is that the overall response of the nano-
colloids is analogous to the response described in Section 6 for cubic–quintic saturable
nonlinear media, and therefore the nonlinearity management procedure can be
applied in those cases aiming further developments. Notice also that in this case
by selecting the optical frequency around ωLSP the nature of the light–matter inter-
action changes, allowing engineering the focusing–defocusing response of the
effective susceptibilities.

Although the works described in [32,221,222] are very interesting because the experi-
ments requires low-intensity light, one disadvantage with respect to the approach
described in Section 6, based on the electronic response of the nanoparticles, is the
slow time response that limits all-optical switching applications. On the other hand,
according to the authors of [221], the guiding of an intense beam by a weak beam

Figure 20

(a) Orientation of gold nanorods along the electric field ~E of a linearly polarized beam.
(b) Field distribution around the nanorod at the longitudinal plasmon resonance.
(c) Linear diffraction of a low-power beam (10 mW) when injected into an aqueous
suspension of gold nanorods. (d) Formation of a stable self-trapped filament at
250 mW over 5 cm (25 diffraction lengths) mediated by the negative polarizability
of the colloid. (e)–(h) Beam profiles observed after 5 cm of propagation at different
input power levels, showing the transition from diffractive broadening at 10 mW to
self-trapping at 250 mW. For reasons of visibility, the output beam profiles have been
normalized with respect to their individual peak intensities. Reprinted with permission
from Fardad et al., Nano Lett., 14, 2498–2504 (2014) [32]. Copyright 2014 American
Chemical Society.
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demonstrated in the experiment opens new doors for applications in optofluidics and
biophotonics.

7.3. Nonlinearity Management in Plasmonic Metamaterials
The plasmonic nanocolloids considered in the previous sections represent a class of
optical metamaterials (OMMs) in the sense that they are artificially structured materi-
als engineered to exhibit exotic optical properties when interacting with the electro-
magnetic field. However, one fascinating result obtained from the study of OMMs is
the possibility of materials with negative refractive index that simultaneously present
negative electric permittivity, ε, and negative magnetic permeability, μ (see [223] and
references therein). The existence of this kind of OMM corroborates the predictions
that the refractive index, n � − ffiffiffiffiffi

εμ
p

, when both ε; μ < 0, is an acceptable physical
solution of Maxwell’s equations [224]. A negative value for the linear refractive index
leads to new phenomena such as described by the reversal Snell’s law [224] and
reversal Doppler effect [225].

In the context of NL optics the OMMs represent a new alternative to obtain desired NL
responses with an adequate control and improvement in relation to traditional materi-
als (see, for example, [226]). A special class of NL metamaterials is the plasmonic
metamaterials, which are typically composed of various combinations of metal nano-
structures hosted in dielectric materials that exploit surface plasmons to achieve
optical properties not seen in nature [227]. For instance, plasmonic metamaterials

Figure 21

(a) Schematic of a silica–gold core–shell particle and (b) field distribution at its plas-
mon resonance. (c) Linear diffraction pattern at 10 mW and (d) stable soliton forma-
tion in the NP suspension at 300 mW. (e),(f) Corresponding normalized output beam
profiles after a propagation distance of 5 cm. Reprinted with permission from Fardad
et al., Nano Lett., 14, 2498–2504 (2014) [32]. Copyright 2014 American Chemical
Society.
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constituted of arrays of L-shaped gold NPs [Fig. 22(a)] allow efficient control on the
second-order NL response when the nanostructures are positioned in different ways,
as illustrated in Figs. 22(b)–22(d) [228].

Figures 22(e) and 22(d) illustrate the experimental and theoretical normalized second-
harmonic generation (SHG) intensities as a function of the linear input polarization
angle, for the samples exemplified in Figs. 22(c) and 22(d), respectively. The depend-
ence of the SHG intensity with the direction of the input electric field polarization is
similar, although the SHG efficiencies are different. This is due to the long-range cou-
pling between the particles that depends on their arrangements and shapes [228]. A
similar procedure to control the second-order NL response of different systems was
performed by depositing nanoscopic inclusions of plasmonic metamaterials and con-
trolling their size, shape, and symmetry [229]. Changes in the spectral profile of the
SHG were reported for metamaterials with different nanoinclusion designs when the
contributions of each component of the second-order susceptibility tensor were an-
alyzed, as shown in Fig. 23. Therefore, a possibility for nonlinearity management of
plasmonic metamaterials may be achieved by varying the structure of the plasmonic
inclusions and metamolecular ordering, which can lead to large improvements in its
NL response.

On the other hand, following the nonlinearity management procedure described in
Section 5 it is also possible to control the optical response of the OMM with complex
inclusions designs. The theoretical and numerical works presented in [111,230] show
that the NL response of metamaterials can be manipulated by the selection of plas-
monic NPs with controlled sizes and shapes to achieve nonlinearity enhancement by
several orders of magnitude. For instance, large NL phase shift, ΔΦNL, at very short
propagation distances can be obtained by impregnating metallic NPs (monomers or

Figure 22

(a) Dimensions of the L-shaped gold particles. (b)–(d) Layouts of the investigated
samples and the coordinate systems. The normalized SHG intensity as a function
of the linear input polarization angle measured from u direction is illustrated by
(e) Sample A and (f) Sample B. The circles are experimental data and the solid lines
are fits to the measured points. Dashed lines are the predicted responses calculated by
the orientational average of the responses of individual particles. Adapted with per-
mission from Husu et al., Nano Lett., 12, 673–677 (2012) [228]. Copyright 2012
American Chemical Society.
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dimers) into waveguides, as shown in Fig. 24. For an average power of 1.6 mW, it is
possible to observe that after a propagation distance of 1 μm, the ΔΦNL obtained in
chalcogenide waveguides can be enhanced by 2 orders of magnitude when elliptical
gold NPs are introduced, whereas an enhancement of 4 orders of magnitude can be
obtained with dimers of elliptical gold NPs. However, for propagation distances
greater than ∼5 μm, ΔΦNL saturates due to the high-intensity losses caused by the
metal NPs. Nevertheless, the use of the nonlinearity management procedure, dis-
cussed in Section 5, may reduce the dissipative effects allowing adequate control and
optimization ofΔΦNL for different propagation distances, and thenΔΦNL may assume
appropriate values for applications in all-optical circuits. In this way, the experiments
of Subsection 6.4 can be extended for plasmonic metamaterials with more complex
inclusions designs, having as additional variable to control the NL response the
different shapes and sizes of the plasmonic nanostructures.

The NL response of plasmonic metamaterials based on chains of metal NPs with al-
ternating sizes, relatively small interparticle spacing within each chain, and relatively
large spacing between chains, were analyzed numerically in [111]. The binary size
arrangements considered exhibit electric field enhancement factor, Ex∕E0, for both
NPs that depends on the ratio between their sizes and the incident light frequency,
as shown in Figs. 25(a)–25(c). For structures with homogeneous NP distribution
[Fig. 25(a)] the optical field is enhanced, at the center of the NPs, by a maximum
factor of 33 at ∼432 nm, which corresponds to the dipolar plasmon resonance in
spherical NPs with a diameter of ≈2.5 nm and spacing between particles of 3 nm.
However, small differences in size between neighboring NPs produce large increase
in the electric field enhancement factor [see Figs. 25(b)–25(c)], due to cascaded plas-
mon resonance induced on the smaller NP due to the action of the enhanced near field

Figure 23

(a) SHG spectra for metamaterials featuring a variety of designs. The values given as
insets represent the peak value of each spectrum on an arbitrary scale. The spectra in
the center column represent a convolution of contributions from three independent
SHG tensor components. Reprinted with permission from [229]. Copyright 2011
Springer.
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around the larger NP. For instance, neighboring NPs with a volume ratio of 30
[Fig. 25(c)] show a maximum Ex∕E0 of ∼97, which is approximately 3 times the
factor calculated for structures with identical neighbor particles. As is well known,
a large electric field enhancement factor leads to enhanced NL response of plasmonic
metamaterials [95]. In fact, Fig. 25(d) shows an enhanced figure of merit of the cubic
nonlinearity defined as g�3�∕α, where g�3� is a complex third-order susceptibility en-
hancement factor due to effects of cascaded plasmon resonance and α is the linear
absorption coefficient. Significant figure-of-merit enhancement, related to third-order
refractive index and absorption coefficient, is observed in plasmonic metamaterials
constituted by periodic binary structure, with a volume ratio of 30 (blue points), com-
pared to identical neighboring particles (red points). The numerical results predicted
for cubic nonlinearity can be extended for high-order nonlinearities, since the electric
field enhancement increases significantly the contributions of effective high-order
susceptibilities because they depend on higher powers of the applied electric field,
as shown in Section 4.

Nowadays great efforts are devoted to the study of new optical phenomena induced by
different kinds of metamaterials. One of the most explored topics is the light propa-
gation in metamaterials with negative refractive index, since significant changes are
predicted in comparison to traditional materials. In addition, because NL metamate-
rials may present very large optical response, it is reasonable to predict that light
propagation may be affected by high-order NL contributions. Based on this reasoning
several theoretical proposals and numerical simulations were performed to analyze the
evolution of the light fields being affected by complex high-order susceptibilities
(quintic and cubic–quintic nonlinearities) [231] and high-order dispersion [148],
which give rise to effects such as modulation instability [148,231], optical solitons
[232,233], and rogue waves [234].

Figure 24

Nonlinear phase shift in the 1 μm2 chalcogenide waveguide: (a) input power of
1.6 mW, no plasmonic enhancement; (b) input power of 1.6 mW, nonlinearity en-
hanced by the elliptical Au nanoparticles with the filling fraction of 0.001; (c) input
power of 1.6 mW, nonlinearity enhanced by the dimers of elliptical Au nanoparticles
with the filling fraction of 0.001; (d) input power of 0.8 W, no plasmonic enhance-
ment; (e) input power of 0.8 W, nonlinearity enhanced by the elliptical Au nanopar-
ticles with the filling fraction of 0.001; (f) input power of 8 W, no plasmonic
enhancement. Figure 7 reprinted with permission from Khurgin and Sun, Phys.
Rev. A, 88, 053838 (2013) [230]. Copyright 2013 by the American Physical Society.
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The modulation instability effect in NL metamaterials exhibiting dispersive magnetic
permeability, μ�ω�, and electric permittivity, ε�ω�, can be controlled through the ma-
terials structure design. Additionally, due to the large NL response of metamaterials at
moderate intensities, HON can play a relevant role in the evolution of the light fields.
For instance, the impact of the quintic nonlinearity on the cross-modulation instability
(XMI) scheme with negative-index metamaterials was analyzed theoretically by con-
sidering two interacting light beams described by two coupled modified NLSEs based
on the dispersive Drude model [231]. Figures 26(a) and 26(b) show the XMI gain
spectra versus the frequency difference of waves copropagating in a negative-index
metamaterial with equal perturbation frequencies in the normal and anomalous
dispersion regimes, respectively. The results are shown in Fig. 26. The green and blue
lines corresponding to a cubic–quintic medium show a gain of modulation larger than
for a cubic medium (red line) in both regimes. The effect is more important in the
anomalous dispersion regime, but it covers a wider frequency region in the normal
dispersion regime. Similar results were obtained when the instability analysis was
performed with different perturbation frequencies in both dispersion regimes, as
shown in Figs. 26(c) and 26(d).

Figure 25

Magnitude of the electric field enhancement factor inside adjacent small (solid line)
and large (dashed line) nanoparticles, for (a) identical sizes, (b) a volume ratio of 4.8,
and (c) a volume ratio of 30. (d) Complex enhanced figure-of-merit of the third-order
NL optical response of a plasmonic metamaterial containing silver nanoparticles with
a single size (radius � 1 nm) and of a cascaded plasmonic metamaterial with a near-
est-neighbor volume ratio of 30. The legend shows the corresponding unit cell of the
periodic metamaterial. The labels λA and λS correspond to the antisymmetric and sym-
metric modes, respectively. Figures 3(a)–3(c) and Fig. 6 reprinted with permission
from Toroghi and Kik, Phys. Rev. B, 85, 045432 (2012) [111]. Copyright 2012
by the American Physical Society.
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Numerical simulations were also reported considering higher-order dispersive and dis-
sipative effects [148]. Figure 27(a) shows that the modulation gain for a nondissipative
system with dispersion effect up to the fourth order increases with the ratio between

Figure 26

Impact of the quintic nonlinearity on the XMI gain spectra with pump and probe in-
cident power of 100 W, in the (a),(c) normal and (b),(d) anomalous dispersion regimes
with (a),(b) equal and (c),(d) different perturbation frequencies. The dashed lines are
the gain spectra for the corresponding solid lines after propagation by 2 km consid-
ering attenuation. Reprinted from Liu et al., “Modulation instability induced by cross-
phase modulation in negative materials with higher-order nonlinearity,” Opt.
Commun. 339, 66–73 [231]. Copyright 2015, with permission from Elsevier.

Figure 27

Modulation instability gain as a function of perturbation frequencyΩ and higher-order
nonlinear parameter p for (a) nondissipative and (b) dissipative systems. Reprinted
from Saha and Sarma, “Modulation instability in nonlinear metamaterials induced
by cubic-quintic nonlinearities and higher-order dispersion effects,” Opt. Commun.
291, 321–325 [148]. Copyright 2013, with permission from Elsevier.
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the fifth- and third-order NL parameters, p, in accordance with the results obtained in
[231]. Then, when the dissipation effects are considered, the strength of the modu-
lation gain decreases due to the intensity losses and distortions at the ends of the side-
bands are observed, as shown in Fig. 27(b). These distortions were also observed in
the experiments of Subsection 6.4. Nevertheless, the modulation gain is still higher for
materials with quintic nonlinearities, as in the case discussed in Subsection 6.4.

Moreover, since the permeability and permissivity of metamaterials present dispersive
behavior, narrow bandwidth beams having different central frequencies can experi-
ence regions of positive and negative diffraction that depend on the sign of the re-
fractive index, n�ω�. This characteristic allows the introduction of a new procedure
to arrest the collapse of a probe beam, propagating in a region with positive refractive
index, by using a XPM scheme, where a pump beam feels a negative refractive index.
In [235] the theoretical and numerical evolution of the probe and pump beams propa-
gating through a NL metamaterial was investigated. When the refractive index is pos-
itive, strong self-focusing may overcome the positive diffraction, and the beam is
quickly compressed with an exponential increase of the peak intensity leading to
the beam collapse (catastrophic self-focusing). However, when the pump beam feels
a negative refractive index, the effect of negative diffraction competing with the
focusing nonlinearity may lead to spatial broadening of the beam and consequently
to a progressive decrease of the peak intensity along the propagation. Because the NL
response is strong, a probe beam which propagates feeling a positive refractive index,
initially may suffer a spatial compression with increase of its peak intensity. However,
due to the decrease of the pump beam peak intensity, the NL contribution induced by
XPM on the probe beam will decrease and as a result the probe beam intensity will
decrease until returning to the linear regime, avoiding the beam collapse [235]. These
effects as well as other analogous phenomena will enable nonlinearity management in
metamaterials opening new routes for various applications. Notice that plasmonic
metamaterials are suitable candidates to corroborate these theoretical forecasts due
to their large nonlinearity and the possibility of managing their NL response.

In the context of soliton physics, a large number of theoretical publications reinforced
with numerical simulations are found in negative-index metamaterials supported by
cubic nonlinearity (see, for example, [226,236]). However, since modulation instabil-
ity, which is a precursor of solitons, is affected by HON, the formation and propa-
gation of solitons is also influenced by HON. Actually, theoretical predictions show
that quintic nonlinearity in negative-index metamaterials can prevent beam collapse,
in analogy to traditional materials. In addition, the quintic nonlinearity is essential for
formation of bright–dark soliton coupled states [237]. When the quintic nonlinearity is
weak, i.e., it is not sufficiently large to produce the level of saturation needed to pre-
vent the beam collapse, the NL diffraction allows stabilization of solitons in negative-
index metamaterials [238]. Of course, due to the high complexity in the manufacture
of metamaterials, most of the theoretical studies formulated for negative-index meta-
materials lack experimental corroboration up to the present. Naturally plasmonic
metamaterials are an interesting option for the observation of these new phenomena,
and the progress in the materials fabrication may lead to applications in the future.
Therefore, the possibility of nonlinearity management as discussed at the beginning of
this section, with focus on the influence of the quintic nonlinearity to control the cross-
phase modulation, is highly attractive.

8. CONCLUSIONS AND OUTLOOK

The field of nonlinear optics, being more than 50 years old, still offers new possibil-
ities to manage light. As described along the previous pages, by adjusting the metal
NP volume filling fraction of the samples and working with appropriate light
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intensities, various nanocolloid compositions with tailored high-order nonlinearities
were investigated. Hence, the experiments reviewed in this paper demonstrate that
metal nanocolloids are versatile platforms for nonlinear optical studies and the results
reported may stimulate the synthesis of novel metal–dielectric nanocomposites (based
on inorganic glasses or polymers) with optimized characteristics for specific photonic
devices.

Finally we want to comment that there is a large volume of theoretical and computa-
tional studies with proposals related to the propagation of light in nonlinear media,
with analogies in fields like Bose–Einstein condensation and condensed matter phys-
ics. The nonlinearity management may be highly useful for further work along some
lines already discussed in the literature. For instance, the coherent interaction between
solitons, their stability under spin-orbit coupling, the generation of patterns by para-
metric instability, spatial-temporal solitons (light bullets), and the exploitation of the
possible analogies with solitons in magnetic materials and superconductors are exam-
ples of potential extensions of the works reported in this paper. The nonlinearity man-
agement procedure presented here for metal nanocolloids is a suitable way to design
new experiments related to high-order optical effects and spectroscopic applications.
Therefore, this is a challenging area since many basic phenomena studied from the
theoretical point of view were not investigated by experiments up to now.
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