On the use of DG methods for optimization and uncertainty estimation: CAD-based features and sensitivity analysis

R. Duvigneau

INRIA Sophia-Antipolis Méditerranée, Acumes Team, France

Nachos Seminar, May 2016
CAD features & DG methods
Context: optimum design

geometry generation

grid construction

optimization

physical analysis
Co-existence of different representations in a typical design loop

- **CAD-based description**: high-order NURBS (geometry definition)
- **mesh-based representation**: piecewise linear (PDE solvers)
- **ad-hoc parameters**: heterogeneous (optimization)

Consequences:

- Difficulty to build and deform grids automatically
- Projections yielding a loss of accuracy
- Introduction of a geometrical error in PDE solvers
- More complex sensitivity analysis
- More complex coupled problems, with moving bodies, refinement, etc.
Geometrical representations for optimum design

Co-existence of different representations in a typical design loop

- **CAD-based description**: high-order NURBS (geometry definition)
- **Mesh-based representation**: piecewise linear (PDE solvers)
- **Ad-hoc parameters**: heterogeneous (optimization)

Consequences:

- Difficulty to build and deform grids automatically
- Projections yielding a loss of accuracy
- Introduction of a geometrical error in PDE solvers
- More complex sensitivity analysis
- More complex coupled problems, with moving bodies, refinement, etc
Isogeometric approach

Change of paradigm\(^1\) : solve PDEs on parametric domains

Classical approach:

Isogeometric approach:

Objective : a unique high-order geometrical representation

CAD bases

B-Spline basis functions \hat{N}_i^p of degree p:
- Defined recursively using a knot vector $[\xi_1, \ldots, \xi_k]$
- Piecewise-polynomials of degree p
- Regularity C^{p-m} at each knot of multiplicity m
- Compact supports $[\xi_i, \xi_{i+p+1})$

![Graph showing B-Spline basis functions](image)

NURBS (Non-Uniform Rational Basis Spline) functions:
- Rational extension to represent conic shapes
Curves, surfaces and volumes

- **Parametric curves:**

\[P(\xi) = (x(\xi), y(\xi), z(\xi)) = \sum_{i=1}^{n} \hat{N}_i^P(\xi) P_i \]

- **Parametric surfaces:**

\[P(\xi, \eta) = (x(\xi, \eta), y(\xi, \eta), z(\xi, \eta)) = \sum_{i=1}^{n_i} \sum_{j=1}^{n_j} \hat{N}_i^P(\xi) \hat{N}_j^P(\eta) P_{ij} \]

- **Parametric volumes:**

\[P(\xi, \eta, \zeta) = (x(\xi, \eta, \zeta), y(\xi, \eta, \zeta), z(\xi, \eta, \zeta)) = \sum_{i=1}^{n_i} \sum_{j=1}^{n_j} \sum_{k=1}^{n_k} \hat{N}_i^P(\xi) \hat{N}_j^P(\eta) \hat{N}_k^P(\zeta) P_{ijk} \]
Principles

- Computational domain as a parametric surface (2D) / volume (3D):

\[P(\xi, \eta) = (x(\xi, \eta), y(\xi, \eta)) = \sum_{i=1}^{n_i} \sum_{j=1}^{n_j} \hat{N}_i^p(\xi) \hat{N}_j^p(\eta) P_{ij} \]

- Non-linear transformation from parametric to physical space:

\[\mathbf{F} : \Omega_0 \rightarrow \Omega \]

\[\xi = (\xi, \eta) \mapsto x = (x, y) \]

- Construction of analysis-aware domains\(^2,3\) necessary
 - Injectivity preservation
 - Maximize regularity / orthogonality

2. [Xu, Mourrain, Duvigneau, Galligo, Comp. Aided Design 2012]
3. [Xu, Mourrain, Duvigneau, Galligo, J. Comp. Phys. 2013]
Principles of isogeometric analysis

- Definition of the solution space with the same basis (possibly refined):

 \[
 \Theta(\xi, \eta) = \sum_{i=1}^{n_i'} \sum_{j=1}^{n_j'} \hat{N}_{i}^{p_i'}(\xi) \hat{N}_{j}^{p_j'}(\eta) \Theta_{ij}
 \]

- Variational formulation to determine degrees of freedom = control points
- Visualization of the solution as a parametric surface / volume
Application to an elliptic problem

- **Variational formulation of a heat conduction problem:**

 $$\int_{\Omega} \kappa(x) \nabla T(x) \cdot \nabla \psi(x) \, d\Omega + \int_{\partial \Omega_N} \Phi_0(x) \psi(x) \, d\Gamma = 0 \quad \forall \psi$$

- **Discretization yields the linear system** $MT = S$:

 $$M_{ij,kl} = \int_{\Omega_0} \kappa(F(\xi)) \nabla_\xi \hat{N}_{kl}(\xi) \, B(\xi)^\top B(\xi) \nabla_\xi \hat{N}_{ij}(\xi) \, J(\xi) \, d\hat{\Omega}$$

 $$S_{ij} = \int_{\partial \Omega_0 N} \Phi_0(F(\xi)) \, \hat{N}_{ij}(\xi) \, J(\xi) \, d\hat{\Gamma}$$

- **Integration in parametric space** using classical quadrature rules
- **Inversion by conjugate gradient**
Simple illustration

Problem description

Computational domain

6×6 control points

3×3 knot intervals
Simple illustration

Solution field in physical space

Solution surface in parametric space
Convergence study

![Graph showing convergence study](image)
Computational efficiency

<table>
<thead>
<tr>
<th>Degree</th>
<th>d.o.f.</th>
<th>Error</th>
<th>CPU (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>49</td>
<td>0.28×10^1</td>
<td>0.004</td>
</tr>
<tr>
<td>linear</td>
<td>625</td>
<td>0.17×10^0</td>
<td>0.072</td>
</tr>
<tr>
<td>linear</td>
<td>2401</td>
<td>0.45×10^{-2}</td>
<td>0.911</td>
</tr>
<tr>
<td>linear</td>
<td>9409</td>
<td>0.11×10^{-2}</td>
<td>12.150</td>
</tr>
<tr>
<td>quadratic</td>
<td>36</td>
<td>0.91×10^0</td>
<td>0.004</td>
</tr>
<tr>
<td>quadratic</td>
<td>324</td>
<td>0.11×10^{-1}</td>
<td>0.030</td>
</tr>
<tr>
<td>quadratic</td>
<td>1156</td>
<td>0.13×10^{-2}</td>
<td>0.252</td>
</tr>
<tr>
<td>quadratic</td>
<td>4356</td>
<td>0.16×10^{-3}</td>
<td>2.832</td>
</tr>
<tr>
<td>cubic</td>
<td>49</td>
<td>0.24×10^0</td>
<td>0.007</td>
</tr>
<tr>
<td>cubic</td>
<td>361</td>
<td>0.81×10^{-3}</td>
<td>0.078</td>
</tr>
<tr>
<td>cubic</td>
<td>1225</td>
<td>0.56×10^{-4}</td>
<td>0.461</td>
</tr>
<tr>
<td>cubic</td>
<td>4489</td>
<td>0.38×10^{-5}</td>
<td>4.509</td>
</tr>
</tbody>
</table>

4. [Duvigneau, Inria Research Report 6957, 2009]
Application to a hyperbolic system

- Classical conservation law:
\[
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} f(u) = 0
\]

- Variational formulation with SUPG stabilization:
\[
\int_{\Omega} \psi(x) \dot{u}(x) \, d\Omega - \int_{\Omega} \psi_x(x) f(u(x)) \, d\Omega + [\psi(x) f(u(x))]_{\partial\Omega} \\
+ \sum_{k=1}^{n_{el}} \int_{\Omega^k} \left(\psi_x(x) \frac{\partial f}{\partial u} \right) \tau \left(\frac{\partial f(u)}{\partial x} \right) \, d\Omega = 0 \quad \forall \psi
\]

- Integration in parametric space (e.g. SUPG term for a 2D problem):
\[
\int_{\Omega_0} \left[(\hat{N}_{ij}, \xi) \frac{\partial \xi}{\partial x} + \hat{N}_{ij}, \eta \frac{\partial \eta}{\partial x} \right] \frac{\partial f^1}{\partial u}(\xi) + (\hat{N}_{ij}, \xi) \frac{\partial \xi}{\partial y} + \hat{N}_{ij}, \eta \frac{\partial \eta}{\partial y} \frac{\partial f^2}{\partial u}(\xi) \\
\tau \left[\frac{\partial f^1}{\partial u}(\xi)(u, \xi) \frac{\partial \xi}{\partial x} + u, \eta \frac{\partial \eta}{\partial x} \right. + \frac{\partial f^2}{\partial u}(\xi)(u, \xi) \frac{\partial \xi}{\partial y} + u, \eta \frac{\partial \eta}{\partial y} \left. \right] J(\xi) \, d\Omega
\]

- Runge-Kutta time integration

- \(\tau \) computed as a characteristic time \(\alpha \frac{\Delta x}{c} \)
Convergence study

- Linear 1D case
- Strong dependency w.r.t. α stabilization parameter

![Graphs showing convergence study for quadratic and cubic B-Splines](image)

- Quadratic B-Spline
- Cubic B-Spline
Conclusion regarding isogeometric analysis methods

- Very appealing from conceptual point of view
- More complex to implement
- Local refinement issues (T-Splines)
- Seems to be efficient for elliptic problems
- Tedious for hyperbolic problems

Questions

- Could DG methods handle CAD-based geometries?
- How?
Synthesis

Conclusion regarding isogeometric analysis methods

- Very appealing from conceptual point of view
- More complex to implement
- Local refinement issues (T-Splines)
- Seems to be efficient for elliptic problems
- Tedious for hyperbolic problems

Questions

- Could DG methods handle CAD-based geometries?
- How?
Generation of a basis suitable for DG methods

Overview of the problem

- Start from a B-Spline (of NURBS) definition of the boundary
- Construct a boundary basis suitable for DG without altering the geometry
- Extent to a surface / volume computational domain
Basis transformation

Knot insertion procedure

- A knot can be inserted without modifying the B-Spline / NURBS curve

Regularity

- A B-Spline / NURBS curve is C^{p-m} where m is the knot multiplicity
Basis transformation

Knot insertion procedure

- A knot can be inserted without modifying the B-Spline / NURBS curve.

Regularity

- A B-Spline / NURBS curve is C^{p-m} where m is the knot multiplicity.
Basis transformation

Generation of a discontinuous basis

- By inserting p knots at existing knots, a discontinuous basis is generated
- The B-Spline / NURBS curve is changed into a set of Bezier / rational Bezier curves
- Geometry unchanged

![original B-Spline basis](image1)

![discontinuous Bernstein bases](image2)
Illustration

Cubic B-Spline boundaries
knots: [0 0 0 0 \(\frac{1}{3}\) \(\frac{2}{3}\) 1 1 1 1]

3 \(\times\) 3 Bezier elements
Synthesis

- B-Spline / NURBS basis can be transformed to a set of discontinuous Bernstein / rational Bernstein basis

- A computational domain based on Bezier / rational Bezier elements can be generated:
 - by tensor product → structured grid (straightforward for simple problems)
 - triangular or tetrahedral Bezier / rational Bezier grid (not straightforward)

- Note:
 - Bernstein / rational Bernstein basis only required at the boundary
 - Bernstein basis can be transformed to Lagrange basis
DG based on Bernstein basis

Problem

- Unsteady viscous Burgers equation:

\[\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} f(u) = 0 \quad f(u) = \frac{u^2}{2} - \nu \frac{\partial u}{\partial x} \]

- Initial solution:

\[u_0(x) = \frac{a + b}{2} - \frac{a - b}{2} \tanh \left((a - b) \frac{x}{4\nu} \right) \]

Numerical methods

- Classical DG formulation:

\[\int_{l_j} \frac{\partial u_h(x, t)}{\partial t} v_h(x) \, dx = \int_{l_j} f(u_h(x, t)) \frac{\partial v_h(x)}{\partial x} \, dx + f^*(x_j^l, t) - f^*(x_j^r, t) \]

- Local Lax-Friedrichs flux for convective part; LDG approach for diffusive part
- Explicit RK4 time integration
- Gauss-legendre quadratures
- Bezier representation for \(u_h \)
- Least-squares approximation for initial condition
Solution (16 elements)
Solution accuracy

![Graph showing solution accuracy with error (L2-norm) on the y-axis and degrees of freedom on the x-axis. The graph includes lines for different degrees and orders, with markers indicating the data points.]
Accuracy vs CPU time

![Graph showing the relationship between CPU time (s) and Error (L2-norm) for different degrees of approximation.](attachment:image.png)

- Degree 0
- Degree 1
- Degree 2
- Degree 3

R. Duvigneau (INRIA) CAD features & sensitivity analysis Nachos Seminar, May 2016
Synthesis: proposed approach

- Transform B-Spline / NURBS boundaries into a set of Bezier / rational Bezier curves by multiple knot insertion

- Generate Bezier elements by tensor product

- Solve PDE system using DG based on Bernstein basis

Extension to 3D Navier-Stokes in progress!
Sensitivity analysis & DG methods
For PDE systems, sensitivity analysis refers to the derivative of an output quantity w.r.t. an input variable.

Mainly used for optimization: evaluate the gradient of a cost functional w.r.t. design parameters.

Preferably use adjoint equation method (independent from design parameters).
Limitations of adjoint equation method

- Equation dependent on the output of interest
- For unsteady systems, requires storage of unsteady solution for backward time integration
- Restricted to (some) functionals
Alternative: sensitivity equation method

- Obtained by simply differentiating state equations w.r.t. input variables
- Allows to evaluate sensitivity of the whole solution fields $u^{(\alpha)} = \frac{\partial u}{\partial \alpha}$
- Forward time integration
- Several purposes:
 - Optimization
 - Exploration of neighboring solutions
 - Uncertainty propagation
- But equation dependent on the input variable
- Easy parallelization
Continuous vs discrete

- **Discretize then differentiate:**
 - Consistent with discrete PDE solutions
 - Requires to differentiate discrete quantities (mesh, limiters, etc)

- **Differentiate then discretize:**
 - More flexible: allows to choose a different numerical scheme, mesh, etc.
 - Non consistent with discrete PDE solutions (for a given mesh)
Sensitivity-based design optimization

- Optimization based on **descent methods** (steepest-descent, Newton, etc)
- Sensitivity field is used to compute the gradient of the cost function of interest:
 - Inverse problems:
 \[
 J(\alpha) = \frac{1}{2} \int_{\Omega} |u(x) - u^*(x)|^2 \, dx
 \]
 with \(u^* \) target solution
 \[
 \frac{\partial J}{\partial \alpha} = \int_{\Omega} (u(x) - u^*(x)) \, u^{(\alpha)}(x) \, dx
 \]
 - Boundary integral:
 \[
 J(\alpha) = \frac{1}{2} \int_{\Gamma} \nabla u(s) \cdot \vec{n} \, ds
 \]
 \[
 \frac{\partial J}{\partial \alpha} = \int_{\Gamma} \nabla u^{(\alpha)}(s) \cdot \vec{n} + \nabla u(s) \cdot \vec{n}^{(\alpha)} \, ds
 \]
Application to design optimization

- Forced convection (laminar Navier-Stokes)
- Finite-element analysis adapted to flow and sensitivities
- Shape parameters\(^3\): location \(x\) and \(y\), incidence \(\alpha\)

3. [Duvigneau & Pelletier *Num. Heat Transfer* 2006]
Sensitivity-based uncertainty propagation

- We consider a (first-order) Taylor expansion of the quantity g around the expectation value of the uncertain variable α:

$$ g(\alpha) = g|_{\mu_\alpha} + \left. \frac{\partial g}{\partial \alpha} \right|_{\mu_\alpha} (\alpha - \mu_\alpha) + O(\delta \alpha^2) $$

- The Taylor expansion is used for a first-order approximation of the variance:

$$ \sigma_g^2 = \int_{\Omega_\alpha} g(\alpha)^2 \rho(\alpha) d\alpha - \mu_g^2 $$

$$ \sigma_g^2 \approx g|_{\mu_\alpha}^2 \int_{\Omega_\alpha} \rho(\alpha) d\alpha + \left. \frac{\partial g}{\partial \alpha} \right|_{\mu_\alpha}^2 \int_{\Omega_\alpha} (\alpha - \mu_\alpha)^2 \rho(\alpha) d\alpha + $$

$$ 2 g|_{\mu_\alpha} \left. \frac{\partial g}{\partial \alpha} \right|_{\mu_\alpha} \int_{\Omega_\alpha} (\alpha - \mu_\alpha) \rho(\alpha) d\alpha - \mu_g^2 $$

$$ = 1 \quad = \sigma_\alpha^2 $$

$$ 0 \quad = 0 $$

$$ \sigma_g^2 \approx \left. \frac{\partial g}{\partial \alpha} \right|_{\mu_\alpha}^2 \sigma_\alpha^2 $$
Extension to several uncertain parameters and higher order

- For \(n \) independent Gaussian variables, one obtains:

\[
\mu_g \approx g(\mu_\alpha) + \frac{1}{2} \sum_{i=1}^{n} \left. \frac{\partial^2 g}{\partial \alpha_i^2} \right|_{\mu_\alpha} \sigma^2_{\alpha_i}
\]

\[
\sigma_g^2 \approx \sum_{i=1}^{n} \left. \frac{\partial g}{\partial \alpha_i} \right|_{\mu_\alpha}^2 \sigma^2_{\alpha_i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \left. \frac{\partial^2 g}{\partial \alpha_i \partial \alpha_k} \right|_{\mu_\alpha}^2 \sigma^2_{\alpha_i} \sigma^2_{\alpha_k}
\]

- Extensions to correlated non-Gaussian variables exist.
Application to uncertainty estimation

- Airfoil NACA 0012 ($Re = 2000$)
- Finite-element analysis adapted to flow and sensitivities
- Shape uncertainty\(^3\): thickness (1%), incidence (0.5°), camber (1%)

3. [Duvigneau & Pelletier Int. J. Comp. Fluid Dyn. 2006]
Problem

- Unsteady viscous Burger equation:
 \[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} \quad \forall (x, t) \in [x_L, x_R] \times [0, T] \]

- Initial solution:
 \[u(x, 0) = u_0(x) \quad \forall x \in [x_L, x_R] \]

- Boundary condition:
 \[u(x_L, t) = u_L(t) \quad u(x_R, t) = u_R(t) \quad \forall t \in [0, T] \]
Sensitivity equation method

Problem

- **Conservative form:**
 \[\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} f(u) = 0 \quad \forall (x, t) \in [x_L, x_R] \times [0, T] \]

 with:
 \[f(u) = \frac{u^2}{2} - \nu \frac{\partial u}{\partial x} \]

- **First-order system form (LDG approach \(q = \sqrt{\nu} \frac{\partial u}{\partial x} \)):**

 \[
 \begin{align*}
 \frac{\partial}{\partial t} u + \frac{\partial}{\partial x} f & = 0 \\
 f & = \frac{u^2}{2} - \sqrt{\nu} q \\
 q + \frac{\partial}{\partial x} g & = 0 \\
 g & = -\sqrt{\nu} u.
 \end{align*}
 \]
Sensitivity equation method

Principle of the method

- **Sensitivity variable:**
 \[u^{(\alpha)} = \frac{\partial u}{\partial \alpha} \]

- **Formal differentiation of state equation w.r.t. \(\alpha \):**
 \[
 \frac{\partial}{\partial \alpha} \left(\frac{\partial u}{\partial t} \right) + \frac{\partial}{\partial \alpha} \left(u \frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial \alpha} \left(\nu \frac{\partial^2 u}{\partial x^2} \right) \quad \forall (x, t) \in [x_L, x_R] \times [0, T]
 \]

- **By switching derivatives with respect to \(\alpha \) and \(x \) or \(t \):**
 \[
 \frac{\partial u^{(\alpha)}}{\partial t} + u^{(\alpha)} \frac{\partial u}{\partial x} + u \frac{\partial u^{(\alpha)}}{\partial x} = \nu \frac{\partial^2 u^{(\alpha)}}{\partial x^2} + \nu^{(\alpha)} \frac{\partial^2 u}{\partial x^2} \quad \forall (x, t) \in [x_L, x_R] \times [0, T]
 \]

- **Initial condition for sensitivity:**
 \[u^{(\alpha)}(x, 0) = u^{(\alpha)}_0(x) \quad \forall x \in [x_L, x_R] \]

- **Boundary condition for sensitivity:**
 \[u^{(\alpha)}(x_L, t) = u^{(\alpha)}_L(t) \quad u^{(\alpha)}(x_R, t) = u^{(\alpha)}_R(t) \quad \forall t \in [0, T] \]
Sensitivity equation method

Principle of the method

- First-order system form (LDG approach $q(\alpha) = \sqrt{\nu} \frac{\partial u(\alpha)}{\partial x} + \frac{\nu(\alpha)}{2\sqrt{\nu}} \frac{\partial u}{\partial x}$):

\[
\begin{align*}
\frac{\partial}{\partial t} u(\alpha) + \frac{\partial}{\partial x} f(\alpha) &= 0 \\
q'(\alpha) + \frac{\partial}{\partial x} g(\alpha) &= 0
\end{align*}
\]

\[f(\alpha) = uu(\alpha) - \sqrt{\nu} q(\alpha) - \frac{\nu(\alpha)}{2\sqrt{\nu}} q\]
\[g(\alpha) = -\sqrt{\nu} u(\alpha) - \frac{\nu(\alpha)}{2\sqrt{\nu}} u.\]
Sensitivity equation method

Principle of the method

One has to solve the extended system:

$$ \frac{\partial}{\partial t} w + \frac{\partial}{\partial x} \phi(w) = 0 $$

For the extended variables and fluxes:

$$ w = \begin{pmatrix} u \\ q \\ u^{(\alpha)} \\ q^{(\alpha)} \end{pmatrix} \quad \phi = \begin{pmatrix} f \\ g \\ f^{(\alpha)} \\ g^{(\alpha)} \end{pmatrix} $$
Sensitivity equation method

Some properties

- Same type of PDE system as original problem (e.g. hyperbolic)
- Sensitivity system has:
 - the same flux Jacobian matrix: \(f^{(\alpha)} = \frac{\partial f(u)}{\partial \alpha} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial \alpha} = \frac{\partial f}{\partial u} u^{(\alpha)} \)
 - the same eigenvalues
 - the same eigenvectors

Consequences:
- same stability conditions
- same time-marching approach
- same implicit part if an implicit scheme is used
High-order sensitivity

Principle of the method

- One introduces a couple of parameters α_1, α_2 and second-order sensitivities:
 \[
 u^{(\alpha_1, \alpha_2)} = \frac{\partial^2 u}{\partial \alpha_1 \partial \alpha_2}
 \]

- Second-order sensitivity system:

 \[
 \frac{\partial}{\partial t} u^{(\alpha_1, \alpha_2)} + \frac{\partial}{\partial x} f^{(\alpha_1, \alpha_2)} = 0
 \]

 \[
 f^{(\alpha_1, \alpha_2)} = uu^{(\alpha_1, \alpha_2)} + u^{(\alpha_2)} u^{(\alpha_1)}
 \]

 \[
 - \sqrt{\nu} q^{(\alpha_1, \alpha_2)} - \frac{\nu^{(\alpha_2)}}{2\sqrt{\nu}} q^{(\alpha_1)} - \frac{\nu^{(\alpha_1)}}{2\sqrt{\nu}} q^{(\alpha_2)} - \frac{\nu^{(\alpha_1, \alpha_2)}}{4\sqrt{\nu^3}} q
 \]

 \[
 q^{(\alpha_1, \alpha_2)} + \frac{\partial}{\partial x} g^{(\alpha_1, \alpha_2)} = 0
 \]

 \[
 g^{(\alpha_1, \alpha_2)} = -\sqrt{\nu} u^{(\alpha_1, \alpha_2)} - \frac{\nu^{(\alpha_2)}}{2\sqrt{\nu}} u^{(\alpha_1)} - \frac{\nu^{(\alpha_1)}}{2\sqrt{\nu}} u^{(\alpha_2)} - \frac{\nu^{(\alpha_1, \alpha_2)}}{4\sqrt{\nu^3}} u
 \]
High-order sensitivity

Principle of the method

One has to solve the extended system:

\[
\frac{\partial}{\partial t} w + \frac{\partial}{\partial x} \phi(w) = 0
\]

For the extended variables and fluxes:

\[
w = \begin{pmatrix} u \\ q \\ u^{(\alpha_1)} \\ q^{(\alpha_1)} \\ u^{(\alpha_2)} \\ q^{(\alpha_2)} \\ u^{(\alpha_1,\alpha_1)} \\ q^{(\alpha_1,\alpha_1)} \\ u^{(\alpha_1,\alpha_2)} \\ q^{(\alpha_1,\alpha_2)} \\ u^{(\alpha_2,\alpha_2)} \\ q^{(\alpha_2,\alpha_2)} \end{pmatrix} \quad \phi = \begin{pmatrix} f \\ g \\ f^{(\alpha_1)} \\ g^{(\alpha_1)} \\ f^{(\alpha_2)} \\ g^{(\alpha_2)} \\ f^{(\alpha_1,\alpha_1)} \\ g^{(\alpha_1,\alpha_1)} \\ f^{(\alpha_1,\alpha_2)} \\ g^{(\alpha_1,\alpha_2)} \\ f^{(\alpha_2,\alpha_2)} \\ g^{(\alpha_2,\alpha_2)} \end{pmatrix}
\]

→ parallel solving strategy required for efficiency!
Numerical resolution

DG method

- Classical DG formulation:
 \[
 \int_{l_j} \frac{\partial w_h(x, t)}{\partial t} v_h(x) \, dx = \int_{l_j} \phi(w_h(x, t)) \frac{\partial v_h(x)}{\partial x} \, dx + \phi^*(x_j^l, t) - \phi^*(x_j^r, t)
 \]

- Local Lax-Friedrichs flux for convective part; LDG approach for diffusive part
- Explicit RK4 time integration
- Gauss-legendre quadratures
- Bezier representation for \(w_h \)
- Least-squares approximation for initial conditions
- **One code ligne to add for each sensitivity !** (flux expression)
Test problem

Problem definition

- Unsteady viscous Burger equation:
 \[
 \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} \quad \forall (x, t) \in [-1, 1] \times [0, 0.5]
 \]

- Exact solution:
 \[
 u(x, t) = \frac{a + b}{2} - \frac{a - b}{2} \tanh \left((a - b) \frac{x - \frac{1}{2}(a + b)t}{4\nu} \right)
 \]

- Two sensitivity parameters: \(\nu \) (diffusion coef.) and \(a \) (value at \(-\infty\))
Solution accuracy

error for u
First-order sensitivity accuracy

error for $u^{(a)}$

error for $u^{(\nu)}$
Second-order sensitivity accuracy

- Error for $u^{(a,a)}$
- Error for $u^{(a,\nu)}$
- Error for $u^{(\nu,\nu)}$
Third-order sensitivity accuracy

![Graphs showing sensitivity error for different orders and degrees of freedom.](image)

- Error for $u^{(a,a,a)}$
- Error for $u^{(a,a,\nu)}$
- Error for $u^{(a,\nu,\nu)}$
- Error for $u^{(\nu,\nu,\nu)}$

R. Duvigneau (INRIA)

CAD features & sensitivity analysis

Nachos Seminar, May 2016
A simple illustration

Solution of Burgers equation
A simple illustration

Linear Taylor expansion

numerical solution
Taylor expansion
A simple illustration

Linear Taylor expansion
A simple illustration

Quadratic taylor expansion
A simple illustration

Cubic taylor expansion
A simple illustration

Extrapolation error in the direction (1, 0.1)
- Sensitivity equation can be efficiently implemented in existing DG code

- High-order accuracy for sensitivity variables

- Parallelization strategy for computational efficiency to be explored