PmWiki
Results

Simulation of near-field plasmonic interactions

with a local approximation order DGTD method

Results.DGTDPloc History

Hide minor edits - Show changes to output

June 09, 2016, at 07:35 PM by 82.228.254.112 -
Changed line 61 from:
%center% Modulus of '''E''' field  map  in the  nanolens device  at  t=12.3  fs,  obtained  with  a DGTD-P'_1_'P'_3_' method. Field values have been scaled to [0 , 10]
to:
%center% Modulus of '''E''' field  map  in the  bowtie antenna  at  t=12.3  fs,  obtained  with  a DGTD-P'_1_'P'_3_' method. Field values have been scaled to [0 , 10]
December 18, 2015, at 09:01 AM by 138.96.200.15 -
Changed lines 68-69 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_dt1.png
(:table border='0' width='100%' align='center' cellspacing='1px':)
to:
(:cell  align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_dt1.png
December 18, 2015, at 09:00 AM by 138.96.200.15 -
Changed line 38 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
to:
(:cell  align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
December 18, 2015, at 09:00 AM by 138.96.200.15 -
Deleted line 38:
(:table border='0' width='100%' align='center' cellspacing='1px':)
December 18, 2015, at 08:57 AM by 138.96.200.15 -
Changed lines 8-9 from:
To overcome this limitation, several strategies can be considered. The strategy discussed here relies on the use of non-uniform distribution of the polynomial order in the framework of a global time  step DGDT method. By  imposing low orders in  small cells and  high orders  in  large  cells, it  is  possible to  significantly alleviate both  the global number of  degrees of freedom and  the time step  restriction  with  a  minimal impact  on  the  method  accuracy. Strategies  exploiting  locally  adaptive  (LA) formulations  usually combine  both ''h''- and  ''p''- adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost.
to:
Several strategies can be considered to address this performance issue. The strategy discussed here relies on the use of non-uniform distribution of the polynomial order in the framework of a global time  step DGDT method. By  imposing low orders in  small cells and  high orders  in  large  cells, it  is  possible to  significantly alleviate both  the global number of  degrees of freedom and  the time step  restriction  with  a  minimal impact  on  the  method  accuracy. Strategies  exploiting  locally  adaptive  (LA) formulations  usually combine  both ''h''- and  ''p''- adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost.
Deleted lines 11-15:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png |
Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.

(:linebreaks:)

Added lines 16-19:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.

(:linebreaks:)

Added lines 46-49:
As  a second  application, we  consider  the  computation of  the extinction  cross section  of  a metallic  bowtie nanoantenna.  These structures are actively studied for  the very strong field enhancement they provide between the tips of the two triangular nanoparticles,  which  is  known  to  be  inversely proportionnal to the  size of the gap. Hence,  bowtie nanoantennas are good  candidates  for  surface-enhanced  Raman  spectroscopy  (SERS) applications.  Recent advances  in lithography techniques allowed  the creation of  structures with gaps as  small as 3 nm,  while  the  typical size  of  the  full structure can get close to 200 nm.  Additionally, realistic geometries of such antennas include small roundings  at the edges and tips, whose typical  size  is  between  a  few  to  a  few  tens  of  nanometers. In the  present case, we consider  a pair of 10 nm  thick, equilateral prisms of edge length 100 nm, with a spacing gap of 3 nm. The rounding radius is  2 nm, and is uniform  for all edges and  tips. The material considered  is  gold,  described  by a  Drude model.

(:linebreaks:)

Deleted lines 62-65:

(:linebreaks:)

As  a second  application, we  consider  the  computation of  the extinction  cross section  of  a metallic  bowtie nanoantenna.  These structures are actively studied for  the very strong field enhancement they provide between the tips of the two triangular nanoparticles,  which  is  known  to  be  inversely proportionnal to the  size of the gap. Hence,  bowtie nanoantennas are good  candidates  for  surface-enhanced  Raman  spectroscopy  (SERS) applications.  Recent advances  in lithography techniques allowed  the creation of  structures with gaps as  small as 3 nm,  while  the  typical size  of  the  full structure can get close to 200 nm.  Additionally, realistic geometries of such antennas include small roundings  at the edges and tips, whose typical  size  is  between  a  few  to  a  few  tens  of  nanometers. In the  present case, we consider  a pair of 10 nm  thick, equilateral prisms of edge length 100 nm, with a spacing gap of 3 nm. The rounding radius is  2 nm, and is uniform  for all edges and  tips. The material considered  is  gold,  described  by a  Drude model.
December 18, 2015, at 08:56 AM by 138.96.200.15 -
Changed lines 47-48 from:
%lfloat text-align=center width=350px% http://www-sop.inria.fr/nachos/pics/result/p_loc/bowtie3.png | Mesh setup for a bowtie nanoantenna. The gray cells correspond to the nanoantenna, the blue  cells to vacuum,  while the  red cells constitute  the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is close to 275.
to:
%lfloat text-align=center width=350px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie3.png | Mesh setup for a bowtie nanoantenna. The gray cells correspond to the nanoantenna, the blue  cells to vacuum,  while the  red cells constitute  the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is close to 275.
December 18, 2015, at 08:55 AM by 138.96.200.15 -
Changed lines 47-48 from:
%lfloat text-align=center width=350px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie3.png |
Mesh setup for a bowtie nanoantenna. The gray cells correspond to the nanoantenna, the blue  cells to vacuum,  while the  red cells constitute  the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is close to 275.
to:
%lfloat text-align=center width=350px% http://www-sop.inria.fr/nachos/pics/result/p_loc/bowtie3.png | Mesh setup for a bowtie nanoantenna. The gray cells correspond to the nanoantenna, the blue  cells to vacuum,  while the  red cells constitute  the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is close to 275.
December 18, 2015, at 08:54 AM by 138.96.200.15 -
Added line 50:
Deleted lines 52-55:
As  a second  application, we  consider  the  computation of  the extinction  cross section  of  a metallic  bowtie nanoantenna.  These structures are actively studied for  the very strong field enhancement they provide between the tips of the two triangular nanoparticles,  which  is  known  to  be  inversely proportionnal to the  size of the gap. Hence,  bowtie nanoantennas are good  candidates  for  surface-enhanced  Raman  spectroscopy  (SERS) applications.  Recent advances  in lithography techniques allowed  the creation of  structures with gaps as  small as 3 nm,  while  the  typical size  of  the  full structure can get close to 200 nm.  Additionally, realistic geometries of such antennas include small roundings  at the edges and tips, whose typical  size  is  between  a  few  to  a  few  tens  of  nanometers. In the  present case, we consider  a pair of 10 nm  thick, equilateral prisms of edge length 100 nm, with a spacing gap of 3 nm. The rounding radius is  2 nm, and is uniform  for all edges and  tips. The material considered  is  gold,  described  by a  Drude model.

(:linebreaks:)

Added lines 62-66:

(:linebreaks:)

As  a second  application, we  consider  the  computation of  the extinction  cross section  of  a metallic  bowtie nanoantenna.  These structures are actively studied for  the very strong field enhancement they provide between the tips of the two triangular nanoparticles,  which  is  known  to  be  inversely proportionnal to the  size of the gap. Hence,  bowtie nanoantennas are good  candidates  for  surface-enhanced  Raman  spectroscopy  (SERS) applications.  Recent advances  in lithography techniques allowed  the creation of  structures with gaps as  small as 3 nm,  while  the  typical size  of  the  full structure can get close to 200 nm.  Additionally, realistic geometries of such antennas include small roundings  at the edges and tips, whose typical  size  is  between  a  few  to  a  few  tens  of  nanometers. In the  present case, we consider  a pair of 10 nm  thick, equilateral prisms of edge length 100 nm, with a spacing gap of 3 nm. The rounding radius is  2 nm, and is uniform  for all edges and  tips. The material considered  is  gold,  described  by a  Drude model.

December 18, 2015, at 08:53 AM by 138.96.200.15 -
Changed line 30 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_range.png
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_range.png
December 18, 2015, at 08:52 AM by 138.96.200.15 -
Changed line 58 from:
(:cell  align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
to:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
December 18, 2015, at 08:51 AM by 138.96.200.15 -
Changed line 39 from:
(:cell  align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
to:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
December 18, 2015, at 08:50 AM by 138.96.200.15 -
Changed line 70 from:
(:cell  align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_dt1.png
to:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_dt1.png
December 18, 2015, at 08:17 AM by 138.96.200.15 -
Changed line 30 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_range.png
to:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_range.png
December 18, 2015, at 08:16 AM by 138.96.200.15 -
Added line 30:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_range.png
Changed line 33 from:
%center% E'_y_' field map in the nanolens device at t=10 fs
to:
%center% E'_y_' field map in the nanolens device at t=10 fs. Field values have been scaled to [-15 , 15]
December 18, 2015, at 08:15 AM by 138.96.200.15 -
December 18, 2015, at 08:14 AM by 138.96.200.15 -
Added lines 51-54:
As  a second  application, we  consider  the  computation of  the extinction  cross section  of  a metallic  bowtie nanoantenna.  These structures are actively studied for  the very strong field enhancement they provide between the tips of the two triangular nanoparticles,  which  is  known  to  be  inversely proportionnal to the  size of the gap. Hence,  bowtie nanoantennas are good  candidates  for  surface-enhanced  Raman  spectroscopy  (SERS) applications.  Recent advances  in lithography techniques allowed  the creation of  structures with gaps as  small as 3 nm,  while  the  typical size  of  the  full structure can get close to 200 nm.  Additionally, realistic geometries of such antennas include small roundings  at the edges and tips, whose typical  size  is  between  a  few  to  a  few  tens  of  nanometers. In the  present case, we consider  a pair of 10 nm  thick, equilateral prisms of edge length 100 nm, with a spacing gap of 3 nm. The rounding radius is  2 nm, and is uniform  for all edges and  tips. The material considered  is  gold,  described  by a  Drude model.

(:linebreaks:)

Changed lines 63-73 from:
%center% Modulus of '''E''' field  map  in the  nanolens device  at  t=12.3  fs,  obtained  with  a DGTD-P'_1_'P'_3_' method. Field values have been scaled to [0 , 10]
to:
%center% Modulus of '''E''' field  map  in the  nanolens device  at  t=12.3  fs,  obtained  with  a DGTD-P'_1_'P'_3_' method. Field values have been scaled to [0 , 10]

(:linebreaks:)

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_dt0.png
(:cell  align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_dt1.png
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:tableend:)

%center% ''' Left figure''' : polynomial  order repartition  for the  bowtie antenna mesh  with  respect  to  time-step for the P'_1_'P'_3_' case. '''Right figure''' : extinction  cross section    of  the  bowtie nanoantenna obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 2 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.0
December 17, 2015, at 05:14 PM by 138.96.200.15 -
Changed lines 52-53 from:
(:cellnr align='center':) %width=380px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3.png
(:cell  align='center':) %width=380px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
to:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3.png
(:cell  align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
Changed lines 55-56 from:

%center% '''E''' field  map  in the  nanolens device  at  t=12.3   fs,  obtained  with  a DGTD-P'_1_'P'_3_' method
to:
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=400px% http://www-sop
.inria.fr/nachos/pics/results/p_loc/bowtie_range.png
(:tableend:)

%center% Modulus of '''E''' field
  map  in the  nanolens device  at  t=12.3  fs,  obtained  with  a DGTD-P'_1_'P'_3_' method. Field values have been scaled to [0 , 10]
December 17, 2015, at 05:09 PM by 138.96.200.15 -
Changed lines 52-54 from:
(:cellnr align='center':) %width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3.png
(:cell  align='center':) %width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
(:tableend:)
to:
(:cellnr align='center':) %width=380px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3.png
(:cell  align='center':) %width=380px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
(:tableend:)

%center% '''E''' field  map  in the  nanolens device  at  t=12.3  fs,  obtained  with  a DGTD-P'_1_'P'_3_' method
December 17, 2015, at 05:07 PM by 138.96.200.15 -
Changed lines 52-53 from:
(:cellnr align='center':) %width=280px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3.png
(:cell  align='center':) %width=280px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
to:
(:cellnr align='center':) %width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3.png
(:cell  align='center':) %width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
December 17, 2015, at 05:07 PM by 138.96.200.15 -
December 17, 2015, at 05:06 PM by 138.96.200.15 -
Deleted line 50:
(:table border='0' width='100%' align='center' cellspacing='1px':)
December 17, 2015, at 05:06 PM by 138.96.200.15 -
Added line 51:
(:table border='0' width='100%' align='center' cellspacing='1px':)
December 17, 2015, at 05:05 PM by 138.96.200.15 -
December 17, 2015, at 05:05 PM by 138.96.200.15 -
Added lines 51-54:
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=280px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3.png
(:cell  align='center':) %width=280px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_visu_P1P3_top.png
(:tableend:)
December 17, 2015, at 05:01 PM by 138.96.200.15 -
Changed line 46 from:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie3.png |
to:
%lfloat text-align=center width=350px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie3.png |
December 17, 2015, at 05:00 PM by 138.96.200.15 -
Changed line 46 from:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_mesh.png |
to:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie3.png |
December 17, 2015, at 05:00 PM by 138.96.200.15 -
Added lines 43-49:

(:linebreaks:)

%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/bowtie_mesh.png |
Mesh setup for a bowtie nanoantenna. The gray cells correspond to the nanoantenna, the blue  cells to vacuum,  while the  red cells constitute  the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is close to 275.

(:linebreaks:)
December 17, 2015, at 04:34 PM by 138.96.200.15 -
Changed lines 42-43 from:
%center% ''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case
%center% '''Right figure''' : field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
to:
%center% ''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case. '''Right figure''' : field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
December 17, 2015, at 04:34 PM by 138.96.200.15 -
Changed line 42 from:
%center% ''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case. The red elements correspond to P'_1_' approximation, the green ones  to P'_2_', and the gray ones to P'_3_'
to:
%center% ''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case
December 17, 2015, at 04:33 PM by 138.96.200.15 -
Deleted line 42:
December 17, 2015, at 04:33 PM by 138.96.200.15 -
Changed lines 42-44 from:
''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case. The red elements correspond to P'_1_' approximation, the green ones  to P'_2_', and the gray ones to P'_3_'.

'''Right figure''' : field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
to:
%center% ''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case. The red elements correspond to P'_1_' approximation, the green ones  to P'_2_', and the gray ones to P'_3_'

%center%
'''Right figure''' : field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
December 17, 2015, at 04:32 PM by 138.96.200.15 -
Changed lines 42-43 from:
''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case. The red elements correspond to
P'_1_'  approximation, the green ones  to P'_2_', and the gray ones to P'_3_'.
to:
''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case. The red elements correspond to P'_1_' approximation, the green ones  to P'_2_', and the gray ones to P'_3_'.
December 17, 2015, at 04:31 PM by 138.96.200.15 -
Added lines 41-43:

''' Left figure''' : polynomial  order repartition  for the  nanolens mesh  with  respect  to  time-step for the P'_1_'P'_3_' case. The red elements correspond to
P'_1_'  approximation, the green ones  to P'_2_', and the gray ones to P'_3_'.
December 17, 2015, at 04:26 PM by 138.96.200.15 -
Changed line 42 from:
''Right figure'': field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
to:
'''Right figure''' : field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
December 17, 2015, at 04:26 PM by 138.96.200.15 -
Changed line 42 from:
Right figure: field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens} obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
to:
''Right figure'': field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
December 17, 2015, at 04:25 PM by 138.96.200.15 -
Added line 39:
(:table border='0' width='100%' align='center' cellspacing='1px':)
Added lines 41-42:

Right figure: field enhancement  in the vicinity of the  smallest sphere  of  a self-similar  nanolens} obtained  with DGTD-P'_1_', DGTD-P'_3_' and DGTD-P'_1_'P'_3_' methods.  Less than 1 % of  relative error  is observed  between DGTD-P'_3_' and DGTD-P'_1_'P'_3_' computations, for a speedup factor of 2.6
December 17, 2015, at 04:21 PM by 138.96.200.15 -
Changed lines 37-38 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt0.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
to:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt0.png
(:cell  align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
December 17, 2015, at 04:20 PM by 138.96.200.15 -
Changed lines 37-38 from:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt0.png
(:cell  align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
to:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt0.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
December 17, 2015, at 04:20 PM by 138.96.200.15 -
Added lines 33-40:

(:linebreaks:)

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt0.png
(:cell  align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_dt1.png
(:tableend:)

December 16, 2015, at 04:37 PM by 138.96.200.15 -
December 16, 2015, at 04:37 PM by 138.96.200.15 -
Changed lines 22-23 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P1.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P3.png
to:
(:cellnr align='center':) %width=280px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P1.png
(:cell  align='center':) %width=280px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P3.png
Changed line 28 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P1P3.png
to:
(:cellnr align='center':) %width=280px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P1P3.png
Changed line 32 from:
%center%
to:
%center% E'_y_' field map in the nanolens device at t=10 fs
December 16, 2015, at 04:35 PM by 138.96.200.15 -
Changed lines 22-23 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P1.png
(:cellnr align='center':) DGTD method with affine elements
to:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P1.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P3.png
(:cellnr align='center':) DGTD-P'_1_' method
(:cell  align='center':) DGTD-P'_3_' method
(:tableend:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
Changed line 29 from:
(:cellnr align='center':) DGTD method with curvilinear elements
to:
(:cellnr align='center':) DGTD-P'_1_'P'_3_' method
December 16, 2015, at 04:32 PM by 138.96.200.15 -
Added lines 18-28:

(:linebreaks:)

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P1.png
(:cellnr align='center':) DGTD method with affine elements
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_visu_P1P3.png
(:cellnr align='center':) DGTD method with curvilinear elements
(:tableend:)

%center%
December 16, 2015, at 04:30 PM by 138.96.200.15 -
Deleted line 14:
(:linebreaks:)
December 16, 2015, at 04:30 PM by 138.96.200.15 -
Changed lines 12-14 from:
%lfloat text-align=center width=300px http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png |
Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.%
to:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png |
Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.

(:linebreaks:)
December 16, 2015, at 04:29 PM by 138.96.200.15 -
Changed lines 12-13 from:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png |
Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.\\
to:
%lfloat text-align=center width=300px http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png |
Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.%
December 16, 2015, at 04:29 PM by 138.96.200.15 -
Changed line 13 from:
Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
to:
Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.\\
December 16, 2015, at 04:28 PM by 138.96.200.15 -
Added lines 16-17:

To overcome the limitation of the diffraction limit,  it is possible to exploit  the focusing effect provided by  coupled surface plasmons.  A typical nanolens is composed of a chain of metallic nanoparticles (nanospheres being  the  most  common)  of  decreasing  size,  aligned  with  the polarization  direction  of  the  incident  field.  When  the nanospheres are  of significantly different sizes, the local field  enhancement of the first particle is not perturbed by the second one because of its small relative size. As a result, the locally enhanced field  of the first particle acts as an incident  field  for  the  second  particle,  resulting  in  a  second enhancement,  and so  on.  Eventually, the  strongest enhancement  is obtained  in  the  gap    between  the  two  smaller  particles.
December 16, 2015, at 04:20 PM by 138.96.200.15 -
Changed lines 12-13 from:

%lfloat text-align=left width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
to:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png |
Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.

(:linebreaks:)
December 16, 2015, at 04:19 PM by 138.96.200.15 -
Changed line 13 from:
%lfloat text-align=right width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
to:
%lfloat text-align=left width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
December 16, 2015, at 04:18 PM by 138.96.200.15 -
Changed line 13 from:
%lfloat text-align=center width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
to:
%lfloat text-align=right width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
December 16, 2015, at 04:18 PM by 138.96.200.15 -
Changed line 13 from:
%lfloat text-align=center %width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
to:
%lfloat text-align=center width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
December 16, 2015, at 04:18 PM by 138.96.200.15 -
Changed lines 12-16 from:
(:table border='0' width='90%' align='center' cellspacing='1px':)
(:cellnr  align='center':) %width=320px% http:
//www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png
(:tableend:)

Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
to:

%lfloat text-align=center %width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png | Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
December 16, 2015, at 04:16 PM by 138.96.200.15 -
Added lines 9-16:

(:linebreaks:)

(:table border='0' width='90%' align='center' cellspacing='1px':)
(:cellnr  align='center':) %width=320px% http://www-sop.inria.fr/nachos/pics/results/p_loc/nanolens_mesh.png
(:tableend:)

Mesh setup for a metallic nanolens. The  gray  cells correspond  to the  metallic spheres, the  blue cells to  vacuum, while the red  cells constitute the PML region. For this mesh, the ratio between the largest and the smallest edge length of the tetrahedral mesh is above 400.
December 16, 2015, at 04:05 PM by 138.96.200.15 -
Changed line 8 from:
To overcome this limitation, several strategies can be considered. The strategy discussed here relies on the use of non-uniform distribution of the polynomial order in the framework of a global time  step DGDT method. By  imposing low orders in  small cells and  high orders  in  large  cells, it  is  possible to  significantly alleviate both  the global number of  degrees of freedom and  the time step  restriction  with  a  minimal impact  on  the  method  accuracy. Strategies  exploiting  locally  adaptive  (LA)  formulations  usually combine  both ''h''- and  ''p''- adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost.
to:
To overcome this limitation, several strategies can be considered. The strategy discussed here relies on the use of non-uniform distribution of the polynomial order in the framework of a global time  step DGDT method. By  imposing low orders in  small cells and  high orders  in  large  cells, it  is  possible to  significantly alleviate both  the global number of  degrees of freedom and  the time step  restriction  with  a  minimal impact  on  the  method  accuracy. Strategies  exploiting  locally  adaptive  (LA) formulations  usually combine  both ''h''- and  ''p''- adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost.
December 16, 2015, at 04:05 PM by 138.96.200.15 -
Changed lines 8-9 from:
To overcome this limitation, several strategies can be considered. The strategy discussed here relies on the use of non-uniform distribution of the polynomial order in the framework of a global time  step DGDT method. By  imposing low orders in  small cells and  high orders  in  large  cells, it  is  possible to  significantly alleviate both  the global number of  degrees of freedom and  the time step  restriction  with  a  minimal impact  on  the  method  accuracy. Strategies  exploiting  locally  adaptive  (LA)  formulations  usually
combine both ''h'' and  ''p''- adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost.
to:
To overcome this limitation, several strategies can be considered. The strategy discussed here relies on the use of non-uniform distribution of the polynomial order in the framework of a global time  step DGDT method. By  imposing low orders in  small cells and  high orders  in  large  cells, it  is  possible to  significantly alleviate both  the global number of  degrees of freedom and  the time step  restriction  with  a  minimal impact  on  the  method  accuracy. Strategies  exploiting  locally  adaptive  (LA)  formulations  usually combine  both ''h''- and  ''p''- adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost.
December 16, 2015, at 04:05 PM by 138.96.200.15 -
Changed line 9 from:
combine  both ''h''and  ''p''-adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost.
to:
combine  both ''h'' and  ''p''- adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost.
December 16, 2015, at 04:04 PM by 138.96.200.15 -
Changed lines 6-15 from:
In most  of the existing works  on the development of  high order DGTD
methods for the numerical modeling of light/matter interactions on the
nanoscale, the formulation of the method is derived assuming a uniform
distribution of  the polynomial order  to the cells of  the underlying
mesh.  However, in the case of a mesh showing large variations in cell
size, the  time step imposed  by the smallest  cells can be  a serious
hindrance when trying to exploit  high approximation orders. Indeed, a
potentially large part  of the CPU time  is spent in the  update of the
physical field inside  small cells where high  polynomial orders might
not be essential, while they are necessary in the larger cells.
to:
In most  of the existing works  on the development of  high order DGTD methods for the numerical modeling of light/matter interactions on the nanoscale, the formulation of the method is derived assuming a uniform distribution of  the polynomial order  to the cells of  the underlying mesh.  However, in the case of a mesh showing large variations in cell size, the  time step imposed  by the smallest  cells can be  a serious hindrance when trying to exploit  high approximation orders. Indeed, a potentially large part  of the CPU time  is spent in the  update of the physical field inside  small cells where high  polynomial orders might not be essential, while they are necessary in the larger cells.

To overcome this limitation, several strategies can be considered. The strategy discussed here relies on the use of non-uniform distribution of the polynomial order in the framework of a global time  step DGDT method. By  imposing low orders in  small cells and  high orders  in  large  cells, it  is  possible to  significantly alleviate both  the global number of  degrees of freedom and  the time step  restriction  with  a  minimal impact  on  the  method  accuracy. Strategies  exploiting  locally  adaptive  (LA)  formulations  usually
combine  both ''h''-  and  ''p''-adaptivity in  order  to concentrate  the computational effort in the areas of high field variations.  Here, the adopted point of  view is quite different: starting from  a given mesh and an  uniform distribution of  the polynomial order ''k'',  the LA strategy exploits all the polynomial orders ''p'', with ''p'' lesser or equal than  ''k'' to obtain a  solution of  similar accuracy  with a  reduced computational cost
.
December 16, 2015, at 04:01 PM by 138.96.200.15 -
Changed lines 4-15 from:
(:linebreaks:)
to:
(:linebreaks:)

In most  of the existing works  on the development of  high order DGTD
methods for the numerical modeling of light/matter interactions on the
nanoscale, the formulation of the method is derived assuming a uniform
distribution of  the polynomial order  to the cells of  the underlying
mesh.  However, in the case of a mesh showing large variations in cell
size, the  time step imposed  by the smallest  cells can be  a serious
hindrance when trying to exploit  high approximation orders. Indeed, a
potentially large part  of the CPU time  is spent in the  update of the
physical field inside  small cells where high  polynomial orders might
not be essential, while they are necessary in the larger cells.
December 16, 2015, at 04:00 PM by 138.96.200.15 -
Changed lines 1-2 from:
(:title Simulation of near-field plasmonic interactions\\
to:
(:title Simulation of near-field plasmonic interactions\\\
December 16, 2015, at 04:00 PM by 138.96.200.15 -
Added line 2:
December 16, 2015, at 04:00 PM by 138.96.200.15 -
Added lines 1-4:
(:title Simulation of near-field plasmonic interactions\\
        with a local approximation order DGTD method:)

(:linebreaks:)