Light absorption by MIM structures
Results.DGTDMim History
Hide minor edits - Show changes to markup
Reflection coefficient of the periodic structure
Absorption coefficient of the periodic structure
High speed photonic integrated circuits (PICs) are the subject of intense research in recent years. The introduction of surface plasmon polaritons (SPPs) at metal dielectric interfaces made it possible to overcome the diffraction limit and confine light on sub-wavelength scales. Waveguides based on SPPs have also been demonstrated, in the form of Metal-Insulator-Metal (MIM) waveguides. MIM waveguides are mostly used because they provide highconfinement within the core region.
High speed photonic integrated circuits (PICs) are the subject of intense research in recent years. The introduction of surface plasmon polaritons (SPPs) at metal dielectric interfaces made it possible to overcome the diffraction limit and confine light on sub-wavelength scales. Waveguides based on SPPs have also been demonstrated, in the form of Metal-Insulator-Metal (MIM) waveguides. MIM waveguides are mostly used because they provide high confinement within the core region.
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
(:table align='center' border='5px' bordercolor='black' width='50%' bgcolor='ivory':)
Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to aluminium, and the green ones to silica. Grey cells constitute the PML layers.
Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to aluminium, and the green ones to silica. Grey cells constitute the PML layers. The tetrahedral mesh consists of 479 vertices and 1783 tetrahedra. Simulations have been performed on 4 cores of a Dell C6220 server equipped with Intel Xeon E5-2680@2.80 GHz CPU. (:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':) (:cellnr align='center':) (:cell align='center':) Elapsed time (:cellnr align='left':) DGTD-P1 method (:cell align='center':) 20 sec (:cellnr align='left':) DGTD-P2 method (:cell align='center':) 84 sec (:cellnr align='left':) DGTD-P3 method (:cell align='center':) 315 sec (:tableend:)
http://www-sop.inria.fr/nachos/pics/results/nano_sphere/nano_sphere-mesh.jpg | Tetrahedral mesh for plasmonic resonance of a gold nanosphere with radius 50 nm. The scatterer (in red) is enclosed by the total field (TF) region (in blue), delimited by the TF/SF interface on which the incident field is imposed. Then we find the scattered field (SF) region (in purple), surrounded by UPMLs (in gray).
(:linebreaks:)
(:linebreaks:)
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to aluminium, and the green ones to silica. Grey cells constitute the PML layers.
(:linebreaks:)
http://www-sop.inria.fr/nachos/pics/results/nano_sphere/nano_sphere-mesh.jpg | Tetrahedral mesh for plasmonic resonance of a gold nanosphere with radius 50 nm. The scatterer (in red) is enclosed by the total field (TF) region (in blue), delimited by the TF/SF interface on which the incident field is imposed. Then we find the scattered field (SF) region (in purple), surrounded by UPMLs (in gray).
(:linebreaks:)
Amplitude of the discrete Fourier transform of the magnetic field (values are scaled to maximum data range)
Amplitude of the discrete Fourier transform of the magnetic field
(:cellnr align='center':) DGTD-P1 method (:cell align='center':) DGTD-P2 method
(:cellnr align='center':) DGTD-P2 method
(:cell align='center':) DGTD-P4 method
Amplitude of the discrete Fourier transform of the magnetic field (values are scaled to maximum data range)
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:table border='0' width='50%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg (:tableend:)
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
Reflection coefficient of the periodic structure
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P1_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P2_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P3_Hfour.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P1_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P2_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P3_Hfour.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P2_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P3_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P4_Hfour.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P2_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P3_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P4_Hfour.png
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air.
The red cells correspond to aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air.
The red cells correspond to aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air.
The red cells correspond to
aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air.
The red cells correspond to
aluminium, and the green ones to silica. Grey cells constitute the PML layers.
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png | Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png Periodic tetrahedral mesh of the MIM structure surrounded by air. The red cells correspond to
aluminium, and the green ones to silica. Grey cells constitute the PML layers.
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P1_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P2_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view2_leti_P3_Hfour.png (:cellnr align='center':) DGTD-P1 method (:cell align='center':) DGTD-P2 method (:cell align='center':) DGTD-P3 method
http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png
(:linebreaks:)
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png (:cell align='center' valign='middle':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view1.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view2.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view3.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Ey_view4.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Ez_view4.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Hx_view4.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P1_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P2_Hfour.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/view1_leti_P3_Hfour.png
(:cell align='center' valign='middle':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center' valign='middle':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center' valign='middle':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center' valign='middle':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center' valign='middle':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center' valign='middle':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='top':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center' valign='middle':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='top':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png %width=350px% http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png %width=350px% http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Acoef.jpg
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/Acoef.jpg
(:linebreaks:)
(:table border='0' width='50%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/new/meshview.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Acoef.jpg
(:tableend:)
High speed photonic integrated circuits (PICs) are the subject of intense research in recent years. The introduction of surface plasmon polaritons (SPPs) at metal dielectric interfaces made it possible to overcome the diffraction limit and confine light on sub-wavelength scales. Waveguides based on SPPs have also been demonstrated, in the form of Metal-Insulator-Metal (MIM) waveguides.
High speed photonic integrated circuits (PICs) are the subject of intense research in recent years. The introduction of surface plasmon polaritons (SPPs) at metal dielectric interfaces made it possible to overcome the diffraction limit and confine light on sub-wavelength scales. Waveguides based on SPPs have also been demonstrated, in the form of Metal-Insulator-Metal (MIM) waveguides. MIM waveguides are mostly used because they provide highconfinement within the core region.
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view1.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view2.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view3.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Ey_view4.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Ez_view4.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Hx_view4.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view1.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view2.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view3.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Ey_view4.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Ez_view4.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Hx_view4.png
This study is conducted in collaboration with Salim Boutami and Alain Glière (Laboratoire Capteurs et Nanophotonique, CEA LETI, Grenoble).
(:linebreaks:)
High speed photonic integrated circuits (PICs) are the subject of intense research in recent years. The introduction of surface plasmon polaritons (SPPs) at metal dielectric interfaces made it possible to overcome the diffraction limit and confine light on sub-wavelength scales. Waveguides based on SPPs have also been demonstrated, in the form of Metal-Insulator-Metal (MIM) waveguides.
(:title MIM:)
(:title Light absorption by MIM structures:)
(:table border='0' width='50%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view1.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view2.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/normH_view3.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Ey_view4.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Ez_view4.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/mim_structure/Hx_view4.png (:tableend:)