PmWiki
Collaborations

Collaborations

Collaborations.PascalAMoreau History

Hide minor edits - Show changes to output

February 02, 2016, at 03:21 PM by 147.83.201.97 -
Changed line 1 from:
to:
(:title Collaborations:)
February 02, 2016, at 03:19 PM by 147.83.201.97 -
Added lines 1-27:


>>frame bgcolor='white'<<
!! %newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\

!! Institut Pascal, Blaise Pascal University, Clermont-Ferrand\\\

!! Gap-plasmon confinement with gold nanocubes\\

The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed, light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  manometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanotubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers. The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with Antoine  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on  the behaviour  of a  single nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from the results of each computation.

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r2_d5_c75.png
(:cell  align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
(:tableend:)

%center% Meshes of rounded nanocubes  with rounding radii ranging from 2 to 10 nm. Red cells correspond to the cube. The latter lies on the dielectric spacer (gray cells) and  the metallic plate (green). Blue cells represent the air surrounding the device

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d12nm_c70nm_H_visu2.png
(:cell  align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d18nm_c60nm_H_visu2.png
(:cellnr align='center':) ''c'' = 70 nm, ''d'' = 12 nm
(:cell  align='center':) ''c'' = 60 nm, ''d'' = 18 nm
(:tableend:)

%center% Amplitude of  the discrete Fourier transform  of the magnetic field  for different  nanocube configurations.  All field  maps are scaled identically for better comparison. The obtained field is more intense  for  configurations  that  yield  high  Q'_cube_' values
>><<