Hybrid cubic/tetrahedral DGTD method
Results.DGTDHybrid History
Show minor edits - Show changes to markup
High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics
High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics\\
PhD disseration, University of Nice - Sophia Antipolis (2013)
Doctoral thesis, University of Nice - Sophia Antipolis (2013)
Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores of a Intel Xeon 2.66 GHz node
Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores of an Intel Xeon 2.66 GHz node
The L-shaped waveguide is formed of seven 50 nm diameter Au spheres in vacuum, with a 75 nm center-to-center spac- ing while the whole computational domain consists of a 550 nm × 750 nm × 400 nm parallelepipedic domain.
The L-shaped waveguide is formed of seven 50 nm diameter Au spheres in vacuum, with a 75 nm center-to-center spacing while the whole computational domain consists of a 550 nm × 750 nm × 400 nm parallelepipedic domain.
Simulation of the scattering of a plane wave by a single nanosphere. Module of the electric field in the Fourier domain: (left) Mie analytical solution / (middle) DGTD-P2Q2 result / (right) DGTD-P2 result (the Au-sphere is hidden)
Simulation of the scattering of a plane wave by a single nanosphere. Module of the electric field in the Fourier domain: (left) Mie analytical solution / (middle) DGTD-P2Q2 result / (right) DGTD-P2 result (the field distribution in the Au-sphere is hidden)
This study is concerned with the development of a non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the
This study is concerned with the development of a non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain.
PhD disseration
PhD disseration, University of Nice - Sophia Antipolis (2013)
(:table align='center' border='1' bordercolor='black' width='100%' bgcolor='ivory':)
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
(:table align='center' width='100%' bgcolor='ivory':)
(:table align='center' border='1' bordercolor='black' width='100%' bgcolor='ivory':)
(:table align='center' border='10px' width='100%' bgcolor='ivory':)
(:table align='center' width='100%' bgcolor='ivory':)
(:table align='center' border='2px' width='100%' bgcolor='ivory':)
(:table align='center' border='10px' width='100%' bgcolor='ivory':)
(:table align='center' border='2px' width='100%' bgcolor='#c3c3c3':)
(:table align='center' border='2px' width='100%' bgcolor='ivory':)
(:table align='center' border='2px' width='100%' bgcolor='#d1d1d1':)
(:table align='center' border='2px' width='100%' bgcolor='#c3c3c3':)
(:table align='center' border='2px' width='100%' bgcolor='#d2d2d2':)
(:table align='center' border='2px' width='100%' bgcolor='#d1d1d1':)
(:table align='center' border='2px' width='100%' bgcolor='#d3d3d3':)
(:table align='center' border='2px' width='100%' bgcolor='#d2d2d2':)
(:table align='center' border='2px' width='100%' bgcolor='#ff2222':)
(:table align='center' border='2px' width='100%' bgcolor='#d3d3d3':)
(:table align='center' border='2px' width='100%' bgcolor='#ff6666':)
(:table align='center' border='2px' width='100%' bgcolor='#ff2222':)
(:table align='center' border='2px' width='100%' bgcolor='#999999%':)
(:table align='center' border='2px' width='100%' bgcolor='#ff6666':)
(:table align='center' border='2px' width='100%' bgcolor='silver':)
(:table align='center' border='2px' width='100%' bgcolor='#999999%':)
(:table align='center' border='2px' width='100%' bgcolor='darkgray':)
(:table align='center' border='2px' width='100%' bgcolor='silver':)
(:table align='center' border='2px' width='100%' bgcolor='solid lightgray':)
(:table align='center' border='2px' width='100%' bgcolor='darkgray':)
(:table align='center' border='2px' width='100%' bgcolor='lightgray':)
(:table align='center' border='2px' width='100%' bgcolor='solid lightgray':)
Available as INRIA RR-8257 on Hyper Article Online
Available as INRIA RR-8257 on Hyper Article Online
J. Comput. Appl. Math., Vol. 270, pp. 330–342 (2014)\\\
J. Comput. Appl. Math., Vol. 270, pp. 330–342 (2014)
C. Durochat
High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics
PhD disseration
Related publications
Related publications
(:linebreaks:)
Available as INRIA RR-8257 on Hyper Article Online
Available as INRIA RR-8257 on Hyper Article Online
R. Léger, J. Viquerat, C. Durochat, C. Scheid and S. Lanteri
A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles
J. Comput. Appl. Math., Vol. 270, pp. 330–342 (2014)\\\
Related publications
[-C. Durochat, S. Lanteri and C. Scheid\\
Related publications
C. Durochat, S. Lanteri and C. Scheid\\
Available as INRIA RR-8257 on Hyper Article Online-]
Available as INRIA RR-8257 on Hyper Article Online
Related publications
Related publications
C. Durochat, S. Lanteri and C. Scheid
High order non-conforming multi-element Discontinuous Galerkin method for time domain electromagnetics
Appl. Math. Comput., Vol. 224, pp. 681–704 (2013)
Available as INRIA RR-8257 on Hyper Article Online
Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores
Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores of a Intel Xeon 2.66 GHz node
(:table align='center' border='2px' width='100%' bgcolor='ivory':)
(:table align='center' border='2px' width='100%' bgcolor='lightgray':)
(:cell align='center':) Elapsed time
(:cell align='center':) 11420 s
(:cell align='center':) 5680 s
Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide
Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores
(:table align='center' border='2px' width='100%' bgcolor='lightgray':)
(:table align='center' border='2px' width='100%' bgcolor='ivory':)
(:cellnr align='center':) DGTD-P2 method
(:cellnr align='left':) DGTD-P2 method
(:cellnr align='center':) DGTD-P2Q2 method
(:cellnr align='left':) DGTD-P2Q2 method
(:table align=center border='2px' width='80%' bgcolor='lightgray':)
(:table align='center' border='2px' width='100%' bgcolor='lightgray':)
(:center:) (:table border='2px' width='80%' bgcolor='lightgray':)
(:table align=center border='2px' width='80%' bgcolor='lightgray':)
(:table align='center' border='2px' width='80%' bgcolor='lightgray':)
(:center:) (:table border='2px' width='80%' bgcolor='lightgray':)
(:table border='2px' width='80%' bgcolor='lightgray':)
(:table align='center' border='2px' width='80%' bgcolor='lightgray':)
(:table border='2px' width='80%' bgcolor='gray':)
(:table border='2px' width='80%' bgcolor='lightgray':)
(:table border='2px' width='80%':)
(:table border='2px' width='80%' bgcolor='gray':)
(:table border=1 width='80%':)
(:table border='2px' width='80%':)
(:table border='1' width='80%':)
(:table border=1 width='80%':)
(:cell align='center':)# vertices (:cell align='center':)# tetrahedra (:cell align='center':)# hexahedra (:cell align='center':)# DOF (:cellnr align='center':)DGTD-P2 method (:cell align='center':)222,175 (:cell align='center':)1,306,356 (:cell align='center':)0 (:cell align='center':)13,063,560 (:cellnr align='center':)DGTD-P2Q2 method (:cell align='center':)211,214 (:cell align='center':)706,012 (:cell align='center':)81,280 (:cell align='center':)9,264,660
(:cell align='center':) # vertices (:cell align='center':) # tetrahedra (:cell align='center':) # hexahedra (:cell align='center':) # DOF (:cellnr align='center':) DGTD-P2 method (:cell align='center':) 222,175 (:cell align='center':) 1,306,356 (:cell align='center':) 0 (:cell align='center':) 13,063,560 (:cellnr align='center':) DGTD-P2Q2 method (:cell align='center':) 211,214 (:cell align='center':) 706,012 (:cell align='center':) 81,280 (:cell align='center':) 9,264,660
(:cellnr:) (:cell:)# vertices (:cell:)# tetrahedra (:cell:)# hexahedra (:cell:)# DOF (:cellnr:)DGTD-P2 method (:cell:)222,175 (:cell:)1,306,356 (:cell:)0 (:cell:)13,063,560 (:cellnr:)DGTD-P2Q2 method (:cell:)211,214 (:cell:)706,012 (:cell:)81,280 (:cell:)9,264,660
(:cellnr align='center':) (:cell align='center':)# vertices (:cell align='center':)# tetrahedra (:cell align='center':)# hexahedra (:cell align='center':)# DOF (:cellnr align='center':)DGTD-P2 method (:cell align='center':)222,175 (:cell align='center':)1,306,356 (:cell align='center':)0 (:cell align='center':)13,063,560 (:cellnr align='center':)DGTD-P2Q2 method (:cell align='center':)211,214 (:cell align='center':)706,012 (:cell align='center':)81,280 (:cell align='center':)9,264,660
(:table border='1' align='right' width='80%':)
(:table border='1' width='80%':)
(:cell:) # vertices
(:cell:)# vertices
(:cell:)# vertices
(:cell:) # vertices
(:table border='1' align='center' width='80%':)
(:table border='1' align='right' width='80%':)
(:cell:) # vertices (:cell:) # tetrahedra (:cell:) # hexahedra (:cell:) # DOF (:cellnr:) DGTD-P2 method (:cell:) 222,175 (:cell:) 1,306,356 (:cell:) 0 (:cell:) 13,063,560 (:cellnr:) DGTD-P2Q2 method (:cell:) 211,214 (:cell:) 706,012 (:cell:) 81,280 (:cell:) 9,264,660
(:cell:)# vertices (:cell:)# tetrahedra (:cell:)# hexahedra (:cell:)# DOF (:cellnr:)DGTD-P2 method (:cell:)222,175 (:cell:)1,306,356 (:cell:)0 (:cell:)13,063,560 (:cellnr:)DGTD-P2Q2 method (:cell:)211,214 (:cell:)706,012 (:cell:)81,280 (:cell:)9,264,660
(:table border='1' align='center' width='80%':)
(:table border='1' align='center' width='80%':)
Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide
(:table border='1' align='center' width='80%':)
(:table border='1' align='center' width='80%':)
(:cell:)# vertices (:cell:)# tetrahedra (:cell:)# hexahedra (:cell:)# DOF (:cellnr:)DGTD-P2 method (:cell:)222,175 (:cell:)1,306,356 (:cell:)0 (:cell:)13,063,560
(:cell:) # vertices (:cell:) # tetrahedra (:cell:) # hexahedra (:cell:) # DOF (:cellnr:) DGTD-P2 method (:cell:) 222,175 (:cell:) 1,306,356 (:cell:) 0 (:cell:) 13,063,560 (:cellnr:) DGTD-P2Q2 method (:cell:) 211,214 (:cell:) 706,012 (:cell:) 81,280 (:cell:) 9,264,660
(:table border=1 align='center' width=80%:)
(:table border='1' align='center' width='80%':)
(:cell:) # vertices (:cell:) # tetrahedra (:cell:) # hexahedra (:cell:) # DOF (:cellnr:) DGTD-P2 method (:cell:) 222,175 (:cell:) 1,306,356 (:cell:) 0 (:cell:) 13,063,560
(:cell:)# vertices (:cell:)# tetrahedra (:cell:)# hexahedra (:cell:)# DOF (:cellnr:)DGTD-P2 method (:cell:)222,175 (:cell:)1,306,356 (:cell:)0 (:cell:)13,063,560
(:table now border=1 align='center' width=80%:)
(:table border=1 align='center' width=80%:)
Hdr | Hdr | Hdr |
---|---|---|
(:table now border=1 align='center' width=80%:) (:cellnr:) (:cell:) # vertices (:cell:) # tetrahedra (:cell:) # hexahedra (:cell:) # DOF (:cellnr:) DGTD-P2 method (:cell:) 222,175 (:cell:) 1,306,356 (:cell:) 0 (:cell:) 13,063,560 (:tableend:)
(:table border=1 width=80%:) (:cellnr:) (:cell:) (:cell:) (:cellnr:) (:cell:) (:cell:) (:tableend:)
Hdr | Hdr | Hdr |
---|---|---|
(:table now border=1 width=80%:)
(:table border=1 width=80%:)
Hdr | Hdr | Hdr |
---|---|---|
(:table now border=1 width=80%:) (:cellnr:) (:cell:) (:cell:) (:cellnr:) (:cell:) (:cell:) (:tableend:)
The L-shaped waveguide is formed of seven 50 nm diameter Au spheres in vacuum, with a 75 nm center-to-center spac- ing while the whole computational domain consists of a 550 nm × 750 nm × 400 nm parallelepipedic domain.
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
Simulation of the scattering of a plane wave by a single nanosphere. Module of the electric field in the Fourier domain: (left) Mie analytical solution / (middle) DGTD-P2Q2 result / (right) DGTD-P2 result (the Au-sphere is hidden)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/mie_final.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/hyb_final.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/tet_final.png (:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png (:tableend:)
Left: type of non-conformity considered in 3D, between a hexahedron (q2) and two tetrahedra (t1 and t2). - Middle: 2D view of the non-conforming hybrid face between q2 and, t1 and t2. - Right: refined example (2D view only) of non-conformity between one hexahedron and eight tetrahedra.
Partial views of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for the simulation of the scattering of a plane wave by a single nanosphere
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet-zoom.pn (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb-zoom.pn
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet-zoom.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb-zoom.png
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb.png (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet-zoom.pn (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb-zoom.pn (:tableend:)
Left: type of non-conformity considered in 3D, between a hexahedron (q2) and two tetrahedra (t1 and t2). - Middle: 2D view of the non-conforming hybrid face between q2 and, t1 and t2. - Right: refined example (2D view only) of non-conformity between one hexahedron and eight tetrahedra.
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
This study is concerned with the development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
A discontinuous Galerkin formulation can be seen as a classical finite element method for which the global continuity of the approximation has been lifted. This implies that the support of each basis function is restrained to a discretization cell, which leads to local formulations implying no large mass matrix inversion if an explicit time-marching scheme is adopted. Then, connexion between neighboring cells is restored by the use of a numerical flux as in a finite volume method. The form of the numerical flux impacts the mathematical properties of the resulting DGTD scheme. The discontinuity of the approximation allows for several methodological improvements among which the local adaptation of the approximation order, and the use of non-conforming meshes.
This study is concerned with the development of a non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png (:tableend:)
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cellnr align='center':) Fully tetrahedral mesh - DGTD-P2 method (:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P2Q2 method
(:cellnr align='center':) Fully tetrahedral mesh (:cell align='center':) Hybrid cubic/tetrahedral mesh method (:cellnr align='center':) DGTD-P2 method (:cell align='center':) DGTD-P2Q2 method
(:cell align='center':) Hybrid cubic/tetrahedral meshmethod
(:cell align='center':) Hybrid cubic/tetrahedral mesh
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P2Q2
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P2Q2 method
(:cellnr align='center':) Fully tetrahedral mesh - DGTD-P2 method (:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P2Q2 method
(:cellnr align='center':) Fully tetrahedral mesh (:cell align='center':) Hybrid cubic/tetrahedral meshmethod
(:cellnr align='center':) Fully tetrahedral mesh (:cell align='center':) Hybrid cubic/tetrahedral mesh
(:cellnr align='center':) Fully tetrahedral mesh - DGTD-P2 method (:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P2Q2
(:cellnr align='center':) Fully tetrahedral mesh (:cell align='center':) Hybrid cubic/tetrahedral mesh
(:cellnr align='center':) Fully tetrahedral mesh - DGTD-P2 method (:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P2Q2 method
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.jpg
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
(:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.jpg
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
(:cellnr align='center':) Fully tetrahedral mesh (:cell align='center':) Hybrid cubic/tetrahedral mesh (:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png (:cell align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_sphere/nano_L-guide/Lguide_hyb_mesh.png (:cellnr align='center':) Hybrid cubic/tetrahedral mesh
(:cell align='center':) Hybrid cubic/tetrahedral mesh
This study is concerned with the development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
This study is concerned with the development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png (:cellnr align='center':) Fully tetrahedral mesh (:cellnr align='center':) http://www-sop.inria.fr/nachos/pics/results/nano_sphere/nano_L-guide/Lguide_hyb_mesh.png (:cellnr align='center':) Hybrid cubic/tetrahedral mesh (:tableend:)
This study development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
(:linebreaks:)
This study is concerned with the development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
This study development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.