Hybrid cubic/tetrahedral DGTD method
Results.DGTDHybrid History
Hide minor edits - Show changes to output
Changed line 86 from:
High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics
to:
High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics\\
Changed line 87 from:
%newwin% [[https://hal.inria.fr/tel-00805935 | PhD disseration]], University of Nice - Sophia Antipolis (2013)
to:
%newwin% [[https://hal.inria.fr/tel-00805935 | Doctoral thesis]], University of Nice - Sophia Antipolis (2013)
Changed line 68 from:
%center% Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores of a Intel Xeon 2.66 GHz node
to:
%center% Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores of an Intel Xeon 2.66 GHz node
Changed line 32 from:
The L-shaped waveguide is formed of seven 50 nm diameter Au spheres in vacuum, with a 75 nm center-to-center spac- ing while the whole computational domain consists of a 550 nm × 750 nm × 400 nm parallelepipedic domain.
to:
The L-shaped waveguide is formed of seven 50 nm diameter Au spheres in vacuum, with a 75 nm center-to-center spacing while the whole computational domain consists of a 550 nm × 750 nm × 400 nm parallelepipedic domain.
Changed line 28 from:
%center% Simulation of the scattering of a plane wave by a single nanosphere. Module of the electric field in the Fourier domain: (left) Mie analytical solution / (middle) DGTD-P'_2_'Q'_2_' result / (right) DGTD-P'_2_' result (the Au-sphere is hidden)
to:
%center% Simulation of the scattering of a plane wave by a single nanosphere. Module of the electric field in the Fourier domain: (left) Mie analytical solution / (middle) DGTD-P'_2_'Q'_2_' result / (right) DGTD-P'_2_' result (the field distribution in the Au-sphere is hidden)
Changed line 7 from:
This study is concerned with the development of a non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the
to:
This study is concerned with the development of a non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain.
Changed line 85 from:
%newwin% [[https://hal.inria.fr/tel-00805935 | PhD disseration]]
to:
%newwin% [[https://hal.inria.fr/tel-00805935 | PhD disseration]], University of Nice - Sophia Antipolis (2013)
Changed line 45 from:
(:table align='center' border='1' bordercolor='black' width='100%' bgcolor='ivory':)
to:
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
Changed line 45 from:
(:table align='center' width='100%' bgcolor='ivory':)
to:
(:table align='center' border='1' bordercolor='black' width='100%' bgcolor='ivory':)
Changed line 45 from:
(:table align='center' border='10px' width='100%' bgcolor='ivory':)
to:
(:table align='center' width='100%' bgcolor='ivory':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='ivory':)
to:
(:table align='center' border='10px' width='100%' bgcolor='ivory':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='#c3c3c3':)
to:
(:table align='center' border='2px' width='100%' bgcolor='ivory':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='#d1d1d1':)
to:
(:table align='center' border='2px' width='100%' bgcolor='#c3c3c3':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='#d2d2d2':)
to:
(:table align='center' border='2px' width='100%' bgcolor='#d1d1d1':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='#d3d3d3':)
to:
(:table align='center' border='2px' width='100%' bgcolor='#d2d2d2':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='#ff2222':)
to:
(:table align='center' border='2px' width='100%' bgcolor='#d3d3d3':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='#ff6666':)
to:
(:table align='center' border='2px' width='100%' bgcolor='#ff2222':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='#999999%':)
to:
(:table align='center' border='2px' width='100%' bgcolor='#ff6666':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='silver':)
to:
(:table align='center' border='2px' width='100%' bgcolor='#999999%':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='darkgray':)
to:
(:table align='center' border='2px' width='100%' bgcolor='silver':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='solid lightgray':)
to:
(:table align='center' border='2px' width='100%' bgcolor='darkgray':)
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='lightgray':)
to:
(:table align='center' border='2px' width='100%' bgcolor='solid lightgray':)
Changed lines 77-78 from:
Available as %newwin% [[http://hal.inria.fr/hal-00797973 | INRIA RR-8257 on Hyper Article Online]]\\\
to:
Available as %newwin% [[http://hal.inria.fr/hal-00797973 | INRIA RR-8257 on Hyper Article Online]]\\
Changed lines 81-85 from:
%newwin% [[http://dx.doi.org/10.1016/j.cam.2013.12.042 | J. Comput. Appl. Math., Vol. 270, pp. 330–342 (2014)]]\\\
to:
%newwin% [[http://dx.doi.org/10.1016/j.cam.2013.12.042 | J. Comput. Appl. Math., Vol. 270, pp. 330–342 (2014)]]\\
C. Durochat\\
High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics
%newwin% [[https://hal.inria.fr/tel-00805935 | PhD disseration]]
C. Durochat\\
High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics
%newwin% [[https://hal.inria.fr/tel-00805935 | PhD disseration]]
Changed lines 70-71 from:
!!!Related publications \\
to:
!!!Related publications
(:linebreaks:)
(:linebreaks:)
Changed lines 77-81 from:
Available as %newwin% [[http://hal.inria.fr/hal-00797973 | INRIA RR-8257 on Hyper Article Online]]
to:
Available as %newwin% [[http://hal.inria.fr/hal-00797973 | INRIA RR-8257 on Hyper Article Online]]\\\
R. Léger, J. Viquerat, C. Durochat, C. Scheid and S. Lanteri\\
A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles\\
%newwin% [[http://dx.doi.org/10.1016/j.cam.2013.12.042 | J. Comput. Appl. Math., Vol. 270, pp. 330–342 (2014)]]\\\
R. Léger, J. Viquerat, C. Durochat, C. Scheid and S. Lanteri\\
A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles\\
%newwin% [[http://dx.doi.org/10.1016/j.cam.2013.12.042 | J. Comput. Appl. Math., Vol. 270, pp. 330–342 (2014)]]\\\
Changed lines 70-72 from:
Related publications \\
[-C. Durochat, S. Lanteri and C. Scheid\\
to:
!!!Related publications \\
C. Durochat, S. Lanteri and C. Scheid\\
C. Durochat, S. Lanteri and C. Scheid\\
Changed line 75 from:
Available as %newwin% [[http://hal.inria.fr/hal-00797973 | INRIA RR-8257 on Hyper Article Online]]-]
to:
Available as %newwin% [[http://hal.inria.fr/hal-00797973 | INRIA RR-8257 on Hyper Article Online]]
Changed lines 70-75 from:
Related publications
to:
Related publications \\
[-C. Durochat, S. Lanteri and C. Scheid\\
High order non-conforming multi-element Discontinuous Galerkin method for time domain electromagnetics\\
%newwin% [[http://dx.doi.org/10.1016/j.amc.2013.08.069 | Appl. Math. Comput., Vol. 224, pp. 681–704 (2013)]]\\
Available as %newwin% [[http://hal.inria.fr/hal-00797973 | INRIA RR-8257 on Hyper Article Online]]-]
[-C. Durochat, S. Lanteri and C. Scheid\\
High order non-conforming multi-element Discontinuous Galerkin method for time domain electromagnetics\\
%newwin% [[http://dx.doi.org/10.1016/j.amc.2013.08.069 | Appl. Math. Comput., Vol. 224, pp. 681–704 (2013)]]\\
Available as %newwin% [[http://hal.inria.fr/hal-00797973 | INRIA RR-8257 on Hyper Article Online]]-]
Changed line 66 from:
%center% Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores
to:
%center% Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores of a Intel Xeon 2.66 GHz node
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='ivory':)
to:
(:table align='center' border='2px' width='100%' bgcolor='lightgray':)
Added line 51:
(:cell align='center':) Elapsed time
Added line 57:
(:cell align='center':) 11420 s
Added line 63:
(:cell align='center':) 5680 s
Changed line 66 from:
%center% Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide
to:
%center% Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide. Elapsed time is for a physical time of 1 fs (total physical time is about 30 fs) on 8 CPU cores
Changed line 45 from:
(:table align='center' border='2px' width='100%' bgcolor='lightgray':)
to:
(:table align='center' border='2px' width='100%' bgcolor='ivory':)
Changed line 51 from:
(:cellnr align='center':) DGTD-P'_2_' method
to:
(:cellnr align='left':) DGTD-P'_2_' method
Changed line 56 from:
(:cellnr align='center':) DGTD-P'_2_'Q'_2_' method
to:
(:cellnr align='left':) DGTD-P'_2_'Q'_2_' method
Changed line 45 from:
(:table align=center border='2px' width='80%' bgcolor='lightgray':)
to:
(:table align='center' border='2px' width='100%' bgcolor='lightgray':)
Changed lines 45-46 from:
(:center:)
(:table border='2px' width='80%' bgcolor='lightgray':)
(:table
to:
(:table align=center border='2px' width='80%' bgcolor='lightgray':)
Changed lines 45-46 from:
to:
(:center:)
(:table border='2px' width='80%' bgcolor='lightgray':)
(:table border='2px' width='80%' bgcolor='lightgray':)
Changed line 46 from:
(:table border='2px' width='80%' bgcolor='lightgray':)
to:
(:table align='center' border='2px' width='80%' bgcolor='lightgray':)
Changed line 46 from:
(:table border='2px' width='80%' bgcolor='gray':)
to:
(:table border='2px' width='80%' bgcolor='lightgray':)
Changed line 46 from:
(:table border='2px' width='80%':)
to:
(:table border='2px' width='80%' bgcolor='gray':)
Changed line 46 from:
(:table border=1 width='80%':)
to:
(:table border='2px' width='80%':)
Deleted lines 62-63:
Changed line 46 from:
(:table border='1' width='80%':)
to:
(:table border=1 width='80%':)
Changed lines 48-61 from:
(:cell align='center':)# vertices
(:cell align='center':)# tetrahedra
(:cell align='center':)# hexahedra
(:cell align='center':)# DOF
(:cellnr align='center':)DGTD-P'_2_' method
(:cell align='center':)222,175
(:cell align='center':)1,306,356
(:cell align='center':)0
(:cell align='center':)13,063,560
(:cellnr align='center':)DGTD-P'_2_'Q'_2_' method
(:cell align='center':)211,214
(:cell align='center':)706,012
(:cell align='center':)81,280
(:cell align='center':)9,264,660
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cellnr align='center':)DGTD-P'_2_' method
(:cell align='center':)222,175
(:cell align='center':)1,306,356
(:cell align='center':)0
(:cell align='center':)13,063,560
(:cellnr align='center':)DGTD-P'_2_'Q'_2_' method
(:cell align='center':)211,214
(:cell align='center':)706,012
(:cell align='center':)81,280
(:cell align='center':)9,264,660
to:
(:cell align='center':) # vertices
(:cell align='center':) # tetrahedra
(:cell align='center':) # hexahedra
(:cell align='center':) # DOF
(:cellnr align='center':) DGTD-P'_2_' method
(:cell align='center':) 222,175
(:cell align='center':) 1,306,356
(:cell align='center':) 0
(:cell align='center':) 13,063,560
(:cellnr align='center':) DGTD-P'_2_'Q'_2_' method
(:cell align='center':) 211,214
(:cell align='center':) 706,012
(:cell align='center':) 81,280
(:cell align='center':) 9,264,660
(:cell align='center':) # tetrahedra
(:cell align='center':) # hexahedra
(:cell align='center':) # DOF
(:cellnr align='center':) DGTD-P'_2_' method
(:cell align='center':) 222,175
(:cell align='center':) 1,306,356
(:cell align='center':) 0
(:cell align='center':) 13,063,560
(:cellnr align='center':) DGTD-P'_2_'Q'_2_' method
(:cell align='center':) 211,214
(:cell align='center':) 706,012
(:cell align='center':) 81,280
(:cell align='center':) 9,264,660
Changed lines 47-61 from:
(:cellnr:)
(:cell:)# vertices
(:cell:)# tetrahedra
(:cell:)# hexahedra
(:cell:)# DOF
(:cellnr:)DGTD-P'_2_' method
(:cell:)222,175
(:cell:)1,306,356
(:cell:)0
(:cell:)13,063,560
(:cellnr:)DGTD-P'_2_'Q'_2_' method
(:cell:)211,214
(:cell:)706,012
(:cell:)81,280
(:cell:)9,264,660
(:cell
(
(
(
to:
(:cellnr align='center':)
(:cell align='center':)# vertices
(:cell align='center':)# tetrahedra
(:cell align='center':)# hexahedra
(:cell align='center':)# DOF
(:cellnr align='center':)DGTD-P'_2_' method
(:cell align='center':)222,175
(:cell align='center':)1,306,356
(:cell align='center':)0
(:cell align='center':)13,063,560
(:cellnr align='center':)DGTD-P'_2_'Q'_2_' method
(:cell align='center':)211,214
(:cell align='center':)706,012
(:cell align='center':)81,280
(:cell align='center':)9,264,660
(:cell align='center':)# vertices
(:cell align='center':)# tetrahedra
(:cell align='center':)# hexahedra
(:cell align='center':)# DOF
(:cellnr align='center':)DGTD-P'_2_' method
(:cell align='center':)222,175
(:cell align='center':)1,306,356
(:cell align='center':)0
(:cell align='center':)13,063,560
(:cellnr align='center':)DGTD-P'_2_'Q'_2_' method
(:cell align='center':)211,214
(:cell align='center':)706,012
(:cell align='center':)81,280
(:cell align='center':)9,264,660
Changed line 46 from:
(:table border='1' align='right' width='80%':)
to:
(:table border='1' width='80%':)
Changed line 48 from:
(:cell:) # vertices
to:
(:cell:)# vertices
Changed line 48 from:
(:cell:)# vertices
to:
(:cell:) # vertices
Added lines 63-64:
Changed line 46 from:
(:table border='1' align='center' width='80%':)
to:
(:table border='1' align='right' width='80%':)
Changed lines 48-61 from:
(:cell:) # vertices
(:cell:) # tetrahedra
(:cell:) # hexahedra
(:cell:) # DOF
(:cellnr:) DGTD-P'_2_' method
(:cell:) 222,175
(:cell:) 1,306,356
(:cell:) 0
(:cell:) 13,063,560
(:cellnr:) DGTD-P'_2_'Q'_2_' method
(:cell:) 211,214
(:cell:) 706,012
(:cell:) 81,280
(:cell:) 9,264,660
(:cell:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
to:
(:cell:)# vertices
(:cell:)# tetrahedra
(:cell:)# hexahedra
(:cell:)# DOF
(:cellnr:)DGTD-P'_2_' method
(:cell:)222,175
(:cell:)1,306,356
(:cell:)0
(:cell:)13,063,560
(:cellnr:)DGTD-P'_2_'Q'_2_' method
(:cell:)211,214
(:cell:)706,012
(:cell:)81,280
(:cell:)9,264,660
(:cell:)# tetrahedra
(:cell:)# hexahedra
(:cell:)# DOF
(:cellnr:)DGTD-P'_2_' method
(:cell:)222,175
(:cell:)1,306,356
(:cell:)0
(:cell:)13,063,560
(:cellnr:)DGTD-P'_2_'Q'_2_' method
(:cell:)211,214
(:cell:)706,012
(:cell:)81,280
(:cell:)9,264,660
Changed line 46 from:
to:
(:table border='1' align='center' width='80%':)
Added lines 63-64:
%center% Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for simulation of the L-shaped waveguide
Changed lines 45-46 from:
%center%
(:table border='1' align='center' width='80%':)
(:table border='1' align='center' width='80%':)
to:
%center% (:table border='1' align='center' width='80%':)
Added line 45:
%center%
Changed lines 48-56 from:
(:cell:)# vertices
(:cell:)# tetrahedra
(:cell:)# hexahedra
(:cell:)# DOF
(:cellnr:)DGTD-P'_2_' method
(:cell:)222,175
(:cell:)1,306,356
(:cell:)0
(:cell:)13,063,560
(:cell:)
(:cell:)
(:cell:)
(:cellnr:)DGTD-P'_2_' method
(:cell:)222,175
(:cell:)1,306,356
(:cell:)0
(:cell:)13,063,
to:
(:cell:) # vertices
(:cell:) # tetrahedra
(:cell:) # hexahedra
(:cell:) # DOF
(:cellnr:) DGTD-P'_2_' method
(:cell:) 222,175
(:cell:) 1,306,356
(:cell:) 0
(:cell:) 13,063,560
(:cellnr:) DGTD-P'_2_'Q'_2_' method
(:cell:) 211,214
(:cell:) 706,012
(:cell:) 81,280
(:cell:) 9,264,660
(:cell:) # tetrahedra
(:cell:) # hexahedra
(:cell:) # DOF
(:cellnr:) DGTD-P'_2_' method
(:cell:) 222,175
(:cell:) 1,306,356
(:cell:) 0
(:cell:) 13,063,560
(:cellnr:) DGTD-P'_2_'Q'_2_' method
(:cell:) 211,214
(:cell:) 706,012
(:cell:) 81,280
(:cell:) 9,264,660
Changed line 45 from:
(:table border=1 align='center' width=80%:)
to:
(:table border='1' align='center' width='80%':)
Changed lines 47-55 from:
(:cell:) # vertices
(:cell:) # tetrahedra
(:cell:) # hexahedra
(:cell:) # DOF
(:cellnr:) DGTD-P'_2_' method
(:cell:) 222,175
(:cell:) 1,306,356
(:cell:) 0
(:cell:) 13,063,560
(:cell:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
to:
(:cell:)# vertices
(:cell:)# tetrahedra
(:cell:)# hexahedra
(:cell:)# DOF
(:cellnr:)DGTD-P'_2_' method
(:cell:)222,175
(:cell:)1,306,356
(:cell:)0
(:cell:)13,063,560
(:cell:)# tetrahedra
(:cell:)# hexahedra
(:cell:)# DOF
(:cellnr:)DGTD-P'_2_' method
(:cell:)222,175
(:cell:)1,306,356
(:cell:)0
(:cell:)13,063,560
Changed line 45 from:
(:table now border=1 align='center' width=80%:)
to:
(:table border=1 align='center' width=80%:)
Changed lines 45-49 from:
||
|| || || ||
to:
(:table now border=1 align='center' width=80%:)
(:cellnr:)
(:cell:) # vertices
(:cell:) # tetrahedra
(:cell:) # hexahedra
(:cell:) # DOF
(:cellnr:) DGTD-P'_2_' method
(:cell:) 222,175
(:cell:) 1,306,356
(:cell:) 0
(:cell:) 13,063,560
(:tableend:)
(:cellnr:)
(:cell:) # vertices
(:cell:) # tetrahedra
(:cell:) # hexahedra
(:cell:) # DOF
(:cellnr:) DGTD-P'_2_' method
(:cell:) 222,175
(:cell:) 1,306,356
(:cell:) 0
(:cell:) 13,063,560
(:tableend:)
Changed lines 45-46 from:
to:
||border=1 width=80% align=center
Changed lines 45-52 from:
(:cellnr:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:tableend:)
to:
%center%
||border=1 width=80%
||!Hdr ||!Hdr ||!Hdr ||
|| || || ||
|| || || ||
||border=1 width=80%
||!Hdr ||!Hdr ||!Hdr ||
|| || || ||
|| || || ||
Changed line 45 from:
(:table now border=1 width=80%:)
to:
(:table border=1 width=80%:)
Changed lines 45-48 from:
|| || || ||
|| || || ||
to:
(:table now border=1 width=80%:)
(:cellnr:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:tableend:)
(:cellnr:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:tableend:)
Changed lines 43-48 from:
(:tableend:)
to:
(:tableend:)
||border=1 width=80%
||!Hdr ||!Hdr ||!Hdr ||
|| || || ||
|| || || ||
||border=1 width=80%
||!Hdr ||!Hdr ||!Hdr ||
|| || || ||
|| || || ||
Deleted line 27:
Added lines 29-30:
The L-shaped waveguide is formed of seven 50 nm diameter Au spheres in vacuum, with a 75 nm center-to-center spac- ing while the whole computational domain consists of a 550 nm × 750 nm × 400 nm parallelepipedic domain.
Changed lines 36-37 from:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=220px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
(:cell align='center':) %width=220px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cell align='center':) %width=220px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
Added lines 25-27:
%center% Simulation of the scattering of a plane wave by a single nanosphere. Module of the electric field in the Fourier domain: (left) Mie analytical solution / (middle) DGTD-P'_2_'Q'_2_' result / (right) DGTD-P'_2_' result (the Au-sphere is hidden)
Added lines 17-24:
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/mie_final.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/hyb_final.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/tet_final.png
(:tableend:)
Deleted lines 5-14:
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) %width=240px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) %width=140px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=170px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:tableend:)
%center% Left: type of non-conformity considered in 3D, between a hexahedron (q2) and two tetrahedra (t1 and t2). - Middle: 2D view of the non-conforming hybrid face between q2 and, t1 and t2. - Right: refined example (2D view only) of non-conformity between one hexahedron and eight tetrahedra.
Added lines 25-26:
%center% Partial views of the tetrahedral and hybrid hexahedral-tetrahedral meshes used for the simulation of the scattering of a plane wave by a single nanosphere
Changed lines 20-23 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb.png
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet-zoom.pn
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb-zoom.pn
(:cell align='center':) %width=
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet-zoom.
to:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb.png
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet-zoom.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb-zoom.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb.png
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet-zoom.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb-zoom.png
Added lines 16-24:
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb.png
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_tet-zoom.pn
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/nanosphere_hyb-zoom.pn
(:tableend:)
Added lines 14-15:
%center% Left: type of non-conformity considered in 3D, between a hexahedron (q2) and two tetrahedra (t1 and t2). - Middle: 2D view of the non-conforming hybrid face between q2 and, t1 and t2. - Right: refined example (2D view only) of non-conformity between one hexahedron and eight tetrahedra.
Changed line 10 from:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
to:
(:cellnr align='center':) %width=240px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
Changed line 11 from:
(:cell align='center':) %width=130px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
to:
(:cell align='center':) %width=140px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
Changed lines 11-12 from:
(:cell align='center':) %width=150px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=150px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cell align='center':) %width=
to:
(:cell align='center':) %width=130px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=170px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cell align='center':) %width=170px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
Changed line 10 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
Changed line 12 from:
(:cell align='center':) %width=100px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
to:
(:cell align='center':) %width=150px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
Changed lines 10-11 from:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) %width=150px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=150px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
Changed lines 10-12 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cell align='center':) %width=
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=100px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=100px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
Changed lines 3-4 from:
to:
A discontinuous Galerkin formulation can be seen as a classical finite element method for which the global continuity of the approximation has been lifted. This implies that the support of each basis function is restrained to a discretization cell, which leads to local formulations implying no large mass matrix inversion if an explicit time-marching scheme is adopted. Then, connexion between neighboring cells is restored by the use of a numerical flux as in a finite volume method. The form of the numerical flux impacts the mathematical properties of the resulting DGTD scheme. The discontinuity of the approximation allows for several methodological improvements among which the local adaptation of the approximation order, and the use of non-conforming meshes.
This study is concerned with the development of a non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:tableend:)
This study is concerned with the development of a non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_3D.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_2D.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/non_conf_dec_3D.png
(:tableend:)
Deleted lines 11-15:
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
Changed lines 17-18 from:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
Changed lines 19-20 from:
(:cellnr align='center':) Fully tetrahedral mesh - DGTD-P'_2_' method
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_' method
(:cell
to:
(:cellnr align='center':) Fully tetrahedral mesh
(:cell align='center':) Hybrid cubic/tetrahedral mesh method
(:cellnr align='center':) DGTD-P'_2_' method
(:cell align='center':) DGTD-P'_2_'Q'_2_' method
(:cell align='center':) Hybrid cubic/tetrahedral mesh method
(:cellnr align='center':) DGTD-P'_2_' method
(:cell align='center':) DGTD-P'_2_'Q'_2_' method
Changed line 11 from:
(:cell align='center':) Hybrid cubic/tetrahedral meshmethod
to:
(:cell align='center':) Hybrid cubic/tetrahedral mesh
Changed line 20 from:
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_'
to:
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_' method
Changed lines 10-11 from:
(:cellnr align='center':) Fully tetrahedral mesh - DGTD-P'_2_' method
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_' method
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_' method
to:
(:cellnr align='center':) Fully tetrahedral mesh
(:cell align='center':) Hybrid cubic/tetrahedral meshmethod
(:cell align='center':) Hybrid cubic/tetrahedral meshmethod
Changed lines 19-20 from:
(:cellnr align='center':) Fully tetrahedral mesh
(:cell align='center':) Hybrid cubic/tetrahedral mesh
to:
(:cellnr align='center':) Fully tetrahedral mesh - DGTD-P'_2_' method
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_'
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_'
Changed lines 10-11 from:
(:cellnr align='center':) Fully tetrahedral mesh
(:cell align='center':) Hybrid cubic/tetrahedral mesh
to:
(:cellnr align='center':) Fully tetrahedral mesh - DGTD-P'_2_' method
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_' method
(:cell align='center':) Hybrid cubic/tetrahedral mesh - DGTD-P'_2_'Q'_2_' method
Changed lines 17-18 from:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.png
Changed line 18 from:
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.jpg
to:
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.png
Changed line 18 from:
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
to:
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_R.jpg
Changed lines 17-18 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
Deleted line 4:
Added lines 10-18:
(:cellnr align='center':) Fully tetrahedral mesh
(:cell align='center':) Hybrid cubic/tetrahedral mesh
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
(:cell align='center':) Hybrid cubic/tetrahedral mesh
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='0px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_1_short.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_X_g1_L.jpg
Changed line 8 from:
(:table border='0' width='100%' align='center' cellspacing='1px':)
to:
(:table border='0' width='100%' align='center' cellspacing='0px':)
Changed lines 9-10 from:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
Changed lines 9-10 from:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
Changed lines 9-10 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
to:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
(:cell align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_hyb_mesh.png
Changed lines 12-13 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/nano_sphere/nano_L-guide/Lguide_hyb_mesh.png
(:cellnr align='center':) Hybrid cubic/tetrahedral mesh
(:cellnr
to:
(:cell align='center':) Hybrid cubic/tetrahedral mesh
Changed lines 3-13 from:
This study is concerned with the development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
to:
This study is concerned with the development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
(:cellnr align='center':) Fully tetrahedral mesh
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/nano_sphere/nano_L-guide/Lguide_hyb_mesh.png
(:cellnr align='center':) Hybrid cubic/tetrahedral mesh
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/nano_L-guide/Lguide_tet_mesh.png
(:cellnr align='center':) Fully tetrahedral mesh
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/pics/results/nano_sphere/nano_L-guide/Lguide_hyb_mesh.png
(:cellnr align='center':) Hybrid cubic/tetrahedral mesh
(:tableend:)
Changed lines 1-3 from:
This study development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
to:
(:linebreaks:)
This study is concerned with the development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
This study is concerned with the development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.
Added line 1:
This study development of a parallel non-conforming multi-element DGTD method for the solution of the 3D time-domain Maxwell equations coupled to a Drude dispersion model for metals at frequencies relevant to nanophotonic applications, and in particular for the simulation of the scattering of an electromagnetic wave by metallic nanoparticles. Such nanoparticles most often have curvilinear shapes, therefore we propose a numerical modeling strategy which combines the use of an unstructured tetrahedral mesh for the discretization of the scattering structures with a structured (uniform cartesian) mesh for treating the rest of the domain. The emphasis of this work is on increasing the flexibility in the meshing process of nanophotonic configurations while decreasing the needs in computational resources for the target applications.