PmWiki
Main

Collaborations

Main.Collaborations History

Hide minor edits - Show changes to output

February 03, 2016, at 09:15 AM by 147.83.201.97 -
Changed line 30 from:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
to:
(:cellnr align='center':) %width=375px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
February 02, 2016, at 03:32 PM by 147.83.201.97 -
Changed line 30 from:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
to:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
February 02, 2016, at 03:31 PM by 147.83.201.97 -
Changed line 30 from:
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
Deleted lines 34-62:
>><<

>>frame bgcolor='white'<<
!! %newwin% [[http://www.bristol.ac.uk/engineering/people/maciej-klemm/index.html  | Maciek Klemm]]\\

!! Centre for  Communications Research, University of Bristol, UK\\\

!! Dielectric reflectarrays\\

In the  past few years, important  efforts have been deployed  to find alternatives to  on-chip, low-performance metal  interconnects between devices.  Because  of  the  ever-increasing  density  of  integrated components, intra-  and inter-chip  data communications have  become a major bottleneck  in the improvement of  information processing. Given the  compactness  and  the  simple  implantation  of  the  devices, communications    via      free-space    optics    between nanoantenna-based arrays have recently drawn more attention.  Here, we focus on a specific low-loss  design of dielectric reflectarray (DRA), whose  geometry  is based  on  a  periodic repartition  of  dielectric cylinders on a  metallic plate. When illuminated  in normal incidence, specific patterns of such resonators provide a constant phase gradient along the dielectric/metal  interface, thus altering the  phase of the incident wavefront. The gradient of phase shift generates an effective wavevector along  the interface, which  is able to deflect  light from specular  reflection.    However,  the  flaws  of  the  lithographic production process can lead to  discrepancies between the ideal device and the actual  resonator array. Here, we propose to  exploit our DGTD solver  to  study  the  impact  of  the  lithographic  flaws  on  the performance        of      a        1D      reflectarray.  Efficient  computations are  obtained  by combining high-order polynomial approximation with curvilinear meshing of the  resonators, yielding  accurate results  on very  coarse meshes.  The study is continued  with the
computation  of  the  reflection  of  a  2D  reflectarray. 

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_sharp.png
(:cellnr align='center':) Ideal reflectarray
(:cellnr align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
(:cellnr align='center':) Realistic reflectarray
(:tableend:)

%center% Ideal and  realistic 1D  dielectric reflectarray  meshes. The red tetrahedra correspond  to silver, while the green  ones are made of an anisotropic  dielectric material. The device  is surrounded by air  and terminated  by  a  PML above  and  below,  and by  periodic boundary conditions on the lateral sides

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_ideal_f1.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect_f1.png
(:cellnr align='center':) Ideal reflectarray
(:cell  align='center':) Realistic reflectarray
(:tableend:)

%center% Time-domain  snapshot  of  E'_y_'  component  for  ideal  and realistic  1D dielectric  reflectarrays.  Solution  is obtained  in established regime at t = 0.1 ps. Fields are scaled to [-1,1]
February 02, 2016, at 03:31 PM by 147.83.201.97 -
February 02, 2016, at 03:26 PM by 147.83.201.97 -
Added lines 23-33:
(:tableend:)
>><<

(:linebreaks:)

>>frame bgcolor='white'<<
(:table border='0' align='center':)
(:cellnr align='center':) %width=200px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
(:cellnr align='center':) Maciek Klemm, University of Bristol
(:cellnr align='center':) Dielectric reflectarrays
(:cellnr align='center':) [[Collaborations/UoB_MKlemm | More details]]
February 02, 2016, at 03:22 PM by 147.83.201.97 -
Changed line 19 from:
(:cellnr align='center':) %width=175px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
to:
(:cellnr align='center':) %width=205px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
Deleted lines 23-48:
>><<

>>frame bgcolor='white'<<
!! %newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\

!! Institut Pascal, Blaise Pascal University, Clermont-Ferrand\\\

!! Gap-plasmon confinement with gold nanocubes\\

The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed, light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  manometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanotubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers. The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with Antoine  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on  the behaviour  of a  single nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from the results of each computation.

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r2_d5_c75.png
(:cell  align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
(:tableend:)

%center% Meshes of rounded nanocubes  with rounding radii ranging from 2 to 10 nm. Red cells correspond to the cube. The latter lies on the dielectric spacer (gray cells) and  the metallic plate (green). Blue cells represent the air surrounding the device

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d12nm_c70nm_H_visu2.png
(:cell  align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d18nm_c60nm_H_visu2.png
(:cellnr align='center':) ''c'' = 70 nm, ''d'' = 12 nm
(:cell  align='center':) ''c'' = 60 nm, ''d'' = 18 nm
(:tableend:)

%center% Amplitude of  the discrete Fourier transform  of the magnetic field  for different  nanocube configurations.  All field  maps are scaled identically for better comparison. The obtained field is more intense  for  configurations  that  yield  high  Q'_cube_' values
February 02, 2016, at 03:20 PM by 147.83.201.97 -
Changed lines 15-16 from:
:linebreaks:)
to:
(:linebreaks:)
Changed line 19 from:
(:cellnr align='center':) %width=175px% http://www-sop.inria.fr/nachos/pics/collabs/w_blanc/nano_fiber.png
to:
(:cellnr align='center':) %width=175px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
February 02, 2016, at 03:19 PM by 147.83.201.97 -
Added lines 12-22:
(:tableend:)
>><<

:linebreaks:)

>>frame bgcolor='white'<<
(:table border='0' align='center':)
(:cellnr align='center':) %width=175px% http://www-sop.inria.fr/nachos/pics/collabs/w_blanc/nano_fiber.png
(:cellnr align='center':) Antoine Moreau, Institut Pascal
(:cellnr align='center':) Gap-plasmon confinement with gold nanocubes
(:cellnr align='center':) [[Collaborations/Pascal_AMoreau | More details]]
February 02, 2016, at 03:17 PM by 147.83.201.97 -
Added line 9:
(:cellnr align='center':) Wilfried Blanc, LPMC
Deleted lines 11-25:
(:tableend:)
>><<

>>frame bgcolor='white'<<
!! %newwin% [[http://lpmc.unice.fr/Blanc-Wilfried,626.html | Wilfried Blanc]]\\

!! Optical Fibers team, LPMC (Laboratory of Condensed Matter Physics), University of Nice-Sophia Antipolis\\\

!! Light diffusion in nanostructured optical fibers\\

Optical  fibers  are  the  basis  for  applications  that  have  grown considerably  in  recent  years  (telecommunications,  sensors,  fiber lasers, etc.).  Despite these undeniable successes, it is necessary to develop  new  generations  of  amplifying  optical  fibers  that  will overcome  some limitations  typical  of silica.  In  this sense,  the amplifying  Transparent Glass  Ceramics  (TGC),  and particularly  the fibers based  on this technology,  open new perspectives  that combine the  mechanical  and chemical  properties  of  a  glass host  and  the augmented  spectroscopic  properties  of  embedded  nanoparticles, particularly  rare  earth-doped  oxide  nanoparticles.    Such  rare earth-doped silica-based optical fibers with transparent glass ceramic (TGC) core are fabricated by the Optical Fibers team of the Laboratory of  Condensed  Matter Physics (LPMC)  in  Nice.  The  objective  of  this collaboration  with Wilfried  Blanc at  LPMC is  the study  of optical transmission terms  of loss  due to  scattering through  the numerical simulation of light propagation in a nanostructured optical fiber core
using a high order DGTD method developed in the team.

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/w_blanc/nano_fiber.png
February 02, 2016, at 03:14 PM by 147.83.201.97 -
Added lines 2-12:

(:linebreaks:)
(:linebreaks:)

>>frame bgcolor='white'<<
(:table border='0' align='center':)
(:cellnr align='center':) %width=175px% http://www-sop.inria.fr/nachos/pics/collabs/w_blanc/nano_fiber.png
(:cellnr align='center':) Light diffusion in nanostructured optical fibers
(:cellnr align='center':) [[Collaborations/LPMC_WBlanc | More details]]
(:tableend:)
>><<
January 27, 2016, at 11:24 AM by 138.96.200.15 -
Added lines 13-15:
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/w_blanc/nano_fiber.png
(:tableend:)
January 27, 2016, at 11:09 AM by 138.96.200.15 -
Added lines 4-15:
!! %newwin% [[http://lpmc.unice.fr/Blanc-Wilfried,626.html | Wilfried Blanc]]\\

!! Optical Fibers team, LPMC (Laboratory of Condensed Matter Physics), University of Nice-Sophia Antipolis\\\

!! Light diffusion in nanostructured optical fibers\\

Optical  fibers  are  the  basis  for  applications  that  have  grown considerably  in  recent  years  (telecommunications,  sensors,  fiber lasers, etc.).  Despite these undeniable successes, it is necessary to develop  new  generations  of  amplifying  optical  fibers  that  will overcome  some limitations  typical  of silica.  In  this sense,  the amplifying  Transparent Glass  Ceramics  (TGC),  and particularly  the fibers based  on this technology,  open new perspectives  that combine the  mechanical  and chemical  properties  of  a  glass host  and  the augmented  spectroscopic  properties  of  embedded  nanoparticles, particularly  rare  earth-doped  oxide  nanoparticles.    Such  rare earth-doped silica-based optical fibers with transparent glass ceramic (TGC) core are fabricated by the Optical Fibers team of the Laboratory of  Condensed  Matter Physics (LPMC)  in  Nice.  The  objective  of  this collaboration  with Wilfried  Blanc at  LPMC is  the study  of optical transmission terms  of loss  due to  scattering through  the numerical simulation of light propagation in a nanostructured optical fiber core
using a high order DGTD method developed in the team.

>><<

>>frame bgcolor='white'<<
Changed lines 18-19 from:
!! Institut Pascal, Université Blaise Pascal\\\
to:
!! Institut Pascal, Blaise Pascal University, Clermont-Ferrand\\\
Changed lines 68-70 from:
>><<

(:linebreaks:)
to:
>><<
January 27, 2016, at 11:00 AM by 138.96.200.15 -
Changed lines 17-18 from:
%center% Meshes of rounded nanocubes  with rounding radii ranging from 2 to 10 nm. Red cells correspond to the cube. The latter lies on the dielectric spacer (gray cells) and  the metallic plate (green). Blue cells represent the air surrounding the device.
to:
%center% Meshes of rounded nanocubes  with rounding radii ranging from 2 to 10 nm. Red cells correspond to the cube. The latter lies on the dielectric spacer (gray cells) and  the metallic plate (green). Blue cells represent the air surrounding the device
Changed line 26 from:
%center% Amplitude of  the discrete Fourier transform  of the magnetic field  for different  nanocube configurations.  All field  maps are scaled identically for better comparison. The obtained field is more intense  for  configurations  that  yield  high  Q'_cube_' values.
to:
%center% Amplitude of  the discrete Fourier transform  of the magnetic field  for different  nanocube configurations.  All field  maps are scaled identically for better comparison. The obtained field is more intense  for  configurations  that  yield  high  Q'_cube_' values
Changed lines 55-56 from:
%center% Time-domain  snapshot  of  E'_y_'  component  for  ideal  and realistic  1D dielectric  reflectarrays.  Solution  is obtained  in established regime at t = 0.1 ps. Fields are scaled to [-1,1].
to:
%center% Time-domain  snapshot  of  E'_y_'  component  for  ideal  and realistic  1D dielectric  reflectarrays.  Solution  is obtained  in established regime at t = 0.1 ps. Fields are scaled to [-1,1]
Added line 57:
January 27, 2016, at 07:48 AM by 138.96.200.15 -
Changed lines 49-50 from:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_ideal_f1.png
(:cell  align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect_f1.png
to:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_ideal_f1.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect_f1.png
January 27, 2016, at 07:48 AM by 138.96.200.15 -
Changed lines 49-50 from:
(:cellnr align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_ideal_f1.png
(:cell  align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect_f1.png
to:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_ideal_f1.png
(:cell  align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect_f1.png
January 27, 2016, at 07:48 AM by 138.96.200.15 -
Added lines 47-55:

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_ideal_f1.png
(:cell  align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect_f1.png
(:cellnr align='center':) Ideal reflectarray
(:cell  align='center':) Realistic reflectarray
(:tableend:)

%center% Time-domain  snapshot  of  E'_y_'  component  for  ideal  and realistic  1D dielectric  reflectarrays.  Solution  is obtained  in established regime at t = 0.1 ps. Fields are scaled to [-1,1].
January 27, 2016, at 07:46 AM by 138.96.200.15 -
Changed line 40 from:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_sharp.png
to:
(:cellnr align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_sharp.png
Changed line 42 from:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
to:
(:cellnr align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
January 27, 2016, at 07:45 AM by 138.96.200.15 -
Changed lines 40-41 from:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_sharp.png
(:cell  align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect
.png
to:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_sharp.png
Changed lines 42-43 from:
(:cell   align='center':) Realistic reflectarray
to:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
(:cellnr
align='center':) Realistic reflectarray
January 27, 2016, at 07:45 AM by 138.96.200.15 -
Deleted line 28:
Added lines 38-47:

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_sharp.png
(:cell  align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
(:cellnr align='center':) Ideal reflectarray
(:cell  align='center':) Realistic reflectarray
(:tableend:)

%center% Ideal and  realistic 1D  dielectric reflectarray  meshes. The red tetrahedra correspond  to silver, while the green  ones are made of an anisotropic  dielectric material. The device  is surrounded by air  and terminated  by  a  PML above  and  below,  and by  periodic boundary conditions on the lateral sides

January 27, 2016, at 07:40 AM by 138.96.200.15 -
Added lines 36-38:

In the  past few years, important  efforts have been deployed  to find alternatives to  on-chip, low-performance metal  interconnects between devices.  Because  of  the  ever-increasing  density  of  integrated components, intra-  and inter-chip  data communications have  become a major bottleneck  in the improvement of  information processing. Given the  compactness  and  the  simple  implantation  of  the  devices, communications    via      free-space    optics    between nanoantenna-based arrays have recently drawn more attention.  Here, we focus on a specific low-loss  design of dielectric reflectarray (DRA), whose  geometry  is based  on  a  periodic repartition  of  dielectric cylinders on a  metallic plate. When illuminated  in normal incidence, specific patterns of such resonators provide a constant phase gradient along the dielectric/metal  interface, thus altering the  phase of the incident wavefront. The gradient of phase shift generates an effective wavevector along  the interface, which  is able to deflect  light from specular  reflection.    However,  the  flaws  of  the  lithographic production process can lead to  discrepancies between the ideal device and the actual  resonator array. Here, we propose to  exploit our DGTD solver  to  study  the  impact  of  the  lithographic  flaws  on  the performance        of      a        1D      reflectarray.  Efficient  computations are  obtained  by combining high-order polynomial approximation with curvilinear meshing of the  resonators, yielding  accurate results  on very  coarse meshes.  The study is continued  with the
computation  of  the  reflection  of  a  2D  reflectarray. 
January 27, 2016, at 07:38 AM by 138.96.200.15 -
Changed lines 10-11 from:
The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed, light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  manometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanotubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers. The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with Antoine  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on  the behaviour  of a  single nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from      the    results of each computation.
to:
The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed, light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  manometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanotubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers. The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with Antoine  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on  the behaviour  of a  single nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from the results of each computation.
Added lines 29-36:

>>frame bgcolor='white'<<
!! %newwin% [[http://www.bristol.ac.uk/engineering/people/maciej-klemm/index.html  | Maciek Klemm]]\\

!! Centre for  Communications Research, University of Bristol, UK\\\

!! Dielectric reflectarrays\\
>><<
January 27, 2016, at 07:35 AM by 138.96.200.15 -
Changed lines 13-14 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r2_d5_c75.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r2_d5_c75.png
(:cell  align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
Changed lines 20-21 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d12nm_c70nm_H_visu2.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d18nm_c60nm_H_visu2.png
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d12nm_c70nm_H_visu2.png
(:cell  align='center':) %width=250px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d18nm_c60nm_H_visu2.png
January 27, 2016, at 07:34 AM by 138.96.200.15 -
Added lines 18-26:

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d12nm_c70nm_H_visu2.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/nanocube_d18nm_c60nm_H_visu2.png
(:cellnr align='center':) ''c'' = 70 nm, ''d'' = 12 nm
(:cell  align='center':) ''c'' = 60 nm, ''d'' = 18 nm
(:tableend:)

%center% Amplitude of  the discrete Fourier transform  of the magnetic field  for different  nanocube configurations.  All field  maps are scaled identically for better comparison. The obtained field is more intense  for  configurations  that  yield  high  Q'_cube_' values.
January 26, 2016, at 03:05 PM by 138.96.200.15 -
Changed lines 13-14 from:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r2_d5_c75.png
(:cell  align='center':) %width=345px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
to:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r2_d5_c75.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
January 26, 2016, at 03:05 PM by 138.96.200.15 -
Added lines 11-17:

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r2_d5_c75.png
(:cell  align='center':) %width=345px% http://www-sop.inria.fr/nachos/pics/collabs/a_moreau/r10_d5_c75.png
(:tableend:)

%center% Meshes of rounded nanocubes  with rounding radii ranging from 2 to 10 nm. Red cells correspond to the cube. The latter lies on the dielectric spacer (gray cells) and  the metallic plate (green). Blue cells represent the air surrounding the device.
January 26, 2016, at 03:01 PM by 138.96.200.15 -
Changed lines 6-8 from:
!! Institut Pascal, Université Blaise Pascal\\

!! Gap-plasmon confinement with gold nanocubes\\\
to:
!! Institut Pascal, Université Blaise Pascal\\\

!! Gap-plasmon confinement with gold nanocubes\\
January 26, 2016, at 03:00 PM by 138.96.200.15 -
Changed line 8 from:
!! Gap-plasmon confinement with gold nanocubes\\
to:
!! Gap-plasmon confinement with gold nanocubes\\\
January 26, 2016, at 03:00 PM by 138.96.200.15 -
Changed lines 4-8 from:
!!! %newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\

!!! Institut Pascal, Université Blaise Pascal\\

!!! Gap-plasmon confinement with gold nanocubes\\
to:
!! %newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\

!! Institut Pascal, Université Blaise Pascal\\

!! Gap-plasmon confinement with gold nanocubes\\
January 26, 2016, at 02:59 PM by 138.96.200.15 -
Deleted line 3:
January 26, 2016, at 02:59 PM by 138.96.200.15 -
Changed lines 4-5 from:
%newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\
to:

!!!
%newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\
January 26, 2016, at 02:59 PM by 138.96.200.15 -
Changed lines 5-6 from:
Institut Pascal, Université Blaise Pascal\\\
to:

!!!
Institut Pascal, Université Blaise Pascal\\
January 26, 2016, at 02:59 PM by 138.96.200.15 -
Added line 6:
Added line 8:
January 26, 2016, at 02:58 PM by 138.96.200.15 -
Changed lines 4-5 from:
!!! %newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\
!!! Institut Pascal, Université Blaise Pascal\\\
to:
%newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\
Institut Pascal, Université Blaise Pascal\\\
January 26, 2016, at 02:58 PM by 138.96.200.15 -
Changed lines 4-6 from:
%newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\
Institut Pascal, Université Blaise Pascal\\\
Gap-plasmon confinement with gold nanocubes\\
to:
!!! %newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\
!!! Institut Pascal, Université Blaise Pascal\\\
!!! Gap-plasmon confinement with gold nanocubes\\
January 26, 2016, at 02:57 PM by 138.96.200.15 -
Changed line 5 from:
Institut Pascal, Université Blaise Pascal\\
to:
Institut Pascal, Université Blaise Pascal\\\
Changed line 7 from:
[-The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed, light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  manometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanotubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers. The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with Antoine  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on  the behaviour  of a  single nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from      the      results of each computation.-]
to:
The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed, light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  manometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanotubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers. The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with Antoine  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on  the behaviour  of a  single nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from      the      results of each computation.
January 26, 2016, at 02:57 PM by 138.96.200.15 -
Changed lines 7-9 from:
[-The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed,  light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  nanometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanocubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers.   The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with
Antoine
  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on  the behaviour  of a  single
nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from      the      results of each computation.-]
to:
[-The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed, light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  manometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanotubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers. The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with Antoine  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on the behaviour  of a  single nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from      the      results of each computation.-]
January 26, 2016, at 02:56 PM by 138.96.200.15 -
Added line 3:
>>frame bgcolor='white'<<
Changed lines 6-8 from:
Gap-plasmon confinement with gold nanocubes\\\

The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed,  light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  nanometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanocubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers.  The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with
to:
Gap-plasmon confinement with gold nanocubes\\
[-The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed,  light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  nanometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanocubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers.  The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with
Changed lines 9-10 from:
nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from      the      results of each computation.
to:
nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from      the      results of each computation.-]
>><<
January 26, 2016, at 02:55 PM by 138.96.200.15 -
Added lines 5-9:
Gap-plasmon confinement with gold nanocubes\\\

The propagation  of light in  a slit between  metals is known  to give rise to guided  modes. When the slit is of  nanometric size, plasmonic effects must be taken into account,  since most of the mode propagates inside the metal. Indeed,  light experiences an important slowing-down in  the  slit, the  resulting  mode  being called ''gap-plasmon''. Hence, a metallic structure presenting a  nanometric slit can act as a light trap, i.e. light will accumulate  in a reduced space and lead to very intense,  localized fields. Recently, the  chemical production of random arrangements of nanocubes on gold  films at low cost was proved possible  by  Antoine  Moreau  and  colleagues  at  Institut  Pascal. Nanocubes are separated from the gold substrate by a dielectric spacer of variable thickness, thus forming a narrow slit under the cube. When excited from above, this configuration  is able to support gap-plasmon modes which,  once trapped, will  keep bouncing back and  forth inside the cavity.  At visible frequencies, the lossy behavior of metals will cause the progressive absorption of the trapped electromagnetic field, turning  the  metallic  nanocubes  into  efficient  absorbers.  The frequencies at which this absorption  occurs can be tuned by adjusting the dimensions of the nanocube  and the spacer.  In collaboration with
Antoine  Moreau, we  propose to  study numerically  the impact  of the geometric  parameters of  the problem  on  the behaviour  of a  single
nanocube placed  over a metallic slab. The  behavior  of  single  nanocubes  on  metallic  plates  has  been simulated, for lateral sizes ''c'' ranging  from 50 to 80 nm, and spacer thicknesses ''d'' from 3 to  22 nm.  The absorption  efficiency in the  cube Q'_cube_'  at the  resonance frequency  is retrieved from      the      results of each computation.
January 26, 2016, at 02:15 PM by 138.96.200.15 -
Changed line 3 from:
%newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau | Antoine Moreau]]\\
to:
%newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau/index_en.html | Antoine Moreau]]\\
January 26, 2016, at 02:15 PM by 138.96.200.15 -
Changed lines 3-4 from:
%newwin% [[http://elma.univ-bpclermont.fr/moreau | Antoine Moreau]]\\
[-Institut Pascal, Université Blaise Pascal-]\\
to:
%newwin% [[http://cloud.ip.univ-bpclermont.fr/~moreau | Antoine Moreau]]\\
Institut Pascal, Université Blaise Pascal\\
January 26, 2016, at 02:13 PM by 138.96.200.15 -
Changed lines 3-6 from:
(:linebreaks:)
to:
%newwin% [[http://elma.univ-bpclermont.fr/moreau | Antoine Moreau]]\\
[-Institut Pascal, Université Blaise Pascal-]\\

(:linebreaks:)
May 06, 2015, at 05:03 PM by 138.96.201.175 -
May 06, 2015, at 05:01 PM by 138.96.201.175 -
Added lines 1-3:
(:title Collaborations:)

(:linebreaks:)