PmWiki
Collaborations

Collaborations

Collaborations.UoBMKlemm History

Hide minor edits - Show changes to output

February 02, 2016, at 03:32 PM by 147.83.201.97 -
Added lines 1-2:
(:title Collaborations:)
February 02, 2016, at 03:27 PM by 147.83.201.97 -
Added lines 1-28:
>>frame bgcolor='white'<<
!! %newwin% [[http://www.bristol.ac.uk/engineering/people/maciej-klemm/index.html  | Maciek Klemm]]\\

!! Centre for  Communications Research, University of Bristol, UK\\\

!! Dielectric reflectarrays\\

In the  past few years, important  efforts have been deployed  to find alternatives to  on-chip, low-performance metal  interconnects between devices.  Because  of  the  ever-increasing  density  of  integrated components, intra-  and inter-chip  data communications have  become a major bottleneck  in the improvement of  information processing. Given the  compactness  and  the  simple  implantation  of  the  devices, communications    via      free-space    optics    between nanoantenna-based arrays have recently drawn more attention.  Here, we focus on a specific low-loss  design of dielectric reflectarray (DRA), whose  geometry  is based  on  a  periodic repartition  of  dielectric cylinders on a  metallic plate. When illuminated  in normal incidence, specific patterns of such resonators provide a constant phase gradient along the dielectric/metal  interface, thus altering the  phase of the incident wavefront. The gradient of phase shift generates an effective wavevector along  the interface, which  is able to deflect  light from specular  reflection.    However,  the  flaws  of  the  lithographic production process can lead to  discrepancies between the ideal device and the actual  resonator array. Here, we propose to  exploit our DGTD solver  to  study  the  impact  of  the  lithographic  flaws  on  the performance        of      a        1D      reflectarray.  Efficient  computations are  obtained  by combining high-order polynomial approximation with curvilinear meshing of the  resonators, yielding  accurate results  on very  coarse meshes.  The study is continued  with the
computation  of  the  reflection  of  a  2D  reflectarray. 

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_sharp.png
(:cellnr align='center':) Ideal reflectarray
(:cellnr align='center':) %width=550px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect.png
(:cellnr align='center':) Realistic reflectarray
(:tableend:)

%center% Ideal and  realistic 1D  dielectric reflectarray  meshes. The red tetrahedra correspond  to silver, while the green  ones are made of an anisotropic  dielectric material. The device  is surrounded by air  and terminated  by  a  PML above  and  below,  and by  periodic boundary conditions on the lateral sides

(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_ideal_f1.png
(:cell  align='center':) %width=300px% http://www-sop.inria.fr/nachos/pics/collabs/m_klemm/bigdiel_imperfect_f1.png
(:cellnr align='center':) Ideal reflectarray
(:cell  align='center':) Realistic reflectarray
(:tableend:)

%center% Time-domain  snapshot  of  E'_y_'  component  for  ideal  and realistic  1D dielectric  reflectarrays.  Solution  is obtained  in established regime at t = 0.1 ps. Fields are scaled to [-1,1]
>><<