|
Guillaume Perrin
Ancien Doctorant, MESR / Ecole Centrale Paris
Mots-clés : Géométrie stochastique, MCMC, Estimation de paramètres, Extraction d'objets, Arbres / Foret Projet : Mode de Vie Démos : voir les démos de l'auteur
Contact :
E-Mail : | | GuillaumedotPerrinatinriadotfr | Téléphone : | | (33)4-92-38-78-66 | Fax : | | (33)4-92-38-76-43 | Adresse : | | INRIA Sophia Antipolis
2004, route des Lucioles
06902 Sophia Antipolis Cedex
France | Site personnel : | | visitez ! |
|
| Résumé :
Mon sujet de thèse est l'étude du couvert forestier à partir de processus ponctuels marqués. Cette thèse est co-encadrée par le laboratoire MAS de l'Ecole Centrale Paris.
Les images aériennes et satellitaires jouent un rôle de plus en plus important dans le domaine de la gestion des ressources naturelles, et en particulier des forêts. Les organismes chargés d'en faire l'inventaire, comme l'Inventaire Forestier National (IFN) en France, s'appuient en effet sur ces images pour observer les différentes espèces d'arbres d'une zone boisée, avant de se rendre sur le terrain pour une étude plus poussée (relevés dendrométriques, ...). Mais la résolution submétrique des données pourrait permettre d'entrevoir une étude plus fine et si possible automatisée : comptage d'arbres, classification des houppiers.
L'objectif de notre travail est donc d'extraire des houppiers à partir d'images aériennes de forêts. Notre approche consiste à modéliser les peuplements forestiers par un processus ponctuel marqué d'ellipses ou d'ellipsoides, dont les points représentent les positions des arbres et les marques leurs caractéristiques géométriques. L'objectif étant de trouver la meilleure configuration de ces objets dans l'image. L'IFN nous fournit des photographies aériennes scannées afin de tester et valider nos modèles.
Collaborations : ARC Mode de Vie |
Mini CV :
2003-2006 : PhD Thesis, Project Ariana (INRIA Sophia Antipolis) / MAS Laboratory (ECP)
2002-2003 : Master Mathematiques Vision Apprentissage (ENS Cachan)
2000-2003 : Ecole Centrale Paris |
Principales publications :
2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. International Conference on Pattern Recognition (ICPR), Hong-Kong, août 2006. Mots-clés : Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques.
@INPROCEEDINGS{perrin_06_c,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes}, |
year |
= |
{2006}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Hong-Kong}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_perrin_06_c.pdf}, |
keyword |
= |
{Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques} |
} |
Abstract :
High resolution aerial and satellite images of forests have a key role to play in natural resource management. As they enable to study forests at the scale of trees, it is now possible to get a more accurate evaluation of the forest resources, from which can be deduced information of biodiversity and ecological sustainability. In that prospect, automatic algorithms are needed to give a further exploitation of the data and to assist human operators. In this paper, we present a stochastic geometry approach to extract 2D and 3D parameters of the trees, by modelling the stands as some realizations of a marked point process of ellipses or ellipsoids, whose points are the positions of the trees and marks their geometric features. This approach gives also the number of stems, their position, and their size. It is an energy minimization problem, where the energy embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. Results are shown on aerial images provided by the French National Forest Inventory (IFN). |
Adaptive Simulated Annealing for Energy Minimization Problem in a Marked Point Process Application. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), St Augustine, Florida, USA, novembre 2005. Mots-clés : Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Estimation MAP, RJMCMC. Copyright : Springer Verlag
@INPROCEEDINGS{perrin_emmcvpr05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Adaptive Simulated Annealing for Energy Minimization Problem in a Marked Point Process Application}, |
year |
= |
{2005}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)}, |
address |
= |
{St Augustine, Florida, USA}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_emmcvpr.pdf}, |
ps |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_emmcvpr.ps.gz}, |
keyword |
= |
{Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Estimation MAP, RJMCMC} |
} |
Abstract :
We use marked point processes to detect an unknown number of trees from high resolution aerial images. This is in fact an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects to the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.
We compare here different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels. |
|
Liste complète des publications dans le projet Ariana
|
|