HORSE
Software.HORSE History
Hide minor edits - Show changes to output
Changed lines 52-53 from:
%center% Scattering of a plane wave by the Lockheed F-104 Starfighter, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
to:
%center% Scattering of a plane wave by the Lockheed F-104 Starfighter. Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
Added lines 69-72:
(:linebreaks:)
%center% Scattering of a plane wave by the Lockheed F-104 Starfighter. Frequency of the incident wave: 600 MHz. Strong scalability analysis: Occigen Bull/Atos cluster at CINES, Intel E5-2690, 2.6~GHz, 24 cores on each node, 64 GB or 128 GB RAM per node.
Changed line 13 from:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png
to:
(:cellnr align='center':) %width=275px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png
Changed line 14 from:
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
to:
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
Changed line 14 from:
(:cell align='center':) %width=275px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
to:
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
Changed line 15 from:
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes
to:
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes used for the numerical convergence study.
Deleted lines 16-17:
(:cell align='center':)
Changed line 15 from:
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
to:
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes
Added lines 17-18:
(:cellnr align='center':) used for the numerical convergence study.
(:cell align='center':)
(:cell align='center':)
Changed line 14 from:
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
to:
(:cell align='center':) %width=275px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
Added line 14:
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
Added line 16:
(:cell align='center':) Size of the discrete HDG systems for mesh M4.
Deleted lines 52-68:
(:linebreaks:)
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
(:cellnr align='center':) \# DoF
(:cell align='center':) HDG-P1
(:cell align='center':) HDG-P2
(:cell align='center':) HDG-P3
(:cellnr align='center':) Hybrid variable
(:cell align='center':) 21,127,506
(:cell align='center':) 42,255,012
(:cell align='center':) 70,425,020
(:cellnr align='center':) ('''E''''_h_' , '''H''''_h_')
(:cell align='center':) 39,500,976
(:cell align='center':) 98,752,440
(:cell align='center':) 197,504,880
(:tableend:)
Deleted lines 14-16:
(:cellnr align='center':) %width=500px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg
(:cellnr align='center':) HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
Changed lines 18-19 from:
to:
(:linebreaks:)
Added lines 21-27:
(:cellnr align='center':) %width=500px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg
(:cellnr align='center':) HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
Deleted lines 38-44:
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cellnr align='center':)
(:tableend:)
Deleted lines 30-31:
(:cellnr align='center':)
Added lines 34-40:
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cellnr align='center':)
(:tableend:)
Changed lines 31-32 from:
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
to:
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cellnr align='center':)
(:cellnr align='center':)
Added line 31:
(:cell align='center':) %width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
Changed lines 34-35 from:
%center% Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): %newwin% [[http://mumps.enseeiht.fr | MUMPS]] sparse direct solver, [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with MUMPS or [[http://pastix.gforge.inria.fr/files/README-txt.html | PaStiX]] as a local sparse direct solver, GMRES accelerated %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with PaStiX as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
to:
%center% HDG method for the three-dimensional frequency-domain Maxwell equations. Plane wave propagation in vacuum. Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): %newwin% [[http://mumps.enseeiht.fr | MUMPS]] sparse direct solver, [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with MUMPS or [[http://pastix.gforge.inria.fr/files/README-txt.html | PaStiX]] as a local sparse direct solver, GMRES accelerated %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with PaStiX as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
Deleted lines 36-54:
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
(:cellnr align='center':) \# DoF
(:cell align='center':) HDG-P1
(:cell align='center':) HDG-P2
(:cell align='center':) HDG-P3
(:cell align='center':) HDG-P4
(:cellnr align='center':) Hybrid variable
(:cell align='center':) 257,472
(:cell align='center':) 514,944
(:cell align='center':) 858,240
(:cell align='center':) 1,287,360
(:cellnr align='center':) ('''E''''_h_' , '''H''''_h_')
(:cell align='center':) 497,664
(:cell align='center':) 1,244,160
(:cell align='center':) 2,488,320
(:cell align='center':) 4,354,560
(:tableend:)
Changed lines 38-39 from:
to:
Changed line 46 from:
%center% Scattering of a plane wave by the Lockheed F-104 Starfight, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
to:
%center% Scattering of a plane wave by the Lockheed F-104 Starfighter, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
Changed lines 12-17 from:
(
(:linebreaks:)
%lfloat text
to:
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
(:cellnr align='center':)
(:cellnr align='center':) %width=500px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg
(:cellnr align='center':) HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
(:tableend:)
(:cellnr align='center':) %width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
(:cellnr align='center':)
(:cellnr align='center':) %width=500px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg
(:cellnr align='center':) HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
(:tableend:)
Changed line 12 from:
%lfloat width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
to:
%lfloat text-align=center width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
Changed line 12 from:
%lfloat text-align=right width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
to:
%lfloat width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
Changed line 12 from:
%lfloat text-align=left width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
to:
%lfloat text-align=right width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
Changed line 12 from:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
to:
%lfloat text-align=left width=250px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
Changed lines 12-15 from:
%lfloat text-align=center width=500px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
to:
%lfloat text-align=center width=300px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
(:linebreaks:)
(:linebreaks:)
(:linebreaks:)
(:linebreaks:)
Changed line 12 from:
%lfloat text-align=center width=500px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.jpg | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
to:
%lfloat text-align=center width=500px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
Added lines 11-12:
%lfloat text-align=center width=500px% http://www-sop.inria.fr/nachos/softs/horse/size_mesh.jpg | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
Changed line 82 from:
(:cellnr align='center':) %width=450px% http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
to:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
Changed line 82 from:
(:cellnr align='center':) %width=600px% http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
to:
(:cellnr align='center':) %width=450px% http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
Added lines 82-85:
(:cellnr align='center':) %width=600px% http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
(:cellnr align='center':) Size of the discrete HDG systems
(:cellnr align='center':)
(:cellnr align='center':)
(:cellnr align='center':) Size of the discrete HDG systems
(:cellnr align='center':)
(:cellnr align='center':)
Added line 88:
(:cellnr align='center':)
Changed line 82 from:
(:cellnr align='center':) %width=650px% http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
to:
(:cellnr align='center':) %width=600px% http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
Changed line 85 from:
(:cellnr align='center':) %width=575px% http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
to:
(:cellnr align='center':) %width=500px% http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
Changed line 83 from:
(:cellnr align='center':) %width=600px% http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
to:
(:cellnr align='center':) %width=575px% http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
Changed lines 27-28 from:
%center% Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): %newwin% [[http://mumps.enseeiht.fr | MUMPS]] sparse direct solver, [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with MUMPS or [[http://pastix.gforge.inria.fr/files/README-txt.html | PaStiX]] as a local sparse direct solver, GMRES accelerated %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with MUMPS as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
to:
%center% Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): %newwin% [[http://mumps.enseeiht.fr | MUMPS]] sparse direct solver, [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with MUMPS or [[http://pastix.gforge.inria.fr/files/README-txt.html | PaStiX]] as a local sparse direct solver, GMRES accelerated %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with PaStiX as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
Changed lines 83-84 from:
(:cellnr align='center':) %width=650px% http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
(:cellnr align='center':) %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm withMUMPS as a local sparse direct solver
(:cellnr align='center':) %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with
to:
(:cellnr align='center':) %width=600px% http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
(:cellnr align='center':) %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with PaStiX as a local sparse direct solver
(:cellnr align='center':) %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with PaStiX as a local sparse direct solver
Changed lines 82-83 from:
(:cellnr align='center':) [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with PaStiX as a local sparse direct solver
to:
(:cellnr align='center':) %newwin% [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with [[http://pastix.gforge.inria.fr/files/README-txt.html | PaStiX]] as a local sparse direct solver
(:cellnr align='center':) %width=650px% http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
(:cellnr align='center':) %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with MUMPS as a local sparse direct solver
(:cellnr align='center':) %width=650px% http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
(:cellnr align='center':) %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with MUMPS as a local sparse direct solver
Changed line 81 from:
(:cellnr align='center':) %width=425px% http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
to:
(:cellnr align='center':) %width=650px% http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
Changed line 81 from:
(:cellnr align='center':) %width=325px% http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
to:
(:cellnr align='center':) %width=425px% http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
Changed lines 17-18 from:
(:cellnr align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=355px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) %width=355px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cell align='center':) %width=355px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
Changed lines 21-22 from:
(:cellnr align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png
(:cell align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=355px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png
(:cell align='center':) %width=355px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cell align='center':) %width=355px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
Changed lines 76-84 from:
(:tableend:)
to:
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=325px% http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
(:cellnr align='center':) [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with PaStiX as a local sparse direct solver
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=325px% http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
(:cellnr align='center':) [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with PaStiX as a local sparse direct solver
(:tableend:)
Added lines 55-56:
(:cellnr align='center':) HDG-P2 method
(:cell align='center':) HDG-P3 method
(:cell align='center':) HDG-P3 method
Added lines 55-73:
(:tableend:)
%center% Scattering of a plane wave by the Lockheed F-104 Starfight, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
(:linebreaks:)
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
(:cellnr align='center':) \# DoF
(:cell align='center':) HDG-P1
(:cell align='center':) HDG-P2
(:cell align='center':) HDG-P3
(:cellnr align='center':) Hybrid variable
(:cell align='center':) 21,127,506
(:cell align='center':) 42,255,012
(:cell align='center':) 70,425,020
(:cellnr align='center':) ('''E''''_h_' , '''H''''_h_')
(:cell align='center':) 39,500,976
(:cell align='center':) 98,752,440
(:cell align='center':) 197,504,880
%center% Scattering of a plane wave by the Lockheed F-104 Starfight, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
(:linebreaks:)
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
(:cellnr align='center':) \# DoF
(:cell align='center':) HDG-P1
(:cell align='center':) HDG-P2
(:cell align='center':) HDG-P3
(:cellnr align='center':) Hybrid variable
(:cell align='center':) 21,127,506
(:cell align='center':) 42,255,012
(:cell align='center':) 70,425,020
(:cellnr align='center':) ('''E''''_h_' , '''H''''_h_')
(:cell align='center':) 39,500,976
(:cell align='center':) 98,752,440
(:cell align='center':) 197,504,880
Changed lines 53-54 from:
(:cellnr align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P2ScaleP3.png
to:
(:cellnr align='center':) %width=325px% http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P2ScaleP3.png
(:cell align='center':) %width=325px% http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P3.png
(:cell align='center':) %width=325px% http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P3.png
Added lines 47-54:
(:tableend:)
(:linebreaks:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P2ScaleP3.png
(:linebreaks:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P2ScaleP3.png
Changed line 27 from:
%center% Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): %newwin% [[http://mumps.enseeiht.fr | MUMPS]] sparse direct solver, [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with MUMPS or [[http://pastix.gforge.inria.fr/files/README-txt.html | PaStiX]] as a local (sparse direct) solver,
to:
%center% Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): %newwin% [[http://mumps.enseeiht.fr | MUMPS]] sparse direct solver, [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with MUMPS or [[http://pastix.gforge.inria.fr/files/README-txt.html | PaStiX]] as a local sparse direct solver, GMRES accelerated %newwin% [[http://dx.doi.org/10.1016/j.jcp.2013.09.003 | Schwarz]] algorithm with MUMPS as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
Changed line 27 from:
%center% Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network.
to:
%center% Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): %newwin% [[http://mumps.enseeiht.fr | MUMPS]] sparse direct solver, [[http://maphys.gforge.inria.fr | MaPHyS]] algebraic hybrid iterative-direct solver with MUMPS or [[http://pastix.gforge.inria.fr/files/README-txt.html | PaStiX]] as a local (sparse direct) solver,
Changed lines 27-28 from:
%center% Strong scalability analysis
to:
%center% Strong scalability analysis: %newwin% [[https://www.plafrim.fr/en/home | cluster]] with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network.
(:linebreaks:)
(:linebreaks:)
Changed line 37 from:
(:cellnr align='center':) '''ƈ'''
to:
(:cellnr align='center':) Hybrid variable
Changed line 35 from:
(:cellnr align='center':) ''''B;'''
to:
(:cellnr align='center':) '''ƈ'''
Changed line 29 from:
(:table border='0' width='100%' align='center' cellspacing='1px':)
to:
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
Changed line 35 from:
(:cellnr align='center':) '''ƌ'''
to:
(:cellnr align='center':) ''''B;'''
Changed line 35 from:
(:cellnr align='center':) '''ƌ'''
to:
(:cellnr align='center':) '''ƌ'''
Changed line 35 from:
(:cellnr align='center':) '''ƌ'''
to:
(:cellnr align='center':) '''ƌ'''
Changed lines 27-29 from:
%left% Strong scalability analysis
%left% \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4)
%left% \# DoF for ('''E''''_h_' , '''H''''_h_'): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4)
%left% \# DoF for (
to:
%center% Strong scalability analysis
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) \# DoF
(:cell align='center':) HDG-P1
(:cell align='center':) HDG-P2
(:cell align='center':) HDG-P3
(:cell align='center':) HDG-P4
(:cellnr align='center':) '''ƌ'''
(:cell align='center':) 257,472
(:cell align='center':) 514,944
(:cell align='center':) 858,240
(:cell align='center':) 1,287,360
(:cellnr align='center':) ('''E''''_h_' , '''H''''_h_')
(:cell align='center':) 497,664
(:cell align='center':) 1,244,160
(:cell align='center':) 2,488,320
(:cell align='center':) 4,354,560
(:tableend:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) \# DoF
(:cell align='center':) HDG-P1
(:cell align='center':) HDG-P2
(:cell align='center':) HDG-P3
(:cell align='center':) HDG-P4
(:cellnr align='center':) '''ƌ'''
(:cell align='center':) 257,472
(:cell align='center':) 514,944
(:cell align='center':) 858,240
(:cell align='center':) 1,287,360
(:cellnr align='center':) ('''E''''_h_' , '''H''''_h_')
(:cell align='center':) 497,664
(:cell align='center':) 1,244,160
(:cell align='center':) 2,488,320
(:cell align='center':) 4,354,560
(:tableend:)
Changed lines 27-29 from:
%center% Strong scalability analysis. \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4). \# DoF for ('''E''''_h_' , '''H''''_h_'): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4).
to:
%left% Strong scalability analysis
%left% \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4)
%left% \# DoF for ('''E''''_h_' , '''H''''_h_'): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4)
%left% \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4)
%left% \# DoF for ('''E''''_h_' , '''H''''_h_'): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4)
Added lines 26-27:
%center% Strong scalability analysis. \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4). \# DoF for ('''E''''_h_' , '''H''''_h_'): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4).
Changed lines 21-22 from:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png
(:cell align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cell align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
Changed lines 17-18 from:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cell align='center':) %width=
to:
(:cellnr align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cell align='center':) %width=375px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
Changed line 18 from:
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
to:
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
Added lines 21-24:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cellnr align='center':) HDG-P3 method
(:cell align='center':) HDG-P4 method
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cellnr align='center':) HDG-P3 method
(:cell align='center':) HDG-P4 method
Changed lines 17-19 from:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cellnr align='center':)DGTD method with affine elements
(:cell align='center':) %width=
(:cellnr align='center':)
to:
(:cellnr align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cellnr align='center':) HDG-P1 method
(:cell align='center':) HDG-P2 method
(:cell align='center':) %width=350px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cellnr align='center':) HDG-P1 method
(:cell align='center':) HDG-P2 method
Changed lines 17-18 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
to:
(:cellnr align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) %width=300px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
Changed line 17 from:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/results/softs/horse/PW_TimesBest_P1.png
to:
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
Added lines 13-19:
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:cellnr align='center':) %width=400px% http://www-sop.inria.fr/nachos/results/softs/horse/PW_TimesBest_P1.png
(:cellnr align='center':) DGTD method with affine elements
(:tableend:)
Changed line 12 from:
%lfloat text-align=center width=400px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
to:
%lfloat text-align=center width=500px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
Changed line 12 from:
%lfloat text-align=center width=350px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
to:
%lfloat text-align=center width=400px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
Changed line 12 from:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
to:
%lfloat text-align=center width=350px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
Changed line 12 from:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
to:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
Changed line 12 from:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field.
to:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field, and '''H''''_h_' the magnetic field.
Changed line 12 from:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. '''E'''_h_ denotes the electric field.
to:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. '''E''''_h_' denotes the electric field.
Changed line 12 from:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes.'''E''' denotes the electric field.
to:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. '''E'''_h_ denotes the electric field.
Changed line 12 from:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes.'''E_h_''' denotes the electric field.
to:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes.'''E''' denotes the electric field.
Changed line 12 from:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. "E" denotes the electric field.
to:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes.'''E_h_''' denotes the electric field.
Changed line 12 from:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering a simple problem of plane wave propagation in vacuum.
to:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. "E" denotes the electric field.
Changed line 12 from:
%lfloat text-align=center width=250px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg |
to:
%lfloat text-align=center width=450px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering a simple problem of plane wave propagation in vacuum.
Added lines 9-12:
(:linebreaks:)
%lfloat text-align=center width=250px% http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg |
Changed line 3 from:
!!! HORSE -
to:
!!! HORSE - High Order solver for Radar cross Section Evaluation
Changed lines 6-8 from:
(:linebreaks:)
to:
(:linebreaks:)
HORSE is a simulation software whose development has started in October 2014 in the context of the %newwin% [[http://www-sop.inria.fr/nachos/projects/tecser | ANR TECSER project]]. HORSE is based on a high order HDG method formulated on unstructured tetrahedral and hybrid structured/unstructured (cubic/tetrahedral) meshes for solving the 3D system of frequency-domain Maxwell equations.
HORSE is a simulation software whose development has started in October 2014 in the context of the %newwin% [[http://www-sop.inria.fr/nachos/projects/tecser | ANR TECSER project]]. HORSE is based on a high order HDG method formulated on unstructured tetrahedral and hybrid structured/unstructured (cubic/tetrahedral) meshes for solving the 3D system of frequency-domain Maxwell equations.
Added lines 1-6:
(:linebreaks:)
!!! HORSE -
(:linebreaks:)
(:linebreaks:)
!!! HORSE -
(:linebreaks:)
(:linebreaks:)