HORSE
Software.HORSE History
Show minor edits - Show changes to markup
Scattering of a plane wave by the Lockheed F-104 Starfighter, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
Scattering of a plane wave by the Lockheed F-104 Starfighter. Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
(:linebreaks:)
Scattering of a plane wave by the Lockheed F-104 Starfighter. Frequency of the incident wave: 600 MHz. Strong scalability analysis: Occigen Bull/Atos cluster at CINES, Intel E5-2690, 2.6~GHz, 24 cores on each node, 64 GB or 128 GB RAM per node.
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes used for the numerical convergence study.
(:cellnr align='center':) used for the numerical convergence study. (:cell align='center':)
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
(:cellnr align='center':) Characteristics of uniform tetrahdral meshes
(:cellnr align='center':) used for the numerical convergence study. (:cell align='center':)
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cell align='center':) Size of the discrete HDG systems for mesh M4.
(:linebreaks:)
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':) (:cellnr align='center':) \# DoF (:cell align='center':) HDG-P1 (:cell align='center':) HDG-P2 (:cell align='center':) HDG-P3 (:cellnr align='center':) Hybrid variable (:cell align='center':) 21,127,506 (:cell align='center':) 42,255,012 (:cell align='center':) 70,425,020 (:cellnr align='center':) (Eh , Hh) (:cell align='center':) 39,500,976 (:cell align='center':) 98,752,440 (:cell align='center':) 197,504,880 (:tableend:)
(:cellnr align='center':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg (:cellnr align='center':) HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
(:linebreaks:)
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg (:cellnr align='center':) HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field. (:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png (:cellnr align='center':) (:tableend:)
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png (:cellnr align='center':)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png (:cellnr align='center':) (:tableend:)
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png (:cellnr align='center':)
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_DoF.png
Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): MUMPS sparse direct solver, MaPHyS algebraic hybrid iterative-direct solver with MUMPS or PaStiX as a local sparse direct solver, GMRES accelerated Schwarz algorithm with PaStiX as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
HDG method for the three-dimensional frequency-domain Maxwell equations. Plane wave propagation in vacuum. Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): MUMPS sparse direct solver, MaPHyS algebraic hybrid iterative-direct solver with MUMPS or PaStiX as a local sparse direct solver, GMRES accelerated Schwarz algorithm with PaStiX as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':) (:cellnr align='center':) \# DoF (:cell align='center':) HDG-P1 (:cell align='center':) HDG-P2 (:cell align='center':) HDG-P3 (:cell align='center':) HDG-P4 (:cellnr align='center':) Hybrid variable (:cell align='center':) 257,472 (:cell align='center':) 514,944 (:cell align='center':) 858,240 (:cell align='center':) 1,287,360 (:cellnr align='center':) (Eh , Hh) (:cell align='center':) 497,664 (:cell align='center':) 1,244,160 (:cell align='center':) 2,488,320 (:cell align='center':) 4,354,560 (:tableend:)
(:linebreaks:)
Scattering of a plane wave by the Lockheed F-104 Starfight, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
Scattering of a plane wave by the Lockheed F-104 Starfighter, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
(:linebreaks:) (:linebreaks:)
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
(:table border='0' width='100%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png (:cellnr align='center':) Characteristics of uniform tetrahdral meshes usded for the numerical convergence study. (:cellnr align='center':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg (:cellnr align='center':) HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field. (:tableend:)
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
(:linebreaks:) (:linebreaks:)
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.jpg | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.png | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
http://www-sop.inria.fr/nachos/softs/horse/size_mesh.jpg | Characteristics of uniform tetrahdral meshes usded for the numerical convergence study.
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/DoF_F-104.png (:cellnr align='center':) Size of the discrete HDG systems (:cellnr align='center':) (:cellnr align='center':)
(:cellnr align='center':)
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png
Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): MUMPS sparse direct solver, MaPHyS algebraic hybrid iterative-direct solver with MUMPS or PaStiX as a local sparse direct solver, GMRES accelerated Schwarz algorithm with MUMPS as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): MUMPS sparse direct solver, MaPHyS algebraic hybrid iterative-direct solver with MUMPS or PaStiX as a local sparse direct solver, GMRES accelerated Schwarz algorithm with PaStiX as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png (:cellnr align='center':) Schwarz algorithm with MUMPS as a local sparse direct solver
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png (:cellnr align='center':) Schwarz algorithm with PaStiX as a local sparse direct solver
(:cellnr align='center':) MaPHyS algebraic hybrid iterative-direct solver with PaStiX as a local sparse direct solver
(:cellnr align='center':) MaPHyS algebraic hybrid iterative-direct solver with PaStiX as a local sparse direct solver (:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_Schwarz+PaStiX.png (:cellnr align='center':) Schwarz algorithm with MUMPS as a local sparse direct solver
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:tableend:)
(:tableend:)
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104_MaPHyS+PaStiX.png (:cellnr align='center':) MaPHyS algebraic hybrid iterative-direct solver with PaStiX as a local sparse direct solver
(:tableend:)
(:cellnr align='center':) HDG-P2 method (:cell align='center':) HDG-P3 method
(:tableend:)
Scattering of a plane wave by the Lockheed F-104 Starfight, Frequency of the incident wave: 600 MHz. Unstructured tetrahedral mesh with 1,645,874 elements and 3,521,251 faces.
(:linebreaks:)
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':) (:cellnr align='center':) \# DoF (:cell align='center':) HDG-P1 (:cell align='center':) HDG-P2 (:cell align='center':) HDG-P3 (:cellnr align='center':) Hybrid variable (:cell align='center':) 21,127,506 (:cell align='center':) 42,255,012 (:cell align='center':) 70,425,020 (:cellnr align='center':) (Eh , Hh) (:cell align='center':) 39,500,976 (:cell align='center':) 98,752,440 (:cell align='center':) 197,504,880
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P2ScaleP3.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P2ScaleP3.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P3.png
(:tableend:)
(:linebreaks:) (:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/F-104View1-P2ScaleP3.png
Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): MUMPS sparse direct solver, MaPHyS algebraic hybrid iterative-direct solver with MUMPS or PaStiX as a local (sparse direct) solver,
Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): MUMPS sparse direct solver, MaPHyS algebraic hybrid iterative-direct solver with MUMPS or PaStiX as a local sparse direct solver, GMRES accelerated Schwarz algorithm with MUMPS as a local sparse direct solver (referred as Krylov+BiCGStab6 in the figures).
Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network.
Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network. Solutions strategies for the hybrid variable system (globally coupled unknowns): MUMPS sparse direct solver, MaPHyS algebraic hybrid iterative-direct solver with MUMPS or PaStiX as a local (sparse direct) solver,
Strong scalability analysis
Strong scalability analysis: cluster with Intel Xeon Haswell E5-2680@2.5 GHz nodes, 24 cores per node, Infiniband QDR TrueScale 40Gb/s network.
(:linebreaks:)
(:cellnr align='center':) ƈ
(:cellnr align='center':) Hybrid variable
(:cellnr align='center':) 'B;
(:cellnr align='center':) ƈ
(:table border='0' width='100%' align='center' cellspacing='1px':)
(:table align='center' border='5px' bordercolor='black' width='100%' bgcolor='ivory':)
(:cellnr align='center':) ƌ
(:cellnr align='center':) 'B;
(:cellnr align='center':) ƌ
(:cellnr align='center':) ƌ
(:cellnr align='center':) ƌ
(:cellnr align='center':) ƌ
Strong scalability analysis \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4) \# DoF for (Eh , Hh): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4)
Strong scalability analysis
(:table border='0' width='100%' align='center' cellspacing='1px':) (:cellnr align='center':) \# DoF (:cell align='center':) HDG-P1 (:cell align='center':) HDG-P2 (:cell align='center':) HDG-P3 (:cell align='center':) HDG-P4 (:cellnr align='center':) ƌ (:cell align='center':) 257,472 (:cell align='center':) 514,944 (:cell align='center':) 858,240 (:cell align='center':) 1,287,360 (:cellnr align='center':) (Eh , Hh) (:cell align='center':) 497,664 (:cell align='center':) 1,244,160 (:cell align='center':) 2,488,320 (:cell align='center':) 4,354,560 (:tableend:)
Strong scalability analysis. \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4). \# DoF for (Eh , Hh): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4).
Strong scalability analysis \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4) \# DoF for (Eh , Hh): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4)
Strong scalability analysis. \# DoF (Degrees of Freedom) for the hybrid variable (globally coupled unknowns): 257,472 (HDG-P1); 514,944 (HDG-P2); 858,240 (HDG-P3); 1,287,360 (HDG-P4). \# DoF for (Eh , Hh): 497,664 (HDG-P1); 1,244,160 (HDG-P2); 2,488,320 (HDG-P3); 4,354,560 (HDG-P4).
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P2.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P3.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P4.png (:cellnr align='center':) HDG-P3 method (:cell align='center':) HDG-P4 method
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cellnr align='center':) DGTD method with affine elements
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cellnr align='center':) HDG-P1 method (:cell align='center':) HDG-P2 method
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png (:cell align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/results/softs/horse/PW_TimesBest_P1.png
(:cellnr align='center':) http://www-sop.inria.fr/nachos/softs/horse/PW_TimesBest_P1.png
(:linebreaks:)
(:table border='0' width='100%' align='center' cellspacing='1px':) (:cellnr align='center':) http://www-sop.inria.fr/nachos/results/softs/horse/PW_TimesBest_P1.png (:cellnr align='center':) DGTD method with affine elements (:tableend:)
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum. A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field, and Hh the magnetic field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. E_h_ denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. Eh denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes.E denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. E_h_ denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes.E_h_ denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes.E denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. "E" denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes.E_h_ denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering a simple problem of plane wave propagation in vacuum.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering the simple problem of a plane wave propagation in vacuum.A cubic domain is discretized using uniform tetrahedral meshes. "E" denotes the electric field.
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg |
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg | HDG method for the three-dimensional frequency-domain Maxwell equations. Numerical convergence analysis considering a simple problem of plane wave propagation in vacuum.
(:linebreaks:)
http://www-sop.inria.fr/nachos/softs/horse/pw_conv.jpg |
HORSE -
HORSE - High Order solver for Radar cross Section Evaluation
(:linebreaks:)
(:linebreaks:)
HORSE is a simulation software whose development has started in October 2014 in the context of the ANR TECSER project. HORSE is based on a high order HDG method formulated on unstructured tetrahedral and hybrid structured/unstructured (cubic/tetrahedral) meshes for solving the 3D system of frequency-domain Maxwell equations.
(:linebreaks:)
HORSE -
(:linebreaks:) (:linebreaks:)