|
Marie Rochery
Ancien Doctorant, MESR / UNSA
Mots-clés : Contours actifs, Extraction d'objets, Lineique, Routes Démos : voir les démos de l'auteur
Contact :
E-Mail : | | MariedotRocheryatinriadotfr | Téléphone : | | (33)4-92-38-78-63 | Fax : | | (33)4-92-38-76-43 | Adresse : | | INRIA Sophia Antipolis
2004, route des Lucioles
06902 Sophia Antipolis Cedex
France | Site personnel : | | visitez ! |
|
| Résumé :
Je m'intéresse à l'extraction d'objets dans des images et en particulier, à la modélisation de la forme. Je travaille sur des contours actifs quadratiques qui permettent de définir des interactions entre différents points du contour et introduisent dans le modèle des termes complexes et spécifiques d'a priori. Ce nouveau type de modèle est testé pour l'extraction de linéiques (rivières, routes, ...) sur des images aériennes et satellitaires. |
Mini CV :
2002-2005 Thèse en traitement d'image dans le projet Ariana (INRIA/CNRS/UNSA).
2001-2002 DEA SIC Image-Vision (UNSA).
1998-2001 ENST Bretagne, Spécialisation dans les communications multimédia à l'Institut Eurécom. |
Enseignement :
TPs de traitement du signal et d'automatique et Encadrement d'un projet image de dernière année à l'ESINSA. |
Dernières publications dans le projet Ariana :
Higher-Order Active Contour Energies for Gap Closure. M. Rochery et I. H. Jermyn et J. Zerubia. Journal of Mathematical Imaging and Vision, 29(1): pages 1-20, septembre 2007. Mots-clés : Gap closure, Ordre superieur, Contour actif, Forme, A priori, Reseaux routiers.
@ARTICLE{Rochery07,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher-Order Active Contour Energies for Gap Closure}, |
year |
= |
{2007}, |
month |
= |
{septembre}, |
journal |
= |
{Journal of Mathematical Imaging and Vision}, |
volume |
= |
{29}, |
number |
= |
{1}, |
pages |
= |
{1-20}, |
url |
= |
{http://dx.doi.org/10.1007/s10851-007-0021-x}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Rochery07.pdf}, |
keyword |
= |
{Gap closure, Ordre superieur, Contour actif, Forme, A priori, Reseaux routiers} |
} |
Abstract :
One of the main difficulties in extracting line networks from images, and in particular road networks from remote sensing images, is the existence of interruptions in the data caused, for example, by occlusions. These can lead to gaps in the extracted network that do not correspond to gaps in the real network. In this paper, we describe a higher-order active contour energy that in addition to favouring network-like regions, includes a prior term penalizing networks containing ‘nearby opposing extremities’, thereby making gaps in the extracted network less likely. The new energy term causes such extremities to attract one another during gradient descent. They thus move towards one another and join, closing the gap. To minimize the energy, we develop specific techniques to handle the high-order derivatives that appear in the gradient descent equation. We present the results of automatic extraction of networks from real remote-sensing images, showing the ability of the model to overcome interruptions. |
Higher Order Active Contours. M. Rochery et I. H. Jermyn et J. Zerubia. International Journal of Computer Vision, 69(1): pages 27--42, août 2006. Mots-clés : Contour actif, Forme, Ordre superieur, A priori, Reseaux routiers.
@ARTICLE{mr_ijcv_06,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours}, |
year |
= |
{2006}, |
month |
= |
{août}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{69}, |
number |
= |
{1}, |
pages |
= |
{27--42}, |
url |
= |
{http://dx.doi.org/10.1007/s11263-006-6851-y}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_mr_ijcv_06.pdf}, |
keyword |
= |
{Contour actif, Forme, Ordre superieur, A priori, Reseaux routiers} |
} |
Abstract :
We introduce a new class of active contour models that
hold great promise for region and shape modelling, and
we apply a special case of these models to the
extraction of road networks from satellite and aerial
imagery. The new models are arbitrary polynomial
functionals on the space of boundaries, and thus
greatly generalize the linear functionals used in
classical contour energies. While classical energies
are expressed as single integrals over the contour,
the new energies incorporate multiple integrals, and
thus describe long-range interactions between
different sets of contour points. As prior terms, they
describe families of contours that share complex
geometric properties, without making reference to any
particular shape, and they require no pose estimation.
As likelihood terms, they can describe multi-point
interactions between the contour and the data. To
optimize the energies, we use a level set approach.
The forces derived from the new energies are non-local
however, thus necessitating an extension of standard
level set methods. Networks are a shape family of
great importance in a number of applications,
including remote sensing imagery. To model them, we
make a particular choice of prior quadratic energy
that describes reticulated structures, and augment it
with a likelihood term that couples the data at pairs
of contour points to their joint geometry. Promising
experimental results are shown on real images. |
Phase field models and higher-order active contours. M. Rochery et I. H. Jermyn et J. Zerubia. Dans Proc. IEEE International Conference on Computer Vision (ICCV), Beijing, China, octobre 2005. Mots-clés : Contour actif, Ordre superieur, Forme, Reseaux lineiques, Reseaux routiers, Champ de Phase.
@INPROCEEDINGS{rochery_iccv05,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Phase field models and higher-order active contours}, |
year |
= |
{2005}, |
month |
= |
{octobre}, |
booktitle |
= |
{Proc. IEEE International Conference on Computer Vision (ICCV)}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/rochery_iccv05.pdf}, |
keyword |
= |
{Contour actif, Ordre superieur, Forme, Reseaux lineiques, Reseaux routiers, Champ de Phase} |
} |
Abstract :
The representation and modelling of regions is an important topic in computer vision. In this paper, we represent a region via a level set of a `phase field' function. The function is not constrained, eg to be a distance function; nevertheless, phase field energies equivalent to classical active contour energies can be defined. They represent an advantageous alternative to other methods: a linear representation space; ease of implementation (a PDE with no reinitialization); neutral initialization; greater topological freedom. We extend the basic phase field model with terms that reproduce `higher-order active contour' energies, a powerful way of including prior geometric knowledge in the active contour framework via nonlocal interactions between contour points. In addition to the above advantages, the phase field greatly simplifies the analysis and implementation of the higher-order terms. We define a phase field model that favours regions composed of thin arms meeting at junctions, combine this with image terms, and apply the model to the extraction of line networks from remote sensing images. |
|
Liste complète des publications dans le projet Ariana
|
|