|
Marie Rochery
Former PhD Student, MESR / UNSA
Keywords : Active contours, Object extraction, Line networks, Roads Demos : see this author's demos
Contact :
Mail : | | MariedotRocheryatinriadotfr | Phone : | | (33)4-92-38-78-63 | Fax : | | (33)4-92-38-76-43 | Postal adress : | | INRIA Sophia Antipolis
2004, route des Lucioles
06902 Sophia Antipolis Cedex
France | Webpage : | | visit ! |
|
| Abstract :
I am interested in ways of extracting objects from images, and particularly in the modelization of shape. I am working with quadratic active contours that allow the definition of interactions between different contour points and introduce in the model complex and more specific prior terms. This new kind of model is tested for the extraction of line networks (rivers, roads, ...) in aerial and satellite images. |
Short Bio :
2002-2005 Thèse en traitement d'image dans le projet Ariana (INRIA/CNRS/UNSA).
2001-2002 DEA SIC Image-Vision (UNSA).
1998-2001 ENST Bretagne, Spécialisation dans les communications multimédia à l'Institut Eurécom. |
Teaching :
TPs de traitement du signal et d'automatique et Encadrement d'un projet image de dernière année à l'ESINSA. |
Last publications in Ariana Research Group :
Higher-Order Active Contour Energies for Gap Closure. M. Rochery and I. H. Jermyn and J. Zerubia. Journal of Mathematical Imaging and Vision, 29(1): pages 1-20, September 2007. Keywords : Gap closure, Higher-order, Active contour, Shape, Prior, Road network.
@ARTICLE{Rochery07,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher-Order Active Contour Energies for Gap Closure}, |
year |
= |
{2007}, |
month |
= |
{September}, |
journal |
= |
{Journal of Mathematical Imaging and Vision}, |
volume |
= |
{29}, |
number |
= |
{1}, |
pages |
= |
{1-20}, |
url |
= |
{http://dx.doi.org/10.1007/s10851-007-0021-x}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Rochery07.pdf}, |
keyword |
= |
{Gap closure, Higher-order, Active contour, Shape, Prior, Road network} |
} |
Abstract :
One of the main difficulties in extracting line networks from images, and in particular road networks from remote sensing images, is the existence of interruptions in the data caused, for example, by occlusions. These can lead to gaps in the extracted network that do not correspond to gaps in the real network. In this paper, we describe a higher-order active contour energy that in addition to favouring network-like regions, includes a prior term penalizing networks containing ‘nearby opposing extremities’, thereby making gaps in the extracted network less likely. The new energy term causes such extremities to attract one another during gradient descent. They thus move towards one another and join, closing the gap. To minimize the energy, we develop specific techniques to handle the high-order derivatives that appear in the gradient descent equation. We present the results of automatic extraction of networks from real remote-sensing images, showing the ability of the model to overcome interruptions. |
Higher Order Active Contours. M. Rochery and I. H. Jermyn and J. Zerubia. International Journal of Computer Vision, 69(1): pages 27--42, August 2006. Keywords : Active contour, Shape, Higher-order, Prior, Road network.
@ARTICLE{mr_ijcv_06,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours}, |
year |
= |
{2006}, |
month |
= |
{August}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{69}, |
number |
= |
{1}, |
pages |
= |
{27--42}, |
url |
= |
{http://dx.doi.org/10.1007/s11263-006-6851-y}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_mr_ijcv_06.pdf}, |
keyword |
= |
{Active contour, Shape, Higher-order, Prior, Road network} |
} |
Abstract :
We introduce a new class of active contour models that
hold great promise for region and shape modelling, and
we apply a special case of these models to the
extraction of road networks from satellite and aerial
imagery. The new models are arbitrary polynomial
functionals on the space of boundaries, and thus
greatly generalize the linear functionals used in
classical contour energies. While classical energies
are expressed as single integrals over the contour,
the new energies incorporate multiple integrals, and
thus describe long-range interactions between
different sets of contour points. As prior terms, they
describe families of contours that share complex
geometric properties, without making reference to any
particular shape, and they require no pose estimation.
As likelihood terms, they can describe multi-point
interactions between the contour and the data. To
optimize the energies, we use a level set approach.
The forces derived from the new energies are non-local
however, thus necessitating an extension of standard
level set methods. Networks are a shape family of
great importance in a number of applications,
including remote sensing imagery. To model them, we
make a particular choice of prior quadratic energy
that describes reticulated structures, and augment it
with a likelihood term that couples the data at pairs
of contour points to their joint geometry. Promising
experimental results are shown on real images. |
Phase field models and higher-order active contours. M. Rochery and I. H. Jermyn and J. Zerubia. In Proc. IEEE International Conference on Computer Vision (ICCV), Beijing, China, October 2005. Keywords : Active contour, Higher-order, Shape, Line networks, Road network, Phase Field.
@INPROCEEDINGS{rochery_iccv05,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Phase field models and higher-order active contours}, |
year |
= |
{2005}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE International Conference on Computer Vision (ICCV)}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/rochery_iccv05.pdf}, |
keyword |
= |
{Active contour, Higher-order, Shape, Line networks, Road network, Phase Field} |
} |
Abstract :
The representation and modelling of regions is an important topic in computer vision. In this paper, we represent a region via a level set of a `phase field' function. The function is not constrained, eg to be a distance function; nevertheless, phase field energies equivalent to classical active contour energies can be defined. They represent an advantageous alternative to other methods: a linear representation space; ease of implementation (a PDE with no reinitialization); neutral initialization; greater topological freedom. We extend the basic phase field model with terms that reproduce `higher-order active contour' energies, a powerful way of including prior geometric knowledge in the active contour framework via nonlocal interactions between contour points. In addition to the above advantages, the phase field greatly simplifies the analysis and implementation of the higher-order terms. We define a phase field model that favours regions composed of thin arms meeting at junctions, combine this with image terms, and apply the model to the extraction of line networks from remote sensing images. |
|
All publications in Ariana Research Group
|
|