Trees | Indices | Help |
|
---|
|
object --+ | ??.instance --+ | SceneObject --+ | Geometry --+ | Primitive --+ | ParametricModel --+ | object --+ | | | ??.instance --+ | | | SceneObject --+ | | | Geometry --+ | | | Primitive --+ | | | LineicModel --+ | BezierCurve --+ | NurbsCurve
NURBS Curve describes rational and non rational B-Spline curves. It is defined from a list of control points Pi, a knots vector and a degree p.It uses the parametric equation C(u) = Sum(i=0,n)(Ri,p(u)Pi with u in [a,b]where the Ri,p(u) are p-th degree rational basis functions defined on the knot vector.
Instance Methods | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from Inherited from Inherited from Inherited from Inherited from |
Static Methods | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from |
Class Variables | |
Inherited from Inherited from |
Properties | |
DEFAULT_NURBS_DEGREE | |
degree | |
knotList | |
Inherited from Inherited from Inherited from Inherited from |
Method Details |
Build a nurbs curve by interpolate (C1) the points pts. The resulting curve can be closed. |
__init__( (object)arg1, (Point4Array)ctrlPointList [, (RealArray)knotList [, (int)degree [, (int)strides]]]) -> None : C++ signature : void __init__(struct _object *,class TOOLS::RefCountPtr<class PGL::Point4Array> [,class TOOLS::RefCountPtr<class TOOLS::RealArray> [,unsigned int [,unsigned int]]])
|
__repr__( (NurbsCurve)arg1) -> str : C++ signature : class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > __repr__(class PGL::NurbsCurve *)
|
basisFunctions( (int)span, (float)u, (int)degree, (RealArray)knotList) -> RealArray : [float] basisFunctions(int span, float u, int degree, [float] knotList).Compute the Basis Functions values at a given u for degree and on the knot vector knotList.See Algo 2.2 From The Nurbs Book p70. C++ signature : class TOOLS::RefCountPtr<class TOOLS::RealArray> basisFunctions(unsigned int,double,unsigned int,class TOOLS::RefCountPtr<class TOOLS::RealArray>) |
defaultKnotList( (int)nbCtrlPoints, (int)degree) -> RealArray : Compute a default knot list for a curve of n control points and a degree d C++ signature : class TOOLS::RefCountPtr<class TOOLS::RealArray> defaultKnotList(unsigned int,unsigned int) |
defaultKnotListTest( (RealArray)knots, (int)nbCtrlPoints, (int)degree) -> bool : Test whether knots corresponds to a default knot list for a curve of n control points and a degree d C++ signature : bool defaultKnotListTest(class TOOLS::RefCountPtr<class TOOLS::RealArray>,unsigned int,unsigned int) |
derivatesBasisFunctions( (int)n, (float)u, (int)span, (int)degree, (RealArray)knotList) -> RealArray2 : [float] derivatesBasisFunctions(int span, float u, int _degree, [float] _knotList).Compute the n-th Derivative Basis Functions values at a given u for degree and on the knot vector knotList.See Algo 2.2 From The Nurbs Book p70. C++ signature : class TOOLS::RefCountPtr<class TOOLS::RealArray2> derivatesBasisFunctions(int,double,int,unsigned int,class TOOLS::RefCountPtr<class TOOLS::RealArray>) |
findSpan( (float)u, (int)degree, (RealArray)knotList) -> int : int findSpan(float u, int degree, [float] knotList).Determine the knot Span index at a given u for degree and on the knot vector knotList.See the Nurbs Book : A2.1 p68 C++ signature : unsigned int findSpan(double,unsigned int,class TOOLS::RefCountPtr<class TOOLS::RealArray>) |
fit( (Point3Array)points, (int)degree, (int)nbctrlpoints) -> object : fit(points [, int degree, int nbctrlpoints]) C++ signature : class boost::python::api::object fit(class TOOLS::RefCountPtr<class PGL::Point3Array>,int,int) fit( (Point3Array)points) -> object : C++ signature : class boost::python::api::object fit(class TOOLS::RefCountPtr<class PGL::Point3Array>) fit( (Polyline)points, (int)degree, (int)nbctrlpoints) -> object : C++ signature : class boost::python::api::object fit(class PGL::Polyline *,int,int) fit( (Polyline)points) -> object : C++ signature : class boost::python::api::object fit(class PGL::Polyline *) |
getDerivativeAt( (NurbsCurve)arg1, (float)u, (int)d) -> Vector4 : C++ signature : class TOOLS::Vector4 getDerivativeAt(class PGL::NurbsCurve {lvalue},double,int) |
getDerivativesAt( (NurbsCurve)arg1, (float)u) -> Point4Array : C++ signature : class TOOLS::RefCountPtr<class PGL::Point4Array> getDerivativesAt(class PGL::NurbsCurve {lvalue},double) |
isDegreeToDefault( (NurbsCurve)arg1) -> bool : C++ signature : bool isDegreeToDefault(class PGL::NurbsCurve {lvalue}) |
isKnotListToDefault( (NurbsCurve)arg1) -> bool : C++ signature : bool isKnotListToDefault(class PGL::NurbsCurve {lvalue}) |
setKnotListToDefault( (NurbsCurve)arg1) -> bool : C++ signature : bool setKnotListToDefault(class PGL::NurbsCurve {lvalue}) |
Property Details |
DEFAULT_NURBS_DEGREE
|
degree
|
knotList
|
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Wed Jul 16 15:52:17 2008 | http://epydoc.sourceforge.net |