►Nmmx | |
►Nbernstein | |
Cbinomials | |
Cbzenv | |
►Ceenv | |
Cadd | |
Ceenv_base | |
►Nmemory | |
►Clinear_allocator | |
Cautomatic_dispatch | |
Cnstack | |
►Nmeta | |
Chasgcd_ | |
Chasgcd_< ZZ > | |
Ckernelof_ | |
Ckernelof_< GMP::floating > | |
Ckernelof_< GMP::ieee > | |
Ckernelof_< GMP::integer > | |
Ckernelof_< GMP::rational > | |
CKioustelidis_bound_1 | |
Cstructureof_ | |
Cstructureof_< GMP::floating > | |
Cstructureof_< GMP::integer > | |
Cstructureof_< GMP::rational > | |
►Nnumerics | |
Cbit_resolution | |
Cbit_resolution< double > | |
Cbit_resolution< long double > | |
Cepsilon | |
Cfalse_t | |
Cfpu_rounding | |
Cfpu_rounding< floating<> > | |
Cfpu_rounding< long double > | |
Chdwi | |
Chdwimax | |
Chdwimax< hdwi, 0 > | |
Chdwintp | |
Cinexact | |
Cinexact< long double > | |
►Cinterval_base | |
Crnd | |
►Cinterval_base< T, 1 > | |
Crnd | |
►Cinterval_base< T, 2 > | |
Crnd | |
►Cinterval_base< T, 3 > | |
Crnd | |
Cis_rounded | |
Cis_rounded< double > | |
Cis_rounded< float > | |
Cis_rounded< long double > | |
CLongVersion | |
CLongVersion< double > | |
CLongVersion< float > | |
CLongVersion< floating<> > | |
Crounding | |
Ctrue_t | |
►Nrealroot | |
►Nrdslv | |
Cparallel | |
►Nsbdrl | |
Cparametric | |
►Nstrgy | |
Ccvmatrix | |
Cempty | |
Cnewton | |
Csimple | |
Cbox_rep | Box representation |
Cdstack | |
Cmethod | |
Cmethod_base | |
Cmethod_debug | |
Cpstack | |
Cselect_mth | |
Cselect_mth< system, SBD_RD > | |
Cselect_mth< system, SBD_RDL > | |
Cselect_mth< system, SBD_RDLRDS > | |
Cselect_mth< system, SBD_RDRDL > | |
Cselect_mth< system, SBD_RDRDLRDS > | |
Cselect_mth< system, SBD_RDRDS > | |
Cselect_mth< system, SBD_RDS > | |
Cselect_mth< system, SBD_RDSRDL > | |
Csolver_mv_monomial | |
►Csystem | |
Ccmp_sze | |
Ccmp_szv | |
Crstcmd_t | |
Csystem_ctrl | |
Cvstack | |
►Nsolvers | |
Cbsearch | |
Cbsearch_castel | |
Cbsearch_newton | |
Cbsearch_newton2 | |
Cdescartes_solver | |
►Nsparse | Namespace for representation of polynomials as sequence of monomials |
CCLASS | |
Cdual | |
►Ntensor | Namespace for representation of polynomials as dense tensor product |
Cbernstein | |
Ceenv | |
Cmonomials | |
Coulala | |
Cvd | |
►Ntexp | |
►Nstructure | |
Cscalar | |
Cabs_value | |
CAs | |
Cbinary_operator | |
Cbinary_operator_prototype | |
Cbinary_operator_structure_prototype | |
Cbinary_operator_structure_prototype< _add_, X, Y, structure::vector, structure::vector > | |
Cbinary_operator_structure_prototype< _add_, X, Y, SX, SY > | |
Cbinary_operator_structure_prototype< _div_, M, S, structure::matrix, structure::scalar > | |
Cbinary_operator_structure_prototype< _div_, X, Y, structure::vector, structure::scalar > | |
Cbinary_operator_structure_prototype< _div_, X, Y, SX, SY > | |
Cbinary_operator_structure_prototype< _mul_, X, Y, structure::matrix, structure::scalar > | |
Cbinary_operator_structure_prototype< _mul_, X, Y, structure::matrix, structure::vector > | |
Cbinary_operator_structure_prototype< _mul_, X, Y, structure::scalar, structure::matrix > | |
Cbinary_operator_structure_prototype< _mul_, X, Y, structure::scalar, structure::vector > | |
Cbinary_operator_structure_prototype< _mul_, X, Y, structure::vector, structure::scalar > | |
Cbinary_operator_structure_prototype< _mul_, X, Y, structure::vector, structure::vector > | |
Cbinary_operator_structure_prototype< _mul_, X, Y, SX, SY > | |
Cbinary_operator_structure_prototype< _sub_, X, Y, structure::vector, structure::vector > | |
Cbinary_operator_structure_prototype< _sub_, X, Y, SX, SY > | |
CBoolType | |
CBoolType< true > | |
Ccst | Return T = const Y from X = Y or X = const Y |
Ccst< const X > | |
Cdeconst | |
Cdeconst< const X > | |
CEq | |
CEq< A, A > | |
Cequal | Ask for type equality return T in { false_t, true_t } and V in {0,1} |
Cequal< X, X > | |
Cfalse_t | Structure defining a negative answer |
Cfieldof | X (in X) + y (in Y) is subset of fieldof<X,Y>::T |
Cfieldof_ | |
Cfieldof_< double, int > | |
Cfieldof_< double, unsigned int > | |
Cfieldof_< int, double > | |
Cfieldof_< int, unsigned int > | |
Cfieldof_< std::complex< X >, std::complex< X > > | |
Cfieldof_< std::complex< X >, std::complex< Y > > | |
Cfieldof_< unsigned int, double > | |
Cfieldof_< unsigned int, int > | |
Cgentlist | Helper for type list definition |
Cgentlist< X, null_t > | |
Chasfunction | |
Chaskernel | Return true_t if the number type X comes from a kernel |
Chasproperty | |
CIf | |
CIf< false, A, B > | |
Cinstanceof | |
Cinstanceof< R< X >, Y > | |
Cinstanceof< R< X, N >, Y > | |
Cinstanceof< V< C, R >, Y > | |
CInt | |
Cintegerof | |
Cintegerof_ | |
Cis_ptr | |
Cisapproximate | Traits class which specifies if the type X is not exact |
Cisexact | |
Cisexact_ | |
Cisfield | |
Cisfield_ | |
Cisfield_< double > | |
Cisfield_< float > | |
Cisfield_< long double > | |
Cisring | |
Cisring_ | |
Cisring_< double > | |
Cisring_< float > | |
Cisring_< int > | |
Cisring_< long double > | |
Cisring_< long int > | |
Cissubsetof | X can be seen as an arithmetic subset of Y (eg. "Z in Q") return texp::true_t if all x in X are in Y. specialization must be done on subsetof_ |
Cissubsetof_ | |
Cissubsetof_< int, Y > | |
Cissubsetof_< R< X >, R< Y > > | |
Cissupersetof | |
Cissupersetof< X, texp::tlist< A, Tail > > | |
Cissupersetof< X, texp::tlist< A, texp::null_t > > | |
Ckernel | |
Ckernel_fieldof | |
Ckernel_fieldof< K, typename K::floating, typename K::ieee > | |
Ckernel_fieldof< K, typename K::ieee, typename K::floating > | |
Ckernel_fieldof< null_t, X, Y > | |
Ckernel_integerof | |
Ckernel_integerof< null_t, X > | |
Ckernel_isexact | |
Ckernel_isexact< K, typename K::floating > | |
Ckernel_isexact< K, typename K::ieee > | |
Ckernel_isexact< K, typename K::integer > | |
Ckernel_isexact< K, typename K::rational > | |
Ckernel_isexact< null_t, X > | |
Ckernel_isfield | |
Ckernel_isfield< K, typename K::integer > | |
Ckernel_isfield< null_t, X > | |
Ckernel_isring | |
Ckernel_isring< null_t, X > | |
Ckernel_issubsetof | Kernel version of issubsetof |
Ckernel_issubsetof< K, double, typename K::floating > | |
Ckernel_issubsetof< K, typename K::floating, typename K::rational > | |
Ckernel_issubsetof< K, typename K::integer, algebraic< K > > | |
Ckernel_issubsetof< K, typename K::integer, double > | |
Ckernel_issubsetof< K, typename K::integer, typename K::floating > | Neglecting the overflow problem we assume that floating is superset of integer |
Ckernel_issubsetof< K, typename K::integer, typename K::rational > | |
Ckernel_issubsetof< null_t, X, Y > | |
Ckernel_rationalof | |
Ckernel_rationalof< K, X, false_t > | |
Ckernel_rationalof< K, X, true_t > | |
Ckernel_rationalof< null_t, X, extended > | |
Ckernel_ringof | |
Ckernel_ringof< K, typename K::floating, typename K::ieee > | |
Ckernel_ringof< K, typename K::floating, typename K::integer > | |
Ckernel_ringof< K, typename K::floating, typename K::rational > | |
Ckernel_ringof< K, typename K::ieee, typename K::floating > | |
Ckernel_ringof< K, typename K::ieee, typename K::integer > | |
Ckernel_ringof< K, typename K::ieee, typename K::rational > | |
Ckernel_ringof< K, typename K::integer, typename K::floating > | |
Ckernel_ringof< K, typename K::integer, typename K::ieee > | |
Ckernel_ringof< K, typename K::integer, typename K::rational > | |
Ckernel_ringof< K, typename K::rational, typename K::floating > | |
Ckernel_ringof< K, typename K::rational, typename K::ieee > | |
Ckernel_ringof< K, typename K::rational, typename K::integer > | |
Ckernel_structureof | |
Ckernel_structureof< K, typename K::floating > | |
Ckernel_structureof< K, typename K::ieee > | |
Ckernel_structureof< K, typename K::integer > | |
Ckernel_structureof< K, typename K::rational > | |
Ckernel_structureof< null_t, X > | |
Ckernelof | Return the arithmetic kernel from which the type X comes from |
Ckernelof_ | Return the arithmetic kernel from which the unqualified type X comes from |
Ckernelof_< algebraic< K > > | |
Ckernelof_< GMP::extended_integer > | |
Ckernelof_< GMP::extended_rational > | |
Ckernelof_< GMP::floating > | |
Ckernelof_< GMP::ieee > | |
Ckernelof_< GMP::integer > | |
Ckernelof_< GMP::rational > | |
Ckernelof_< IEEE754::floating > | |
Ckernelof_< IEEE754::integer > | |
Ckernelof_< Interval< X, r > > | |
Cnull_t | Structure defining a the empty list |
Coperator_iscommutative | |
Coperator_isinplace | |
CPair | |
Cptr | Return T = Y * from X = Y or X = Y * |
Cptr< X * > | |
Cptr< X *const > | |
Crationalof | |
Crationalof_ | |
Cref | Return T = Y & from X = Y or X = Y & |
Cref< X & > | |
Cringof | X (in X) + y (in Y) is subset of ringof<X,Y>::T |
Cringof_ | |
Cringof_< double, int > | |
Cringof_< int, double > | |
Cringof_< int, unsigned int > | |
Cringof_< unsigned int, int > | |
Cscalar_type | |
Csfirstnn | |
Csfirstnnl | Select the first non null type of a type-list |
Csfirstnnl< tlist< car, cdr > > | |
Csfirstnnl< tlist< null_t, cdr > > | |
Csfirstnnl< tlist< null_t, null_t > > | |
Cstructureof | |
Cstructureof_ | |
CSup | |
Csup | |
Csup_ | |
Csup_container | |
Ctemplate_expression | |
Ctemplate_expression< binary_operator<O, A, B > > | |
Ctemplate_expression< unary_operator<O, A > > | |
Ctemplate_expression_operand | |
Ctemplate_expression_operand< int > | |
Ctlist | Type list node |
Ctmap | |
Ctmap< TypeFunctor, tlist< Head, null_t > > | |
Ctmap< TypeFunctor, tlist< Head, Tail > > | |
Ctnot | |
Ctnot< false_t > | |
Ctnot< null_t > | |
Ctrue_t | Structure defining a positive answer |
Ctselect | Select a type based on condition X, X is assumed to be in { null_t, false_t, true_t } |
Ctselect< false_t, A, B > | |
Ctselect< null_t, A, B > | |
CTYPE | |
Cucst | Return T = Y from X = Y or X = const Y |
Cucst< const X > | |
Cucstref | Return T = Y from X = const Y, Y, Y &, const Y & |
Cunary_operator | |
Cunary_operator_prototype | |
Cuptr | Return T = Y from X = Y or X = Y * |
Cuptr< X * > | |
Curef | Return T = Y from X = Y or X = Y & |
Curef< X & > | |
Cvalue_type | |
Cvalue_type_ | |
Cvalue_type_< C * > | |
Cvalue_type_< C[N] > | |
Cvalue_type_< const C * > | |
Cvalue_type_< R< X > > | |
CValueType | |
CValueType< A * > | |
CValueType< A[n] > | |
Cvselect | Select a type base on condition V, V is assumed to be in { 0, 1 } |
Cvselect< 0, A, B > | |
►Nunivariate | Module for Univariate POLynomials with a Direct Access Representation |
Cmonomials | |
Cabs_max | |
CAkritasBound | |
Calgebraic | |
CApproximate | |
Cas_helper | |
Cas_helper< double, char * > | |
Cas_helper< double, const char * > | |
Cas_helper< double, mpf_t > | |
Cas_helper< double, RR > | |
Cas_helper< double, scalar< EMPQ > > | |
Cas_helper< double, scalar< EMPZ > > | |
Cas_helper< double, scalar< MPQ > > | |
Cas_helper< double, scalar< MPZ > > | |
Cas_helper< Interval< double >, QQ > | |
Cas_helper< Interval< FT >, IntervalData< RT, Poly > > | |
Cas_helper< interval< FT >, IntervalData< RT, Poly > > | |
Cas_helper< interval< T >, interval< F > > | |
Cas_helper< monom< T, TR >, monom< F, FR > > | |
Cas_helper< QQ, RR > | |
Cas_helper< QQ, ZZ > | |
Cas_helper< RR, double > | |
Cas_helper< RR, QQ > | |
Cas_helper< scalar< EMPQ >, scalar< EMPZ > > | |
Cas_helper< set_of< U >, set_of< T > > | |
Cas_helper< ZZ, double > | |
Cas_helper< ZZ, QQ > | |
Cas_helper< ZZ, unsigned > | |
CAsSize | |
CBernstein | |
CBezierBound | |
Cbigunsigned | |
Cbinary_approx | |
Cbinary_convert | |
Cbinary_convert< K, Approximate > | |
Cbinary_convert< K, Isolate > | |
Cbinary_isolate | |
Cbinary_sleeve_subdivision | |
Cbinary_subdivision | |
Cbinomials | |
Cbound | |
CBspline | |
Ccast_helper | |
Ccast_helper< double, QQ > | |
Ccast_helper< double, RR > | |
Ccast_helper< double, ZZ > | |
Ccast_helper< QQ, ZZ > | |
CCauchy | Cauchy bound |
Ccell_mv_bernstein | |
Ccell_uv_bernstein | |
CCFallIsolate | |
CCFdecide | |
CCFfirstApproximate | |
CCFfirstFloor | |
CCFfirstIsolate | |
CCFseparate | |
CContFrac | |
CContFrac_t | Class |
Ccontinued_fraction_approximate | |
Ccontinued_fraction_approximate< K, B, false_t > | |
Ccontinued_fraction_approximate< K, B, true_t > | |
Ccontinued_fraction_isolate | |
Ccontinued_fraction_isolate< K, B, false_t > | |
Ccontinued_fraction_isolate< K, B, true_t > | |
Ccontinued_fraction_subdivision | |
Cdata_t | |
Cdefault_variant_of | |
Cdefault_variant_of< Sparse > | |
CDegRevLex | Degree Reverse Lexicographic monomial ordering |
CDual | |
Cdynamic_exp | Dynamic exponent |
Ceuclidean | |
Cextended | |
CGMP | Numerical kernel based on gmp |
Chomography | |
Chomography_mv | |
CHongBound | |
CIEEE754 | Default numerical kernel |
►CInterval | Generic class for intervals |
Cextended | |
Cinterval_newton | |
Cinterval_rep | |
CIntervalData | |
CIntervalNewton | |
CIntervals | |
Cis_extended | |
Cis_extended< EQQ > | |
Cis_extended< EZZ > | |
CIsolate | |
CLex | Lexicographic monomial ordering |
CLexRevDegree | |
CMCFapproximate | |
CMCFisolate | |
Cmonom | Monomial class |
CMonomialOrdering | Virtual class of monomial ordering |
CMonomialTensor | |
Cmul_helper< polynomial< C, with< Dual, O > >, polynomial< C, with< Sparse, O > > > | |
Cmul_helper< polynomial< C, with< Sparse, O > >, polynomial< C, with< Dual, O > > > | |
Cmv_binary_approx | |
Cmv_binary_isolate | |
CMvBernsteinBinaryApproximate | |
CNISN | Negative Inverse Sum bound for negative roots |
CNISP | Negative Inverse Sum bound for positive roots |
Coperators_of | |
Cpolynomial | |
Cpolynomial< C, VARIANT > | |
Cpolynomial_of | |
Cprinter | |
CProjRd | |
CReferTo | The structure for obtain the template parameter |
CReferTo< shared_object< T > > | The structure for obtain the template parameter |
Crep_view | |
Cres_t | |
Cring | Ring of polynomials |
Cring< C, Bernstein > | |
Cring< C, Dual, O > | Dual ring of the polynomials |
Cring< C, MonomialTensor > | Tensor ring of polynomials in the monomial basis |
Cring< C, Sparse, O > | Ring of sparse polynomials |
Cring< C, Univariate > | Tensor ring of polynomials in the monomial basis |
Cring_of | Generic ring class |
Cring_of< polynomial< C, V > > | |
Cring_of< polynomial< C, with< Bernstein > > > | |
Cring_of< polynomial< C, with< MonomialTensor > > > | |
Cring_of< polynomial< C, with< V, W > > > | |
Cscalar | |
CSeq | Sequence of terms with reference counter |
Cset_of | |
►Cshared_object | |
Crep | |
Csign_wanted | |
CSleeve | |
Csleeve_rep | |
Csolver | |
Csolver< C, ContFrac< Approximate > > | |
Csolver< C, ContFrac< Isolate > > | |
Csolver< C, MCFapproximate > | |
Csolver< C, MCFisolate > | |
Csolver< C, ProjRd< MTH > > | Multivariate Bernstein solver |
Csolver< C, Sleeve< V > > | |
Csolver< Ring, Bspline > | |
Csolver< Ring, CFallIsolate > | |
Csolver< Ring, CFdecide > | |
Csolver< Ring, CFfirstApproximate > | |
Csolver< Ring, CFfirstFloor > | |
Csolver< Ring, CFfirstIsolate > | |
Csolver< Ring, CFseparate > | |
Csolver_approximate_traits | |
Csolver_approximate_traits< C, false_t > | |
Csolver_approximate_traits< C, true_t > | |
Csolver_bspline | |
Csolver_cffirst | |
Csolver_isolate_traits | |
Csolver_isolate_traits< C, false_t > | |
Csolver_isolate_traits< C, true_t > | |
Csolver_of | |
Csolver_of< C, IntervalNewton< IT, C > > | |
Csolver_of< C, MvBernsteinBinaryApproximate > | |
Csolver_of< C, UvBernsteinBinaryApproximate > | |
CSparse | |
Csub_resultant | |
Csubdivisor | |
CUnivariate | |
Cupoldse | |
Cuse | |
Cuse< operators_of, POLYNOMIAL > | |
Cuse< operators_of, Polynomial > | |
Cuse< operators_of, SparsePolynomial > | |
Cuse< polynomial_of, polynomial< C, with< Bernstein > > > | |
Cuse< polynomial_of, polynomial< C, with< Dual, O > > > | |
Cuse< polynomial_of, polynomial< C, with< MonomialTensor > > > | |
Cuse< polynomial_of, polynomial< C, with< Sparse, O > > > | |
Cuse< polynomial_of, polynomial< C, with< Univariate > > > | Tensor ring of polynomials in the monomial basis |
Cuv_binary_approx | |
Cuv_binary_isolate | |
CUvBernsteinBinaryApproximate | |
Cvariables | |
Cwith | |
Carc_rep | |
Cbox_rep | |
Cdomain | |
CMmxForeachContainer | |
CMmxForeachContainerBase | |
Csolver_mv_fatarcs | |
Cyy_buffer_state | |
Cyy_trans_info | |