Developer documentation

mmx::continued_fraction_subdivision< K > Struct Template Reference

#include <solver_uv_continued_fraction.hpp>

Inheritance diagram for mmx::continued_fraction_subdivision< K >:

Public Types

typedef K::integer RT
 
typedef K::rational FT
 
typedef K::integer integer
 
typedef K::rational rational
 
typedef K::floating floating
 
typedef K::root_t root_t
 
typedef K::Polynomial polynomial_integer
 
typedef polynomial< rational, with< MonomialTensor > > polynomial_rational
 
typedef polynomial< floating, with< MonomialTensor > > polynomial_floating
 
typedef K::data data
 

Static Public Member Functions

static void set_precision (int prec)
 
template<class poly >
static void solve_positive (Seq< root_t > &sol, const poly &f, bool posneg)
 
template<class output , class data_type , class poly >
static void solve_homography (output &sol, const data_type &ID, const poly &)
 
template<class output , class poly >
static void solve_polynomial (output &sol, const poly &f, int mult=1)
 
template<class output >
static void solve (output &sol, const polynomial_integer &f)
 
template<class output >
static void solve (output &sol, const polynomial_rational &f)
 
template<class output >
static void solve (output &sol, const polynomial_floating &f)
 

Member Typedef Documentation

template<class K >
typedef K::data mmx::continued_fraction_subdivision< K >::data
template<class K >
typedef K::floating mmx::continued_fraction_subdivision< K >::floating
template<class K >
typedef K::rational mmx::continued_fraction_subdivision< K >::FT
template<class K >
typedef K::integer mmx::continued_fraction_subdivision< K >::integer
template<class K >
typedef K::rational mmx::continued_fraction_subdivision< K >::rational
template<class K >
typedef K::root_t mmx::continued_fraction_subdivision< K >::root_t
template<class K >
typedef K::integer mmx::continued_fraction_subdivision< K >::RT

Member Function Documentation

template<class K >
static void mmx::continued_fraction_subdivision< K >::set_precision ( int  prec)
inlinestatic
template<class K >
template<class output >
static void mmx::continued_fraction_subdivision< K >::solve ( output &  sol,
const polynomial_integer f 
)
inlinestatic
template<class K >
template<class output >
static void mmx::continued_fraction_subdivision< K >::solve ( output &  sol,
const polynomial_rational f 
)
inlinestatic
template<class K >
template<class output >
static void mmx::continued_fraction_subdivision< K >::solve ( output &  sol,
const polynomial_floating f 
)
inlinestatic
template<class K >
template<class output , class data_type , class poly >
static void mmx::continued_fraction_subdivision< K >::solve_homography ( output &  sol,
const data_type &  ID,
const poly &   
)
inlinestatic
template<class K >
template<class output , class poly >
static void mmx::continued_fraction_subdivision< K >::solve_polynomial ( output &  sol,
const poly &  f,
int  mult = 1 
)
inlinestatic
  for (unsigned i = 0 ; i < isolating_intervals.size(); ++i) {
if ( singleton( isolating_intervals[i]) ) {

std::cout<<"XXX Singleton "<<isolating_intervals[i]<<std::endl; if ( lower( isolating_intervals[i]) == 0 ) continue;

polynomial_integer t= polynomial_integer("x")*denominator(lower(isolating_intervals[i])) - numerator( lower(isolating_intervals[i])); std::cout<<t<<" "<<p<<std::endl; polynomial_integer dummy; univariate::div_rem( dummy, p, t); std::cout<<dummy<<std::endl; //p = dummy; } }

template<class K >
template<class poly >
static void mmx::continued_fraction_subdivision< K >::solve_positive ( Seq< root_t > &  sol,
const poly &  f,
bool  posneg 
)
inlinestatic

The documentation for this struct was generated from the following file:
Home