#include <solver_uv_continued_fraction.hpp>
|
static void | set_precision (int prec) |
|
template<class poly > |
static void | solve_positive (Seq< root_t > &sol, const poly &f, bool posneg) |
|
template<class output , class data_type , class poly > |
static void | solve_homography (output &sol, const data_type &ID, const poly &) |
|
template<class output , class poly > |
static void | solve_polynomial (output &sol, const poly &f, int mult=1) |
|
template<class output > |
static void | solve (output &sol, const polynomial_integer &f) |
|
template<class output > |
static void | solve (output &sol, const polynomial_rational &f) |
|
template<class output > |
static void | solve (output &sol, const polynomial_floating &f) |
|
template<class K >
template<class output >
template<class K >
template<class output >
template<class K >
template<class output >
template<class K >
template<class output , class data_type , class poly >
template<class K >
template<class output , class poly >
for (unsigned i = 0 ; i < isolating_intervals.size(); ++i) {
if ( singleton( isolating_intervals[i]) ) {
std::cout<<"XXX Singleton "<<isolating_intervals[i]<<std::endl; if ( lower( isolating_intervals[i]) == 0 ) continue;
polynomial_integer t= polynomial_integer("x")*denominator(lower(isolating_intervals[i])) - numerator( lower(isolating_intervals[i])); std::cout<<t<<" "<<p<<std::endl; polynomial_integer dummy; univariate::div_rem( dummy, p, t); std::cout<<dummy<<std::endl; //p = dummy; } }
template<class K >
template<class poly >
The documentation for this struct was generated from the following file: