realroot_doc 0.1.1
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
_add_
_div_
_mod_
_mul_
_neg_
_pow_
_sub_
abs_max< T >
abs_value< a >
eenv::add
AkritasBound< RT >
Approximate
arc_rep< C >
As< T >
as_helper< T, F >
as_helper< double, mpf_t >
as_helper< double, RR >
as_helper< double, scalar< MPQ > >
as_helper< double, scalar< MPZ > >
as_helper< Interval< double >, QQ >
as_helper< interval< FT >, IntervalData< RT, Poly > >
as_helper< Interval< FT >, IntervalData< RT, Poly > >
as_helper< interval< T >, interval< F > >
as_helper< monom< T, TR >, monom< F, FR > >
as_helper< QQ, RR >
as_helper< QQ, ZZ >
as_helper< RR, double >
as_helper< RR, QQ >
as_helper< set_of< U >, set_of< T > >
as_helper< ZZ, double >
as_helper< ZZ, QQ >
as_helper< ZZ, unsigned >
AsSize
Bernstein
bernstein< C >
BezierBound
bigunsigned< N >
binary_approx
binary_convert< K, Num >
binary_convert< K, Approximate >
binary_convert< K, Isolate >
binary_isolate
binary_operator< O, A, B >
binary_operator_prototype< op, X, Y >
binary_operator_structure_prototype< op, X, Y, SX, SY >
binary_operator_structure_prototype< _add_, X, Y, structure::vector, structure::vector >
binary_operator_structure_prototype< _add_, X, Y, SX, SY >
binary_operator_structure_prototype< _div_, M, S, structure::matrix, structure::scalar >
binary_operator_structure_prototype< _div_, X, Y, structure::vector, structure::scalar >
binary_operator_structure_prototype< _div_, X, Y, SX, SY >
binary_operator_structure_prototype< _mul_, X, Y, structure::matrix, structure::scalar >
binary_operator_structure_prototype< _mul_, X, Y, structure::matrix, structure::vector >
binary_operator_structure_prototype< _mul_, X, Y, structure::scalar, structure::matrix >
binary_operator_structure_prototype< _mul_, X, Y, structure::scalar, structure::vector >
binary_operator_structure_prototype< _mul_, X, Y, structure::vector, structure::scalar >
binary_operator_structure_prototype< _mul_, X, Y, structure::vector, structure::vector >
binary_operator_structure_prototype< _mul_, X, Y, SX, SY >
binary_operator_structure_prototype< _sub_, X, Y, structure::vector, structure::vector >
binary_operator_structure_prototype< _sub_, X, Y, SX, SY >
binary_sleeve_subdivision< K >
binary_subdivision< K >
binomials< T >
binomials< C >
bit_resolution< T >
bit_resolution< double >
bit_resolution< long double >
BoolType< b >
BoolType< true >
bound
box_rep< POL >Box representation
box_rep< C >
bsearch< real_t >
bsearch_castel< real_t >
bsearch_newton< real_t >
bsearch_newton2< real_t >
Bspline
bzenv< X >
cast_helper< T, F >
cast_helper< double, QQ >
cast_helper< double, RR >
cast_helper< double, ZZ >
cast_helper< QQ, ZZ >
Cauchy< C >Cauchy bound
cell_mv_bernstein< C >
cell_uv_bernstein< C >
CFallIsolate
CFdecide
CFfirstApproximate
CFfirstFloor
CFfirstIsolate
CFseparate
ContFrac< M >
ContFrac_t< NT, LowerBound >Class
continued_fraction_approximate< K, B >
continued_fraction_isolate< K, B >
continued_fraction_subdivision< K >
cst< X >Return T = const Y from X = Y or X = const Y
cst< const X >
data_t
deconst< X >
deconst< const X >
default_variant_of< V >
default_variant_of< Sparse >
DegRevLexDegree Reverse Lexicographic monomial ordering
descartes_solver< real_t, local_method >
domain< C >
Dual
dual< C, O >
dynamic_exp< E >Dynamic exponent
eenv
eenv
eenv_base
epsilon< T >
Eq< A, B >
Eq< A, A >
equal< X, Y >Ask for type equality return T in { false_t, true_t } and V in {0,1}
equal< X, X >
euclidean
Interval< T, r >::extended
false_t
false_tStructure defining a negative answer
fieldof< X, Y >X (in X) + y (in Y) is subset of fieldof<X,Y>::T
fieldof_< X, Y >
fieldof_< double, int >
fieldof_< double, unsigned int >
fieldof_< int, double >
fieldof_< int, unsigned int >
fieldof_< std::complex< X >, std::complex< X > >
fieldof_< std::complex< X >, std::complex< Y > >
fieldof_< unsigned int, double >
fieldof_< unsigned int, int >
fpu_rounding< T >
fpu_rounding< floating<> >
fpu_rounding< long double >
gentlist< T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18 >Helper for type list definition
gentlist< X, null_t >
GMPNumerical kernel based on gmp
hasfunction< X >
hasgcd< X >
hasgcd_< X >
hasgcd_< ZZ >
hasisqrt< X >
hasisqrt_< X >
haskernel< X >Return true_t if the number type X comes from a kernel
hasproperty< X >
hassqrt< X >
hassqrt_< X >
hdwi< hardware_int >
hdwimax< hdwi, n >
hdwimax< hdwi, 0 >
hdwintp< T >
homography< real >
homography_mv< real >
HongBound< RT >
IEEE754Default numerical kernel
If< test, A, B >
If< false, A, B >
inexact< T >
inexact< long double >
instanceof< R, X >
instanceof< R< X >, Y >
instanceof< R< X, N >, Y >
instanceof< V< C, R >, Y >
Int< n >
integerof< X >
integerof_< X >
Interval< T, r >Generic class for intervals
interval_base< T, r >
interval_base< T, 1 >
interval_base< T, 2 >
interval_base< T, 3 >
interval_newton< INT, CT >
interval_rep< POL >
IntervalData< RT, Poly >
IntervalNewton< INT, C >
Intervals< C >
is_ptr< X >
is_rounded< T >
is_rounded< double >
is_rounded< float >
is_rounded< long double >
isapproximate< X >Traits class which specifies if the type X is not exact
isexact< X >
isexact_< X >
isfield< X >
isfield_< X >
isfield_< double >
isfield_< float >
isfield_< long double >
Isolate
isring< X >
isring_< X >
isring_< double >
isring_< float >
isring_< int >
isring_< long double >
isring_< long int >
issubsetof< X, Y >X can be seen as an arithmetic subset of Y (eg. "Z in Q") return texp::true_t if all x in X are in Y. specialization must be done on subsetof_
issubsetof_< X, Y >
issubsetof_< int, Y >
issubsetof_< R< X >, R< Y > >
issupersetof< X, Type >
issupersetof< X, texp::tlist< A, Tail > >
issupersetof< X, texp::tlist< A, texp::null_t > >
kernel< mplib, _ieee_ >
kernel_fieldof< K, X, Y >
kernel_fieldof< K, typename K::floating, typename K::ieee >
kernel_fieldof< K, typename K::ieee, typename K::floating >
kernel_fieldof< null_t, X, Y >
kernel_integerof< K, X >
kernel_integerof< null_t, X >
kernel_isexact< K, X >
kernel_isexact< K, typename K::floating >
kernel_isexact< K, typename K::ieee >
kernel_isexact< K, typename K::integer >
kernel_isexact< K, typename K::rational >
kernel_isexact< null_t, X >
kernel_isfield< K, X >
kernel_isfield< K, typename K::integer >
kernel_isfield< null_t, X >
kernel_isring< K, X >
kernel_isring< null_t, X >
kernel_issubsetof< K, X, Y >Kernel version of issubsetof
kernel_issubsetof< K, double, typename K::floating >
kernel_issubsetof< K, typename K::floating, typename K::rational >
kernel_issubsetof< K, typename K::integer, algebraic< K > >
kernel_issubsetof< K, typename K::integer, double >
kernel_issubsetof< K, typename K::integer, typename K::floating >Neglecting the overflow problem we assume that floating is superset of integer
kernel_issubsetof< K, typename K::integer, typename K::rational >
kernel_issubsetof< null_t, X, Y >
kernel_rationalof< K, X >
kernel_rationalof< null_t, X >
kernel_ringof< K, X, Y >
kernel_ringof< K, typename K::floating, typename K::ieee >
kernel_ringof< K, typename K::floating, typename K::integer >
kernel_ringof< K, typename K::floating, typename K::rational >
kernel_ringof< K, typename K::ieee, typename K::floating >
kernel_ringof< K, typename K::ieee, typename K::integer >
kernel_ringof< K, typename K::ieee, typename K::rational >
kernel_ringof< K, typename K::integer, typename K::floating >
kernel_ringof< K, typename K::integer, typename K::ieee >
kernel_ringof< K, typename K::integer, typename K::rational >
kernel_ringof< K, typename K::rational, typename K::floating >
kernel_ringof< K, typename K::rational, typename K::ieee >
kernel_ringof< K, typename K::rational, typename K::integer >
kernel_structureof< K, X >
kernel_structureof< K, typename K::floating >
kernel_structureof< K, typename K::ieee >
kernel_structureof< K, typename K::integer >
kernel_structureof< K, typename K::rational >
kernel_structureof< null_t, X >
kernelof< X >Return the arithmetic kernel from which the type X comes from
kernelof_< X >Return the arithmetic kernel from which the unqualified type X comes from
kernelof_< algebraic< K > >
kernelof_< GMP::floating >
kernelof_< GMP::floating >
kernelof_< GMP::ieee >
kernelof_< GMP::ieee >
kernelof_< GMP::integer >
kernelof_< GMP::integer >
kernelof_< GMP::rational >
kernelof_< GMP::rational >
kernelof_< IEEE754::floating >
kernelof_< IEEE754::integer >
kernelof_< Interval< X, r > >
Kioustelidis_bound_1
LexLexicographic monomial ordering
LexRevDegree
list
LongVersion< T >
LongVersion< double >
LongVersion< float >
LongVersion< floating<> >
max_value< a, b >
MCFapproximate
MCFisolate
method< system, _strgy_, _rdslv_, _sbdrl_ >
method_base
method_debug
monom< C, E >Monomial class
monomial_seq< C, O, MONOM, REP >
MonomialOrderingVirtual class of monomial ordering
monomials< C >
monomials< C >
MonomialTensor
mul_helper< polynomial< C, with< Dual, O > >, polynomial< C, with< Sparse, O > > >
mul_helper< polynomial< C, with< Sparse, O > >, polynomial< C, with< Dual, O > > >
mv_binary_approx
mv_binary_isolate
MvBernsteinBinaryApproximate
NISN< FT >Negative Inverse Sum bound for negative roots
NISP< C >Negative Inverse Sum bound for positive roots
null_tStructure defining a the empty list
operator_iscommutative< F, X, Y >
operator_isinplace< F, X, Y >
operators_of
oulala
Pair< el, nx >
parallel< system >
parametric< solver >
polynomial< C, with< Rep, Ord > >
polynomial_of
printer< C >
ProjRd< MTH >
ptr< X >Return T = Y * from X = Y or X = Y *
ptr< X * >
ptr< X *const >
rationalof< X >
rationalof_< X >
ref< X >Return T = Y & from X = Y or X = Y &
ref< X & >
ReferTo< T >The structure for obtain the template parameter
ReferTo< shared_object< T > >The structure for obtain the template parameter
shared_object< R >::rep
rep_view< R >
res_t
ring< C, B, O >Ring of polynomials
ring< C, Bernstein >
ring< C, Dual, O >Dual ring of the polynomials
ring< C, MonomialTensor >Tensor ring of polynomials in the monomial basis
ring< C, Sparse, O >Ring of sparse polynomials
ring< C, Univariate >Tensor ring of polynomials in the monomial basis
ring_of< polynomial< C, V > >
ring_of< polynomial< C, with< Bernstein > > >
ring_of< polynomial< C, with< MonomialTensor > > >
ring_of< polynomial< C, with< V, W > > >
ringof< X, Y >X (in X) + y (in Y) is subset of ringof<X,Y>::T
ringof_< X, Y >
ringof_< double, int >
ringof_< int, double >
ringof_< int, unsigned int >
ringof_< unsigned int, int >
interval_base< T, r >::rnd
interval_base< T, 2 >::rnd
interval_base< T, 1 >::rnd
interval_base< T, 3 >::rnd
rounding< T >
scalar< T >
scalar
scalar_type< X >
select_mth< system, mth >
select_mth< system, 0 >
select_mth< system, 1 >
select_mth< system, 2 >
select_mth< system, 3 >
select_mth< system, 4 >
select_mth< system, 5 >
select_mth< system, 6 >
select_mth< system, 7 >
Seq< C, R >Sequence of terms with reference counter
set_of< X >
sfirstnn< T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18 >
sfirstnnl< L >Select the first non null type of a type-list
sfirstnnl< tlist< car, cdr > >
sfirstnnl< tlist< null_t, cdr > >
sfirstnnl< tlist< null_t, null_t > >
ShapeForeachContainer< T >
ShapeForeachContainerBase
shared_object< R >
sign_wanted< Prms >
Sleeve< V >
sleeve_rep< C >
solver< C, M >
solver< C, ContFrac< Approximate > >
solver< C, ContFrac< Isolate > >
solver< C, MCFapproximate >
solver< C, MCFisolate >
solver< C, ProjRd< MTH > >
solver< C, Sleeve< V > >
solver< Ring, Bspline >
solver< Ring, CFallIsolate >
solver< Ring, CFdecide >
solver< Ring, CFfirstApproximate >
solver< Ring, CFfirstFloor >
solver< Ring, CFfirstIsolate >
solver< Ring, CFseparate >
solver_bspline< Real >
solver_cffirst< Real, POL >
solver_mv_fatarcs< C >
solver_mv_monomial< FT, POL >
solver_of< C, MTH >
solver_of< C, IntervalNewton< IT, C > >
solver_of< C, MvBernsteinBinaryApproximate >
solver_of< C, UvBernsteinBinaryApproximate >
Sparse
structureof< X >
structureof_< X >
structureof_< GMP::floating >
structureof_< GMP::integer >
structureof_< GMP::rational >
subdivisor< CELL, V >
subresultant< PREM >
sup< X, Y >
Sup< A, B >
sup_< X, Y >
sup_container< A, B >
system_ctrl< V >
template_expression< A >
template_expression< binary_operator<O, A, B > >
template_expression< unary_operator<O, A > >
template_expression_operand< A >
template_expression_operand< int >
tlist< A, B >Type list node
tmap< TypeFunctor, tlist< Head, null_t > >
tmap< TypeFunctor, tlist< Head, Tail > >
tnot< X >
tnot< false_t >
tnot< null_t >
true_t
true_tStructure defining a positive answer
tselect< X, A, B >Select a type based on condition X, X is assumed to be in { null_t, false_t, true_t }
tselect< false_t, A, B >
tselect< null_t, A, B >
TYPE< X >
ucst< X >Return T = Y from X = Y or X = const Y
ucst< const X >
ucstref< X >Return T = Y from X = const Y, Y, Y &, const Y &
unary_operator< O, A >
unary_operator_prototype< op, X >
Univariate
uptr< X >Return T = Y from X = Y or X = Y *
uptr< X * >
uref< X >Return T = Y from X = Y or X = Y &
uref< X & >
use< operators_of, polynomial< C, with< Rep, Ord > > >
use< operators_of, sparse::dual< C, O > >
use< operators_of, sparse::monomial_seq< C, O, MONOM, REP > >
use< operators_of, tensor::bernstein< C > >
use< operators_of, tensor::monomials< C > >
use< operators_of, univariate::monomials< C > >
use< polynomial_of, polynomial< C, with< Bernstein > > >
use< polynomial_of, polynomial< C, with< Dual, O > > >
use< polynomial_of, polynomial< C, with< MonomialTensor > > >
use< polynomial_of, polynomial< C, with< Sparse, O > > >
use< polynomial_of, polynomial< C, with< Univariate > > >Tensor ring of polynomials in the monomial basis
uv_binary_approx
uv_binary_isolate
UvBernsteinBinaryApproximate
value_type< Container >
value_type_< Container >
value_type_< C * >
value_type_< C[N] >
value_type_< const C * >
value_type_< R< X > >
ValueType< A >
ValueType< A * >
ValueType< A[n] >
variables
vd
vselect< k, A, B >Select a type base on condition V, V is assumed to be in { 0, 1 }
vselect< 0, A, B >