|
realroot_doc 0.1.1
|
#include <solver_fatarcs.hpp>
Definition at line 14 of file solver_fatarcs.hpp.
Definition at line 21 of file solver_fatarcs.hpp.
| typedef polynomial< C ,with<Bernstein> > bernstein_t |
Definition at line 19 of file solver_fatarcs.hpp.
Definition at line 20 of file solver_fatarcs.hpp.
Definition at line 18 of file solver_fatarcs.hpp.
Definition at line 23 of file solver_fatarcs.hpp.
Definition at line 22 of file solver_fatarcs.hpp.
| typedef std::vector<C> vec_t |
Definition at line 17 of file solver_fatarcs.hpp.
| solver_mv_fatarcs | ( | bernstein_t | p1, |
| bernstein_t | p2, | ||
| C | eps | ||
| ) | [inline] |
Definition at line 29 of file solver_fatarcs.hpp.
Definition at line 34 of file solver_fatarcs.hpp.
References box_rep< C >::box, box_rep< C >::event_list(), extpts(), is_arc(), box_rep< C >::max_eval(), mmx::median(), box_rep< C >::min_grad(), minmax_box(), Seq< C, R >::size(), and mmx::sqrt().
{
arc_rep_t mc1,mc2;
Seq<vec_t> l1=m1.event_list();
if(l1.size()==4){mc1=median(m1, l1, MTH);}else{mc1=arc_rep_t();};
Seq<vec_t> l2=m2.event_list();
if(l2.size()==4){mc2=median(m2, l2, MTH);}else{mc2=arc_rep_t();};
box_t bbox=m1.box;
if(is_arc(mc1) && is_arc(mc2)){
C c1=m1.min_grad();//std::cout << c1 <<std::endl;
C c2=m2.min_grad();//std::cout << c2 <<std::endl;
if(c1>C(0) && c2>C(0) ){
C r1=m1.max_eval(mc1)/sqrt(c1);//std::cout << r1 <<std::endl;
C r2=m2.max_eval(mc2)/sqrt(c2);//std::cout << r2 <<std::endl;
Seq<vec_t> extrema;
extrema=extpts(mc1,r1,mc2,r2);
bbox=minmax_box(extrema, m1.box);
}else{/*std::cout << "no grad "<<std::endl;*/}
}else{/*std::cout << "no med "<<std::endl;*/}
return(bbox);
};/*box around fatarc intersection*/
| void prepro | ( | bernstein_t & | pol1, |
| bernstein_t & | pol2, | ||
| vec_t | midpt | ||
| ) | [inline] |
Definition at line 64 of file solver_fatarcs.hpp.
References mmx::diff(), mmx::eval(), and mmx::rep().
{
bernstein_t p1=pol1,p2=pol2;
C c1x,c1y,c2x,c2y;
tensor::eval(c1x, diff(p1,0).rep(),midpt);
tensor::eval(c2x, diff(p2,0).rep(),midpt);
tensor::eval(c1y, diff(p1,1).rep(),midpt);
tensor::eval(c2y, diff(p2,1).rep(),midpt);
if(c1x!=c1y && c2x!=c2y){
pol1=c1x*p1+c2x*p2;
pol2=c1y*p1+c2y*p2; }
};
SOLVE ROUTINE.
Definition at line 79 of file solver_fatarcs.hpp.
References domain< C >::diam(), domain< C >::dim(), box_rep< C >::not_empty(), and domain< C >::split().
Referenced by solve_bv_fatarcs().
{
stbox_t list, mo;
seqbox_t moseq;
int subdiv=0;
int arcgen=0;
int it=0;
box_t unit(int(2));
box_t p[4];
list.push(unit);
while(!list.empty()){it++;
box_t rec=list.top();
list.pop();
box_rep_t m1(poly1, rec);
box_rep_t m2(poly2, rec);
if(m1.not_empty() && m2.not_empty()){
// prepro( m1.poly, m2.poly, (rec.llc()+rec.urc())/((coeff_t)(2)));
// std::cout <<"b"<<std::endl;
box_t newrec=box_gen(m1, m2, MTH); arcgen++;
if(newrec.dim()==0){ //std::cout <<"no fatarc intersection"<<std::endl;
}else{ //std::cout <<"new"<<std::endl;newrec.print(5);
if(newrec.diam() <( rec.diam()/ C(2) ) ){;
if(newrec.diam()<epsilon){mo.push(newrec);//std::cout <<"small1"<<std::endl; newrec.print(6);
}
else{list.push(newrec);//std::cout <<"list new"<<std::endl;
}
}
else{
if(rec.diam()<epsilon){mo.push(rec);}
else{rec.split(p);subdiv++;/*std::cout <<"sub1"<<std::endl;*/
for(int i=0; i<4; i++){list.push(p[3-i]);}
}
};
};
}else{//std::cout <<"empty"<<std::endl;
};
}
std::cout << " * * * * * "<<std::endl;
std::cout << "iteration: "<<it<<std::endl;
std::cout << "subdivisoins: "<<subdiv<<std::endl;
std::cout << "try fatarc generation: "<<arcgen<<std::endl;
//std::cout << "solution: "<<mo.size()<<std::endl;
while(!mo.empty()){
box_t rb=mo.top();
moseq<< rb;
mo.pop();
};
return moseq;
}/*solver*/
| C epsilon |
Definition at line 25 of file solver_fatarcs.hpp.
Definition at line 26 of file solver_fatarcs.hpp.
Definition at line 26 of file solver_fatarcs.hpp.