BACK TO INDEX

Publications of Riccardo Taiello

Thesis

  1. Riccardo Taiello. Privacy-preserving machine learning for large-scale collaborative healthcare data analysis. Theses, Université Côte d'Azur, September 2024. Keyword(s): Security and privacy, Privacy enhancing technologies, Federate learning, Sécurité et confidentialité, Technologies de renforcement de la confidentialité, Apprentissage fédéré. [bibtex-entry]


Articles in journal, book chapters

  1. Riccardo Taiello, Melek Önen, Francesco Capano, Olivier Humbert, and Marco Lorenzi. Privacy preserving image registration. Medical Image Analysis, 94, May 2024. [bibtex-entry]


Conference articles

  1. Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi. Let Them Drop: Scalable and Efficient Federated Learning Solutions Agnostic to Stragglers. In ARES 2024 - 19th International Conference on Availability, Reliability and Security, number 13 of ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security, Vienna, Austria, pages 1-12, July 2024. ACM. Keyword(s): Attribute-Based Encryption, Time-based Access Control, Direct Revocation, Internet of Things, preserving protocols, Security protocols, Synchronous and Asynchronous Federated Learning, Secure Aggregation, Role authorities, Time authority, Sensors Actuator Proxy. [bibtex-entry]


  2. Riccardo Taiello, Melek Önen, Olivier Humbert, and Marco Lorenzi. Privacy Preserving Image Registration. In MICCAI 2022 - Medical Image Computing and Computer Assisted Intervention, Singapore, Singapore, September 2022. Keyword(s): Image Registration, Privacy enhancing technologies, Trustworthiness. [bibtex-entry]


Miscellaneous

  1. Francesco Cremonesi, Marc Vesin, Sergen Cansiz, Yannick Bouillard, Irene Balelli, Lucia Innocenti, Santiago Silva, Samy-Safwan Ayed, Riccardo Taiello, Laetita Kameni, Richard Vidal, Fanny Orlhac, Christophe Nioche, Nathan Lapel, Bastien Houis, Romain Modzelewski, Olivier Humbert, Melek Önen, and Marco Lorenzi. Fed-BioMed: Open, Transparent and Trusted Federated Learning for Real-world Healthcare Applications. Note: Working paper or preprint, April 2023. Keyword(s): Machine learning, Biomedical Application, Healthcare, Federated Learning Framework. [bibtex-entry]



BACK TO INDEX

Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Last modified: Sat Dec 14 00:30:05 2024
Author: epione-publi.

This document was translated from BibTEX by bibtex2html