BACK TO INDEX

Publications of Elodie Maignant

Books and proceedings

  1. Math in the Black Forest: Workshop on New Directions in Shape Analysis, November 2018. Published by the authors. Note: 27 pages, 4 figures. [bibtex-entry]


Thesis

  1. Elodie Maignant. Barycentric embeddings for geometric manifold learning : with application to shapes and graphs. Theses, Université Côte d'Azur, December 2023. Keyword(s): Geometric learning, Riemannian and barycentric geometry, Manifold learning, Quotient manifolds, Kendall shape spaces, Statistical graph analysis, Apprentissage géométrique, Géométrie riemannienne et barycentrique, Apprentissage de variétés, Variétés quotient, Espaces de formes de Kendall, Analyse statistique de graphes. [bibtex-entry]


Articles in journal, book chapters

  1. Maxim Stolyarchuk, Julie Ledoux, Elodie Maignant, Alain Trouvé, and Luba Tchertanov. Identification of the Primary Factors Determining the Specificity of the human VKORC1 Recognition by Thioredoxin-fold Proteins. International Journal of Molecular Sciences, 22(2):802, January 2021. Keyword(s): Trx-fold proteins, protein folding, dynamics, molecular recognition, thioldisulphide exchange, protein-protein interactions, PDI-hVKORC1 complex, 3D modelling, molecular dynamics simulation. [bibtex-entry]


Conference articles

  1. Anna Calissano, Elodie Maignant, and Xavier Pennec. Towards Quotient Barycentric Subspaces. In GSI 2023: Geometric Science of Information, volume 14071 of Lecture Notes in Computer Science, Saint-Malo (France), France, pages 366-374, August 2023. Springer Nature Switzerland. Keyword(s): Discrete Group, Quotient Space, Barycentric Subspace Analysis, Graph Space, Object Oriented Data Analysis. [bibtex-entry]


  2. Elodie Maignant, Alain Trouvé, and Xavier Pennec. Riemannian Locally Linear Embedding with Application to Kendall Shape Spaces. In GSI 2023: Geometric Science of Information, volume 14071 of Lecture Notes in Computer Science, Saint-Malo, (France), France, pages 12-20, August 2023. Springer Nature Switzerland. Keyword(s): Locally Linear Embedding, Optimisation on Quotient Manifolds, Shape Spaces. [bibtex-entry]


  3. Nicolas Guigui, Elodie Maignant, Alain Trouvé, and Xavier Pennec. Parallel Transport on Kendall Shape Spaces. In GSI 2021 - 5th conference on Geometric Science of Information, volume 12829 of Lecture Notes in Computer Science, Paris, France, pages 103-110, July 2021. Springer. [bibtex-entry]


Miscellaneous

  1. Elodie Maignant, Xavier Pennec, and Alain Trouvé. Looking for invariance in Locally Linear Embedding. Curves and Surfaces 2022, June 2022. Note: Poster. Keyword(s): Locally linear embedding. [bibtex-entry]


  2. Nina Miolane, Matteo Caorsi, Umberto Lupo, Marius Guerard, Nicolas Guigui, Johan Mathe, Yann Cabanes, Wojciech Reise, Thomas Davies, António Leitão, Somesh Mohapatra, Saiteja Utpala, Shailja Shailja, Gabriele Corso, Guoxi Liu, Federico Iuricich, Andrei Manolache, Mihaela Nistor, Matei Bejan, Armand Mihai Nicolicioiu, Bogdan-Alexandru Luchian, Mihai-Sorin Stupariu, Florent Michel, Khanh Dao Duc, Bilal Abdulrahman, Maxim Beketov, Elodie Maignant, Zhiyuan Liu, Marek Cerny, Martin Bauw, Santiago Velasco-Forero, Jesus Angulo, and Yanan Long. ICLR 2021 Challenge for Computational Geometry & Topology: Design and Results. Note: Working paper or preprint, December 2021. [bibtex-entry]



BACK TO INDEX

Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Last modified: Sun Nov 17 12:30:05 2024
Author: epione-publi.

This document was translated from BibTEX by bibtex2html