|
Publications de type 'techreport'
Résultat de la recherche dans la liste des publications :
90 Rapports de recherche et Rapports techniques |
1 - Classification of very high resolution SAR images of urban areas. A. Voisin et V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Rapport de recherche 7758, INRIA, octobre 2011. Mots-clés : Synthetic Aperture Radar (SAR) image, Supervised classification, Bayesian, finite mixture models, hierarchical Markov random fields, wavelet.
@TECHREPORT{RR-7758,
|
author |
= |
{Voisin, A. and Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Classification of very high resolution SAR images of urban areas}, |
year |
= |
{2011}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Rapport de recherche}, |
number |
= |
{7758}, |
url |
= |
{http://hal.inria.fr/docs/00/63/10/38/PDF/RR-7758.pdf}, |
keyword |
= |
{Synthetic Aperture Radar (SAR) image, Supervised classification, Bayesian, finite mixture models, hierarchical Markov random fields, wavelet} |
} |
Résumé :
Dans le cadre d’une approche face aux risques environnementaux, nous proposons une nouvelle méthode de classification bayésienne supervisée. Celle-ci combine une modélisation statistique des images avec une prise en compte contextuelle via des champs de Markov hiérarchiques. Ce rapport de recherche vise à détailler plus amplement cette modélisation contextuelle, à savoir expliciter le modèle mathématique sur quad-arbre et l’obtention des observations par décomposition en ondelettes de l’image originale. Il met également en exergue certaines modifications apportées en
vue d’améliorer la classification finale. |
Abstract :
In the framework of the assessment of environmental risks, we propose herein a new supervised Bayesian classification method. It combines statistical image modeling with a contextual approach via hierarchical Markov random fields. This research report aims to further focus on this kind of contextual classification approach by detailing both the quad-tree mathematical model and the statistics of the observations, obtained by wavelet transform. We therefore introduce modifications to a classical Markovian single-scale algorithm that lead to more accurate classification results. |
|
2 - On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Rapport de Recherche 7666, INRIA, juillet 2011. Mots-clés : Probability density function, Parameter estimation, generalized gamma distribution, K-distribution, Radar a Ouverture Synthetique (SAR), Classification. Copyright : INRIA/ARIANA
@TECHREPORT{RR-7666,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation}, |
year |
= |
{2011}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7666}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00605274/en/}, |
keyword |
= |
{Probability density function, Parameter estimation, generalized gamma distribution, K-distribution, Radar a Ouverture Synthetique (SAR), Classification} |
} |
Résumé :
L'estimation de paramètres de fonctions de densité de probabilité est une étape majeure dans le domaine du traitement statistique du signal et des images. Dans ce rapport, nous étudions les propriétés et les limites de l'estimation de paramètres par la méthode des cumulants logarithmiques (MoLC), qui est une alternative à la fois au maximum de vraisemblance (MV) classique et à la méthode des moments. Nous dérivons la condition générale suffisante de consistance forte de l'estimation par la méthode MoLC, qui représente une propriété asymptotique importante de tout estimateur statistique. Grâce à cela, nous démontrons la consistance forte de l'estimation par la méthode MoLC pour une sélection de familles de distributions particulièrement adaptées (mais non restreintes) au traitement d'images acquises par radar à synthèse d'ouverture (RSO). Nous dérivons ensuite les conditions analytiques d'applicabilité de la méthode MoLC à des échantillons générés qui suivent les lois des différentes familles de distribution de notre sélection. Enfin, nous testons la méthode MoLC sur des données synthétiques et réelles afin de comparer les différentes propriétés inhérentes aux différents types d'images, l'applicabilité de la méthode et les effets d'un nombre restreint d'échantillons. Nous avons, en particulier, considéré les distributions gamma généralisée et K. Comme exemple d'application, nous avons réalisé des classifications supervisées d'images médicales à ultrason ainsi que d'images de télédétection acquises par des capteurs RSO. Les résultats obtenus montrent que la méthode MoLC est une bonne alternative à la méthode des moments, bien qu'elle contienne certaines limitations. Elle est particulièrement utile lorsqu'une approche directe par MV n'est pas possible. |
Abstract :
Parameter estimation of probability density functions is one of the major steps in the mainframe of statistical image and signal processing. In this report we explore the properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition of strong consistency of MoLC estimates which represents an important asymptotic property of any statistical estimator. With its help we demonstrate the strong consistency of MoLC estimates for a selection of widely used distribution families originating (but not restricted to) synthetic aperture radar (SAR) image processing. We then derive the analytical conditions of applicability of MoLC to samples generated from several distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K family of distributions. Supervised image classification experiments are considered for medical ultrasound and remote sensing SAR imagery. The obtained results suggest MoLC to be a feasible yet not universally applicable alternative to MoM that can be considered when the direct ML approach turns out to be unfeasible. |
|
3 - Unsupervised amplitude and texture based classification of SAR images with multinomial latent model. K. Kayabol et J. Zerubia. Rapport de Recherche 7700, INRIA, juillet 2011. Mots-clés : High resolution SAR, Classification, Texture.
@TECHREPORT{Kayabol11,
|
author |
= |
{Kayabol, K. and Zerubia, J.}, |
title |
= |
{Unsupervised amplitude and texture based classification of SAR images with multinomial latent model}, |
year |
= |
{2011}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7700}, |
url |
= |
{http://hal.archives-ouvertes.fr/hal-00612491/fr/}, |
keyword |
= |
{High resolution SAR, Classification, Texture} |
} |
Abstract :
We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images using Products of Experts (PoE) approach for classification purpose. We use Nakagami density to model the class amplitudes and a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error to model the textures of the classes. A non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We obtained some classification results of water, land and urban areas in both supervised and unsupervised cases on TerraSAR-X, as well as COSMO-SkyMed data.
|
|
4 - Restoration mehod for spatially variant blurred images. S. Ben Hadj et L. Blanc-Féraud. Rapport de Recherche 7654, INRIA, juin 2011. Mots-clés : Deconvolution, energy minimization, spatially-variant PSF, Variation totale.
@TECHREPORT{RR_SBH_11,
|
author |
= |
{Ben Hadj, S. and Blanc-Féraud, L.}, |
title |
= |
{Restoration mehod for spatially variant blurred images}, |
year |
= |
{2011}, |
month |
= |
{juin}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7654}, |
url |
= |
{ http://hal.inria.fr/inria-00602650/fr/}, |
keyword |
= |
{Deconvolution, energy minimization, spatially-variant PSF, Variation totale} |
} |
|
5 - Complex wavelet regularization for 3D confocal microscopy deconvolution. M. Carlavan et L. Blanc-Féraud. Rapport de Recherche 7366, INRIA, août 2010. Mots-clés : 3D confocal microscopy, Deconvolution, complex wavelet regularization, discrepancy principle, Alternating Direction technique.
@TECHREPORT{RR-7366,
|
author |
= |
{Carlavan, M. and Blanc-Féraud, L.}, |
title |
= |
{Complex wavelet regularization for 3D confocal microscopy deconvolution}, |
year |
= |
{2010}, |
month |
= |
{août}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7366}, |
url |
= |
{http://hal.inria.fr/inria-00509447/fr/}, |
keyword |
= |
{3D confocal microscopy, Deconvolution, complex wavelet regularization, discrepancy principle, Alternating Direction technique} |
} |
Abstract :
Confocal microscopy is an increasingly popular technique for 3D
imaging of biological specimens which gives images with a very good resolution
(several tenths of micrometers), even though degraded by both blur and Poisson
noise. Deconvolution methods have been proposed to reduce these degradations,
some of them being regularized on a Total Variation prior, which gives
good results in image restoration but does not allow to retrieve the thin details
(including the textures) of the specimens. We rst propose here to use instead
a wavelet prior based on the Dual-Tree Complex Wavelet transform to retrieve
the thin details of the object. As the regularizing prior eciency also depends
on the choice of its regularizing parameter, we secondly propose a method to
select the regularizing parameter following a discrepancy principle for Poisson
noise. Finally, in order to implement the proposed deconvolution method, we
introduce an algorithm based on the Alternating Direction technique which allows
to avoid inherent stability problems of the Richardson-Lucy multiplicative
algorithm which is widely used in 3D image restoration. We show some results
on real and synthetic data, and compare these results to the ones obtained with
the Total Variation and the Curvelets priors. We also give preliminary results
on a modication of the wavelet transform allowing to deal with the anisotropic
sampling of 3D confocal images. |
|
6 - Estimation des paramètres de modèles de processus ponctuels marqués pour l'extraction d'objets en imagerie spatiale et aérienne haute résolution . S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Rapport de recherche 7350, INRIA, juillet 2010. Mots-clés : Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM), pseudo-vraisemblance, Extraction d'objets.
@TECHREPORT{RR-7350,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Estimation des paramètres de modèles de processus ponctuels marqués pour l'extraction d'objets en imagerie spatiale et aérienne haute résolution }, |
year |
= |
{2010}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Rapport de recherche}, |
number |
= |
{7350}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00508431/fr/}, |
keyword |
= |
{Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM), pseudo-vraisemblance, Extraction d'objets} |
} |
|
7 - Building Extraction and Change Detection in Multitemporal Aerial and Satellite Images in a Joint Stochastic Approach. C. Benedek et X. Descombes et J. Zerubia. Rapport de Recherche 7143, INRIA, Sophia Antipolis, décembre 2009. Mots-clés : Change detection, Building extraction, Processus ponctuels marques, MAP, multiple birth-and-death dynamics.
@TECHREPORT{benedekRR_09,
|
author |
= |
{Benedek, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Extraction and Change Detection in Multitemporal Aerial and Satellite Images in a Joint Stochastic Approach}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7143}, |
address |
= |
{Sophia Antipolis}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00426615}, |
keyword |
= |
{Change detection, Building extraction, Processus ponctuels marques, MAP, multiple birth-and-death dynamics} |
} |
Résumé :
Dans ce rapport, nous proposons une nouvelle méthode probabiliste qui intègre l'extraction de bâtiments et la détection de changements à partir de paires d'images de télédétection. Un algorithme d'optimisation globale permet de trouver la configuration optimale de bâtiments en considérant des observations, des connaissances a priori et des interactions entre des parties voisines de bâtiments. La précision est assurée par une vérification d'un modèle objet bayésien; le coût du calcul est considérablement réduit en utilisant un processus stochastique non-uniforme de naissance d'objets fondé sur des caractéristiques bas-niveaux des images, qui génère des objets pertinents ayant une grande probabilité. |
Abstract :
In this report we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. The accuracy is ensured by a Bayesian object model verification, meanwhile the computational cost is significantly decreased by a non-uniform stochastic object birth process, which proposes relevant objects with higher probability based on low-level image features. |
|
8 - Space non-invariant point-spread function and its estimation in fluorescence microscopy. P. Pankajakshan et L. Blanc-Féraud et Z. Kam et J. Zerubia. Research Report 7157, INRIA, décembre 2009. Mots-clés : Confocal Laser Scanning Microscopy, point spread function, Estimation bayesienne, Estimation MAP, Deconvolution, fluorescence microscopy.
@TECHREPORT{ppankajakshan09c,
|
author |
= |
{Pankajakshan, P. and Blanc-Féraud, L. and Kam, Z. and Zerubia, J.}, |
title |
= |
{Space non-invariant point-spread function and its estimation in fluorescence microscopy}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7157}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00438719/en/}, |
keyword |
= |
{Confocal Laser Scanning Microscopy, point spread function, Estimation bayesienne, Estimation MAP, Deconvolution, fluorescence microscopy} |
} |
Résumé :
Dans ce rapport de recherche, nous rappelons brièvement comment la nature limitée de diffraction de l'objectif d'un microscope optique, et le bruit
intrinsèque peuvent affecter la résolution d'une image observée. Un algorithme de déconvolution aveugle a été proposé en vue de restaurer les fréquences manquants au delà de la limite de diffraction. Cependant, sous d'autres conditions, l'approximation du systéme imageur l'imagerie sans aberration n'est plus valide et donc les aberrations de la phase du front d'onde émergeant d'un médium ne sont plus ignorées. Dans la deuxième partie de
ce rapport de recherche, nous montrons que la distribution d'intensité originelle et la localisation d'un objet peuvent être retrouvées uniquement en obtenant de la phase du front d'onde
réfracté, à partir d'images d'intensité observées. Nous démontrons cela par obtention de la fonction de ou a partir d'une microsphère imagée. Le bruit et l'influence de la taille de la
microsphère peuvent être diminués et parfois complètement supprimes des images observées en utilisant un estimateur maximum a posteriori. Néanmoins, a cause de l'incohérence du système d'acquisition, une récupération de phase a partir d'intensités observées n'est possible que si la restauration de la phase est contrainte. Nous avons utilisé l'optique géométrique
pour modéliser la phase du front d'onde réfracté, et nous avons teste l'algorithme sur des images simulées. |
Abstract :
In this research report, we recall briefly how the diffraction-limited nature of an optical microscope's objective, and the intrinsic noise can affect the observed images' resolution. A blind deconvolution algorithm can restore the lost frequencies beyond the diffraction limit. However, under other imaging conditions, the approximation of aberration-free imaging, is not applicable, and the phase aberrations of the emerging wavefront from a specimen immersion medium cannot be ignored any more. We show that an object's location and its original intensity distribution can be recovered by retrieving the refracted wavefront's phase from the observed intensity images. We demonstrate this by retrieving the point-spread function from an imaged microsphere. The noise and the influence of the microsphere size can be mitigated and sometimes completely removed from the observed images by using a maximum a posteriori estimate. However, due to the incoherent nature of the acquisition system, phase retrieval from the observed intensities will be possible only if the phase is constrained. We have used geometrical optics to model the phase of the refracted wavefront, and tested the algorithm on some simulated images. |
|
9 - High resolution SAR-image classification. V. Krylov et J. Zerubia. Research Report 7108, INRIA, novembre 2009. Mots-clés : SAR image classification, Dictionnaire, amplitude probability density, EM Stochastique (SEM), Markov random field, copula. Copyright : INRIA/ARIANA, 2009
@TECHREPORT{RR-7108,
|
author |
= |
{Krylov, V. and Zerubia, J.}, |
title |
= |
{High resolution SAR-image classification}, |
year |
= |
{2009}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7108}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00433036/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/44/81/40/PDF/RR-7108.pdf}, |
keyword |
= |
{SAR image classification, Dictionnaire, amplitude probability density, EM Stochastique (SEM), Markov random field, copula} |
} |
Résumé :
Dans ce rapport, nous proposons une nouvelle approche pour la classification des images de type Radar à Synthèse d’Ouverture (RSO) haute résolution. Cette approche combine la méthode des champs Markoviens (MRF) pour la classification bayésienne et un modèle de mélange fini pour l’estimation des densités de probabilité. Ce modèle de mélange fini est realisé grace à une approche fondée sur une espérance-maximisation stochastique, à partir d'un dictionnaire, pour l’estimation des densités de probabilité d’amplitude. Cette approche semi-automatique est étendue au cas important des images RSO avec plusieurs polarisations, en utilisant des copulas pour modéliser les distributions jointes. Des résultats expérimentaux, sur plusieurs images RSO réelles (Dual-Pol TerraSAR-X et Single-Pol COSMO-SkyMed), pour la classification de zones humides, sont présentés pour montrer l’efficacité de l’algorithme proposé. |
Abstract :
In this report we propose a novel classification algorithm for high and very high resolution synthetic aperture radar (SAR) amplitude images that combines the Markov random field approach to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done by dictionary-based stochastic expectation maximization amplitude histogram estimation approach. The developed semiautomatic algorithm is extended to an important case of multi-polarized SAR by modeling the joint distributions of channels via copulas. The accuracy of the proposed algorithm is validated for the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed. |
|
10 - A formal Gamma-convergence approach for the detection of points in 2-D images. D. Graziani et L. Blanc-Féraud et G. Aubert. Rapport de Recherche 7038, INRIA, mai 2009. Note : to appear Siam Journal of Imaging Science Mots-clés : points detection, curvature-depending functionals, divergence-measure fields, Gamma-convergence, biological 2-D images.
@TECHREPORT{GRAZIANI_GAMMA_POINTS,
|
author |
= |
{Graziani, D. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{A formal Gamma-convergence approach for the detection of points in 2-D images}, |
year |
= |
{2009}, |
month |
= |
{mai}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7038}, |
note |
= |
{to appear Siam Journal of Imaging Science}, |
url |
= |
{https://hal.inria.fr/inria-00418526}, |
keyword |
= |
{points detection, curvature-depending functionals, divergence-measure fields, Gamma-convergence, biological 2-D images} |
} |
|
11 - Modeling the statistics of high resolution SAR images. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Research Report 6722, INRIA, novembre 2008. Mots-clés : Synthetic Aperture Radar (SAR) image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM). Copyright : INRIA/ARIANA, 2008
@TECHREPORT{krylovDSEM08,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Modeling the statistics of high resolution SAR images}, |
year |
= |
{2008}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6722}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00342681/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/35/76/27/PDF/RR-6722.pdf}, |
keyword |
= |
{Synthetic Aperture Radar (SAR) image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM)} |
} |
Abstract :
In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of pixel intensities. In this work, we develop a parametric finite mixture model for modelling the statistics of intensities in high resolution Synthetic Aperture Radar (SAR) images. Along with the models we design an efficient parameter estimation scheme by integrating the Stochastic Expectation Maximization scheme and the Method of log-cumulants with an automatic technique to select, for each mixture component, an optimal parametric model taken from a predefined dictionary of parametric probability density functions (pdf). In particular, the proposed dictionary consists of eight most efficient state-of-the-art SAR-specific pdfs: Nakagami, log-normal, generalized Gaussian Rayleigh, Heavy-tailed Rayleigh, Weibull, K-root, Fisher and generalized Gamma. The experiment results with a set of several real SAR (COSMO-SkyMed) images demonstrate the high accuracy of the designed algorithm, both from the viewpoint of a visual comparison of the histograms, and from the viewpoint of quantitive measures such as correlation coefficient (always above 99,5%) . We stress, in particular, that the method proves to be effective on all the considered images, remaining accurate for multimodal and highly heterogeneous images. |
|
12 - Parametric blind deconvolution for confocal laser scanning microscopy-proof of concept. P. Pankajakshan et L. Blanc-Féraud et B. Zhang et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Rapport de Recherche 6493, INRIA, avril 2008. Mots-clés : Confocal Laser Scanning Microscopy, Bayesian restoration, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, Variation totale. Copyright : ARIANA/INRIA
@TECHREPORT{ppankajakshan08b,
|
author |
= |
{Pankajakshan, P. and Blanc-Féraud, L. and Zhang, B. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Parametric blind deconvolution for confocal laser scanning microscopy-proof of concept}, |
year |
= |
{2008}, |
month |
= |
{avril}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6493}, |
url |
= |
{https://hal.inria.fr/inria-00269265}, |
pdf |
= |
{http://hal.inria.fr/docs/00/27/02/92/PDF/report.pdf}, |
keyword |
= |
{Confocal Laser Scanning Microscopy, Bayesian restoration, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, Variation totale} |
} |
Résumé :
Nous proposons une méthode de restauration itérative d’images de fluorescence
CLSM et d’estimation paramétrique de la fonction de flou (PSF) du système d’acquisition.
Le CLSM est un microscope qui balaye un échantillon en 3D et utilise une sténopée pour
rejeter la lumière en dehors du point de focalisation. Néanmoins, la qualité des images
souffre de deux limitations physiques. La première est due à la diffraction due au système
optique et la seconde est due à la quantité réduite de lumière détectée par le tube
photo-multiplicateur (PMT). Ces limitations induisent respectivement un flou et du bruit
de comptage de photons. Les images peuvent alors bénéficier d’un post-traitement de
restauration fondé sur la déconvolution. Le problème à traiter est l’estimation simultanée
de la distribution 3D de l’échantillon des sources fluorescentes et de la PSF du microscope
(i.e. de déconvolution aveugle). En utilisant un modèle de processus physique
d’acquisition d’images microscopiques (CLSM), on réduit le nombre de paramètres libres
décrivant la PSF et on introduit des contraintes. On introduit aussi des connaissances a
priori sur l’échantillon ce qui permet de stabiliser le processus d’estimation et de favoriser
la convergence. Des expériences sur des données synthétiques montrent que la PSF peut
être estimée avec précision. Des expériences sur des données réelles montrent de bons
resultats de déconvolution en comparaison avec le modèle théorique de la PSF du microscope. |
Abstract :
We propose a method for the iterative restoration of fluorescence Confocal Laser Scanning Microscope (CLSM) images with parametric estimation of the acquisition system’s Point Spread Function (PSF). The CLSM is an optical fluorescence microscope that scans a specimen in 3D and uses a pinhole to reject most of the out-of-focus light. However, the quality of the image suffers from two primary physical limitations. The first is due to the diffraction-limited nature of the optical system and the second is due to the reduced amount of light detected by the photomultiplier tube (PMT). These limitations cause blur and photon counting noise respectively. The images can hence benefit from post-processing restoration methods based on deconvolution. An efficient method for parametric blind image deconvolution involves the simultaneous estimation of the specimen 3D distribution of fluorescent sources and the microscope PSF. By using a model for the microscope image acquisition physical process, we reduce the number of free parameters describing the PSF and introduce constraints. The parameters of the PSF may vary during the course of experimentation, and so they have to be estimated directly from the observation data. We also introduce a priori knowledge of the specimen that permits stabilization of the estimation process and favorizes the convergence. Experiments on simulated data show that the PSF could be estimatedwith a higher degree of accuracy and those done on real data show very good deconvolution results in comparison to the theoretical microscope PSF model. |
|
13 - On the illumination invariance of the level lines under directed light. Application to change detection. P. Weiss et A. Fournier et L. Blanc-Féraud et G. Aubert. Rapport de Recherche 6612, INRIA, 2008. Mots-clés : Level Lines, illumination invariance, topographic map, Change detection, remote sensing, Zones urbaines. Copyright :
@TECHREPORT{RR-6612,
|
author |
= |
{Weiss, P. and Fournier, A. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{On the illumination invariance of the level lines under directed light. Application to change detection}, |
year |
= |
{2008}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6612}, |
url |
= |
{https://hal.archives-ouvertes.fr/inria-00310383}, |
pdf |
= |
{http://hal.inria.fr/docs/00/31/03/83/PDF/RR-6612.pdf}, |
keyword |
= |
{Level Lines, illumination invariance, topographic map, Change detection, remote sensing, Zones urbaines} |
} |
Abstract :
We analyze the illumination invariance of the level lines of an image. We show that if the scene surface has Lambertian reflectance and the light is directed, then a necessary condition for the level lines to be illumination invariant is that the 3D scene be developable and that its albedo satisfies some geometrical constraints. We then show that the level lines are ``almost'' invariant for piecewise developable surfaces. Such surfaces fit most of the urban structures. In a second part, this allows us to devise a very fast algorithm that detects changes between pairs of remotely sensed images of urban areas, independently of the lighting conditions. We show the effectiveness of the algorithm both on synthetic OpenGL scenes and real Quickbird images. We compare the efficiency of the proposed algorithm with other classical approaches and show that it is superior both in practice and in theory. |
|
14 - Reconstruction d'images satellitaires à partir d'un échantillonnage irrégulier. M. Carlavan et P. Weiss et L. Blanc-Féraud et J. Zerubia. Rapport de Recherche 6732, INRIA, 2008. Mots-clés : l1 norm, nesterov scheme, total variation minimization, wavelet. Copyright :
@TECHREPORT{RR-6732,
|
author |
= |
{Carlavan, M. and Weiss, P. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Reconstruction d'images satellitaires à partir d'un échantillonnage irrégulier}, |
year |
= |
{2008}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6732}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00340975/fr/}, |
pdf |
= |
{http://hal.inria.fr/docs/00/34/09/75/PDF/RR-6732.pdf}, |
keyword |
= |
{l1 norm, nesterov scheme, total variation minimization, wavelet} |
} |
|
15 - Support Vector Machines for burnt area discrimination. O. Zammit et X. Descombes et J. Zerubia. Rapport de Recherche 6343, INRIA, novembre 2007. Mots-clés : Feux de foret, Zones brûlées, Imagerie satellitaire, Support Vector Machines, Classification.
@TECHREPORT{zammit_RR_07,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Support Vector Machines for burnt area discrimination}, |
year |
= |
{2007}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6343}, |
url |
= |
{http://hal.inria.fr/inria-00185101/fr/}, |
pdf |
= |
{http://hal.inria.fr/inria-00185101/fr/}, |
keyword |
= |
{Feux de foret, Zones brûlées, Imagerie satellitaire, Support Vector Machines, Classification} |
} |
Résumé :
Ce rapport aborde le problème de l'évaluation des dégâts après un feux de forêt. La détection est effectuée à partir d'une seule image satellite (SPOT 5) acquise après le feu. Afin de détecter les zones brûlées, nous utilisons une approche récente de classification nommée SVM (Séparateurs à Vaste Marge). Cette méthode est comparée aux algorithmes de classification plus conventionnels comme les K-moyennes ou les K-plus proches voisins, qui sont régulièrement utilisés en traitement d'image. Nous proposons également une méthode de classification non supervisée combinant les K-moyennes et les SVM. Les résultats fournis par les différentes techniques sont comparés à des vérités de terrain sur diverses zones brûlées. |
Abstract :
This report addresses the problem of burnt area discrimination using remote sensing images. The detection is based on a single post-fire image acquired by SPOT 5 satellite. To delineate the burnt areas, we use a recent classification method called Support Vectors Machines (SVM). This approach is compared to more conventional classifiers such as K-means or K-nearest neighbours which are widely used in image processing. We also proposed a new automatic classification approach combining K-means and SVM. The results given by the different methods are finally compared to ground truths on various burnt areas |
|
16 - Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations. S. Descamps et X. Descombes et A. Béchet et J. Zerubia. Research Report 6328, INRIA, octobre 2007. Mots-clés : Extraction d'objets, modélisation stochastique , Processus ponctuels marques, dynamique de naissance/mort, environnement, flamants roses.
@TECHREPORT{Descamps-Descombes,
|
author |
= |
{Descamps, S. and Descombes, X. and Béchet, A. and Zerubia, J.}, |
title |
= |
{Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations}, |
year |
= |
{2007}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6328}, |
url |
= |
{http://hal.inria.fr/inria-00180811}, |
pdf |
= |
{http://hal.inria.fr/docs/00/18/08/93/PDF/RR-Desc-Desc-Bech-Zeru.pdf}, |
keyword |
= |
{Extraction d'objets, modélisation stochastique , Processus ponctuels marques, dynamique de naissance/mort, environnement, flamants roses} |
} |
|
17 - An adaptive simulated annealing cooling schedule for object detection in images. M. Ortner et X. Descombes et J. Zerubia. Rapport de Recherche 6336, INRIA, octobre 2007. Mots-clés : Traitement d'image, Shape extraction, Spatial point process, Recuit Simule, Adaptive cooling schedule.
@TECHREPORT{Ortner-Descombes,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{An adaptive simulated annealing cooling schedule for object detection in images}, |
year |
= |
{2007}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6336}, |
url |
= |
{https://hal.inria.fr/inria-00181764}, |
pdf |
= |
{https://hal.inria.fr/inria-00181764}, |
keyword |
= |
{Traitement d'image, Shape extraction, Spatial point process, Recuit Simule, Adaptive cooling schedule} |
} |
|
18 - Efficient schemes for total variation minimization under constraints in image processing. P. Weiss et L. Blanc-Féraud et G. Aubert. Rapport de Recherche 6260, INRIA, juillet 2007. Mots-clés : l1 norm, total variation minimization, duality lp norms, gradient and subgradient descent, nesterov scheme, texture + geometry decomposition.
@TECHREPORT{RR-6260,
|
author |
= |
{Weiss, P. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{Efficient schemes for total variation minimization under constraints in image processing}, |
year |
= |
{2007}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6260}, |
url |
= |
{http://hal.inria.fr/inria-00166096/fr/}, |
pdf |
= |
{http://hal.inria.fr/docs/00/26/16/35/PDF/RR-6260.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/26/16/35/PS/RR-6260.ps}, |
keyword |
= |
{l1 norm, total variation minimization, duality lp norms, gradient and subgradient descent, nesterov scheme, texture + geometry decomposition} |
} |
Résumé :
Ce papier présente de nouveaux algorithmes pour minimiser la variation totale, et plus généralement des normes l^1, sous des contraintes convexes. Ces algorithmes proviennent d'une avancée récente en optimisation convexe proposée par Yurii Nesterov. Suivant la régularité de l'attache aux données, nous résolvons soit un problème primal, soit un problème dual. Premièrement, nous montrons que les schémas standard de premier ordre permettent d'obtenir des solutions de précision epsilon en O(frac1epsilon^2) itérations au pire des cas. Pour une contrainte convexe quelconque, nous proposons un schéma qui permet d'obtenir une solution de précision epsilon en O(frac1epsilon) itérations. Pour une contrainte fortement convexe, nous résolvons un problème dual avec un schéma qui demande O(frac1sqrtepsilon) itérations pour obtenir une solution de précision epsilon. Suivant la contrainte, nous gagnons donc un à deux ordres dans la rapidité de convergence par rapport à des approches standard. Finalement, nous faisons quelques expériences numériques qui confirment les résultats théoriques sur de nombreux problèmes. |
Abstract :
This paper presents new algorithms to minimize total variation and more generally l^1-norms under a general convex constraint. The algorithms are based on a recent advance in convex optimization proposed by Yurii Nesterov citeNESTEROV. Depending on the regularity of the data fidelity term, we solve either a primal problem, either a dual problem. First we show that standard first order schemes allow to get solutions of precision epsilon in O(frac1epsilon^2) iterations at worst. For a general convex constraint, we propose a scheme that allows to obtain a solution of precision epsilon in O(frac1epsilon) iterations. For a strongly convex constraint, we solve a dual problem with a scheme that requires O(frac1sqrtepsilon) iterations to get a solution of precision epsilon. Thus, depending on the regularity of the data term, we gain from one to two orders of magnitude in the convergence rates with respect to standard schemes. Finally we perform some numerical experiments which confirm the theoretical results on various problems. |
|
19 - A Three-layer MRF model for Object Motion Detection in Airborne Images. C. Benedek et T. Szirányi et Z. Kato et J. Zerubia. Rapport de Recherche 6208, INRIA, juin 2007. Mots-clés : Aerial images, Change detection, Camera motion, MRF.
@TECHREPORT{benedek_INRIARR07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Three-layer MRF model for Object Motion Detection in Airborne Images}, |
year |
= |
{2007}, |
month |
= |
{juin}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6208}, |
url |
= |
{https://hal.inria.fr/inria-00150805}, |
pdf |
= |
{https://hal.inria.fr/inria-00150805}, |
keyword |
= |
{Aerial images, Change detection, Camera motion, MRF} |
} |
|
20 - Object extraction using a stochastic birth-and-death dynamics in continuum. X. Descombes et R. Minlos et E. Zhizhina. Rapport de Recherche 6135, INRIA, 2007. Mots-clés : birth and death process, Stochastic modeling, Ondelettes.
@TECHREPORT{RR-6135,
|
author |
= |
{Descombes, X. and Minlos, R. and Zhizhina, E.}, |
title |
= |
{Object extraction using a stochastic birth-and-death dynamics in continuum}, |
year |
= |
{2007}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6135}, |
url |
= |
{https://hal.inria.fr/inria-00133726}, |
pdf |
= |
{http://hal.inria.fr/inria-00133726}, |
keyword |
= |
{birth and death process, Stochastic modeling, Ondelettes} |
} |
Abstract :
We define a new birth and death dynamics dealing with configurations of discs in the plane. We prove the convergence of the continuous process and propose a discrete scheme converging to the continuous case. This framework is developed to address image processing problems consisting in extracting objects. The derived algorithm is applied for tree crown extraction and bird detection from aerial images. The performance of this approach is shown on real data. |
|
21 - Hierarchical finite-state modeling for texture segmentation with application to forest classification. G. Scarpa et M. Haindl et J. Zerubia. Research Report 6066, INRIA, INRIA, France, décembre 2006. Mots-clés : Texture, Segmentation, Co-occurrence matrix, Approche structurelle, MCMC, Synthesis.
@TECHREPORT{scarparr06,
|
author |
= |
{Scarpa, G. and Haindl, M. and Zerubia, J.}, |
title |
= |
{Hierarchical finite-state modeling for texture segmentation with application to forest classification}, |
year |
= |
{2006}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6066}, |
address |
= |
{INRIA, France}, |
url |
= |
{https://hal.inria.fr/inria-00118420}, |
keyword |
= |
{Texture, Segmentation, Co-occurrence matrix, Approche structurelle, MCMC, Synthesis} |
} |
Abstract :
In this research report we present a new model for texture representation which is particularly well suited for image analysis and segmentation. Any image is first discretized and then a hierarchical finite-state region-based model is automatically coupled with the data by means of a sequential optimization scheme, namely the Texture Fragmentation and Reconstruction (TFR) algorithm. The TFR algorithm allows to model both intra- and inter-texture interactions, and eventually addresses the segmentation task in a completely unsupervised manner. Moreover, it provides a hierarchical output, as the user may decide the scale at which the segmentation has to be given. Tests were carried out on both natural texture mosaics provided by the Prague Texture Segmentation Datagenerator Benchmark and remote-sensing data of forest areas provided by the French National Forest Inventory (IFN). |
|
22 - A higher-order active contour model of a `gas of circles' and its application to tree crown extraction. P. Horvath et I. H. Jermyn et Z. Kato et J. Zerubia. Research Report 6026, INRIA, France, novembre 2006. Mots-clés : Extraction de Houppiers, Aerial images, Ordre superieur, Contour actif, Gaz de cercles, Forme.
@TECHREPORT{Horvath05,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A higher-order active contour model of a `gas of circles' and its application to tree crown extraction}, |
year |
= |
{2006}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6026}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00115631}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Horvath05.pdf}, |
keyword |
= |
{Extraction de Houppiers, Aerial images, Ordre superieur, Contour actif, Gaz de cercles, Forme} |
} |
Abstract :
Many image processing problems involve identifying the region in the image domain occupied by a given entity in the scene. Automatic solution of these problems requires models that incorporate significant prior knowledge about the shape of the region. Many methods for including such knowledge run into difficulties when the topology of the region is unknown a priori, for example when the entity is composed of an unknown number of similar objects. Higher-order active contours (HOACs) represent one method for the modelling of non-trivial prior knowledge about shape without necessarily constraining region topology, via the inclusion of non-local interactions between region boundary points in the energy defining the model. The case of an unknown number of circular objects arises in a number of domains, \eg medical, biological, nanotechnological, and remote sensing imagery. Regions composed of an a priori unknown number of circles may be referred to as a `gas of circles'. In this report, we present a HOAC model of a `gas of circles'. In order to guarantee stable circles, we conduct a stability analysis via a functional Taylor expansion of the HOAC energy around a circular shape. This analysis fixes one of the model parameters in terms of the others and constrains the rest. In conjunction with a suitable likelihood energy, we apply the model to the extraction of tree crowns from aerial imagery, and show that the new model outperforms other techniques. |
|
23 - A structural approach for 3D building reconstruction. F. Lafarge et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Research Report 6048, INRIA, novembre 2006. Mots-clés : Reconstruction en 3D, Approche structurelle, Building, RJMCMC, Viterbi.
@TECHREPORT{Lafarge_rr_6048,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{A structural approach for 3D building reconstruction}, |
year |
= |
{2006}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6048}, |
url |
= |
{https://hal.inria.fr/inria-00114338}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Lafarge_rr_6048.pdf}, |
keyword |
= |
{Reconstruction en 3D, Approche structurelle, Building, RJMCMC, Viterbi} |
} |
|
24 - Tree Crown Extraction using a Three States Markov Random Field. X. Descombes et E. Pechersky. Research Report 5982, INRIA, septembre 2006. Mots-clés : Champs de Markov, Extraction de Houppiers.
@TECHREPORT{Descombes-Pechersky,
|
author |
= |
{Descombes, X. and Pechersky, E.}, |
title |
= |
{Tree Crown Extraction using a Three States Markov Random Field}, |
year |
= |
{2006}, |
month |
= |
{septembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5982}, |
url |
= |
{https://hal.inria.fr/inria-00097555}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Descombes-Pechersky.pdf}, |
keyword |
= |
{Champs de Markov, Extraction de Houppiers} |
} |
|
25 - Some applications of L infinite norms in image processing. P. Weiss et G. Aubert et L. Blanc-Féraud. Rapport de Recherche 6115, INRIA, septembre 2006. Mots-clés : projected subgradient descent, convergence rate, Variation totale, compression bounded noise, meyer G norm, fast l1 minimization.
@TECHREPORT{Some applications of L infinite constraints,
|
author |
= |
{Weiss, P. and Aubert, G. and Blanc-Féraud, L.}, |
title |
= |
{Some applications of L infinite norms in image processing}, |
year |
= |
{2006}, |
month |
= |
{septembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6115}, |
url |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/RR-6115.pdf}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Some applications of L infinite constraints.pdf}, |
keyword |
= |
{projected subgradient descent, convergence rate, Variation totale, compression bounded noise, meyer G norm, fast l1 minimization} |
} |
|
26 - An automatic building extraction method : Application to the 3D-city modeling. F. Lafarge et P. Trontin et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Research Report 5925, INRIA, France, mai 2006. Mots-clés : Extraction d'objets, Processus ponctuels marques, Reconstruction en 3D, Zones urbaines, Imagerie satellitaire, Modele numerique d'elevation (MNE).
@TECHREPORT{lafarge_rr_may06,
|
author |
= |
{Lafarge, F. and Trontin, P. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An automatic building extraction method : Application to the 3D-city modeling}, |
year |
= |
{2006}, |
month |
= |
{mai}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5925}, |
address |
= |
{France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_lafarge_rr_may06.pdf}, |
keyword |
= |
{Extraction d'objets, Processus ponctuels marques, Reconstruction en 3D, Zones urbaines, Imagerie satellitaire, Modele numerique d'elevation (MNE)} |
} |
|
27 - A Non-Bayesian Model for Tree Crown Extraction using Marked Point Processes. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5846, INRIA, France, février 2006. Mots-clés : Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Reconstruction en 3D.
@TECHREPORT{rr_perrin_nonbay_05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Non-Bayesian Model for Tree Crown Extraction using Marked Point Processes}, |
year |
= |
{2006}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5846}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070180/fr/}, |
pdf |
= |
{http://hal.inria.fr/inria-00070180/fr/}, |
keyword |
= |
{Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Reconstruction en 3D} |
} |
Résumé :
Dans ce rapport de recherche, notre but est d'extraire les houppiers à partir d'images aériennes de forêts à l'aide de processus ponctuels marqués d'ellipses ou d'ellipsoïdes. Notre approche consiste, en effet, à modéliser les données comme des réalisations de tels processus. Une fois l'objet géométrique de référence choisi, nous échantillonnons le processus objet défini par une densité grâce à un algorithme MCMC à sauts réversibles, optimisé par un recuit simulé afin d'extraire la meilleure configuration d'objets, qui nous donne l'extraction recherchée.
Nous obtenons ainsi le nombre des arbres, leur localisation et leur taille. Nous présentons, dans ce rapport, un modèle 2D et un modèle 3D pour extraire des statistiques forestières. Ceux-ci sont testés sur des images aériennes infrarouge couleur très haute résolution fournies par l'Inventaire Forestier National (IFN). |
Abstract :
High resolution aerial and satellite images of forests have a key role to play in natural resource management. As they enable forestry managers to study forests at the scale of trees, it is now possible to get a more accurate evaluation of the resources. Automatic algorithms are needed in that prospect to assist human operators in the exploitation of these data. In this paper, we present a stochastic geometry approach to extract 2D and 3D parameters of the trees, by modelling the stands as some realizations of a marked point process of ellipses or ellipsoids, whose points are the locations of the trees and marks their geometric features. As a result we obtain the number of stems, their position, and their size. This approach yields an energy minimization problem, where the energy embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted, in 2D and 3D. Results are shown on Colour Infrared aerial images provided by the French National Forest Inventory (IFN) |
|
28 - Higher-Order Active Contour Energies for Gap Closure. M. Rochery et I. H. Jermyn et J. Zerubia. Rapport de Recherche 5717, INRIA, France, octobre 2005. Mots-clés : Reseaux routiers, Continuity, Gap closure, Ordre superieur, Contour actif, Forme.
@TECHREPORT{RR_5717,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher-Order Active Contour Energies for Gap Closure}, |
year |
= |
{2005}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5717}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070300/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70300/filename/RR-5717.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/03/00/PS/RR-5717.ps}, |
keyword |
= |
{Reseaux routiers, Continuity, Gap closure, Ordre superieur, Contour actif, Forme} |
} |
Résumé :
L'un des principaux problèmes lors de l'extraction de réseaux
linéiques dans des images, et en particulier l'extraction de réseaux
routiers dans des images de télédétection, est l'existence d'interruptions
dans les données, causées, par exemple, par des occultations. Ces
interruptions peuvent mener à des trous dans le réseau extrait qui
n'existent pas dans le réseau réel. Dans ce rapport, nous décrivons une
énergie de contour actif d'ordre supérieur qui, en plus de favoriser les
régions composées de bras fins et connectés entre eux, inclut un terme d'a
priori qui pénalise les configurations du réseau où des extremités proches
et se faisant face apparaissent. L'apparition dans le réseau extrait de ces
configurations est donc moins probable. Si des extremités proches et se
faisant face apparaissent pendant l'évolution par descente de gradient
utilisée pour minimiser l'énergie, le nouveau terme dans l'énergie crée une
attraction entre ces extremités, qui se rapprochent donc l'une de l'autre
et se rejoignent, fermant ainsi le trou entre elles. Pour minimiser
l'énergie, nous développons des techniques spécifiques pour traiter les
derivées d'ordre élevé qui apparaissent dans l'équation de descente de
gradient. Nous présentons des résultats d'extraction automatique de réseaux
routiers à partir d'images de télédétection, montrant ainsi la capacité du
modèle à surmonter les interruptions. |
Abstract :
One of the main difficulties in extracting line networks from
images, and in particular road networks from remote sensing images, is the
existence of interruptions in the data caused, for example, by occlusions.
These can lead to gaps in the extracted network that do not correspond to
gaps in the real network. In this report, we describe a higher-order active
contour energy that in addition to favouring network-like regions composed
of thin arms joining at junctions, also includes a prior term that
penalizes network configurations containing `nearby opposing extremities',
and thereby makes their appearance in the extracted network less likely. If
nearby opposing extremities form during the gradient descent evolution used
to minimize the energy, the new energy term causes the extremities to
attract one another, and hence to move towards one another and join, thus
closing the gap. To minimize the energy, we develop specific techniques to
handle the high-order derivatives that appear in the gradient descent
equation. We present the results of automatic extraction of networks from
real remote-sensing images, showing the ability of the model to overcome
interruptions. |
|
29 - A Marked Point Process of Rectangles and Segments for Automatic Analysis of Digital Elevation Models.. M. Ortner et X. Descombes et J. Zerubia. Rapport de Recherche 5712, INRIA, France, octobre 2005. Mots-clés : Processus ponctuels marques, Batiments, RJMCMC.
@TECHREPORT{ortner-RR05,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Marked Point Process of Rectangles and Segments for Automatic Analysis of Digital Elevation Models.}, |
year |
= |
{2005}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5712}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070305}, |
keyword |
= |
{Processus ponctuels marques, Batiments, RJMCMC} |
} |
Résumé :
Ce travail présente une approche par géométrie stochastique pour l'extraction de primitives dans les images. Ces structures sont modélisées sous forme de réalisations d'un processus ponctuel spatial marqué dont les points sont des formes géométriques. Cette approche permet d'incorporer un modèle a priori sur la répartition spatiale des structures d'intérêt. Plus spécifiquement, nous présentons un modèle fondé sur l'interaction d'un processus de rectangles avec un processus de segments. Le premier est dédié à la détection des zones homogènes dans l'image et le second à la détection des discontinuités significatives. Nous définissons l'énergie d'une configuration de façon à favoriser la connection entre les segments, l'alignement des rectangles et l'adéquation entre les deux types de primitives. L'estimation repose sur l'emploi d'une technique de recuit-simulé. Le modèle proposé est appliqué à l'analyse de Modèles Numériques d'Elevation. Nous présentons des résultats sur des données réelles fournies par l'Institut Géographique National (IGN). Nous montrons en particulier que l'approche est efficace sur des données de types très différents. |
Abstract :
A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models.
This work presents a framework for automatic feature extraction from images using stochastic geometry. Features in images are modeled as realizations of a spatial point process of geometrical shapes. This framework allows the incorporation of a prior knowledge on the spatial repartition of features. More specifically, we present a model based on the superposition of a process of segments and a process of rectangles. The former is dedicated to the detection of linear networks of discontinuities, while the latter aims at segmenting homogeneous areas. An energy is defined, favoring connections of segments, alignments of rectangles, as well as a relevant interaction between both types of objects. The estimation is performed by minimizing the energy using a simulated annealing algorithm. The proposed model is applied to the analysis of Digital Elevation Models (DEMs). These images are raster data representing the altimetry of a dense urban area. We present results on real data provided by the IGN (French National Geographic Institute) consisting in low quality DEMs of various types. |
|
30 - A Parametric Model for Automatic 3D Building Reconstruction from High Resolution Satellite Images. F. Lafarge et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Rapport de Recherche 5687, INRIA, France, septembre 2005. Mots-clés : Reconstruction en 3D, Batiments, RJMCMC, Modele numerique d'elevation (MNE).
@TECHREPORT{5687,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{A Parametric Model for Automatic 3D Building Reconstruction from High Resolution Satellite Images}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5687}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070326/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70326/filename/RR-5687.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/03/26/PS/RR-5687.ps}, |
keyword |
= |
{Reconstruction en 3D, Batiments, RJMCMC, Modele numerique d'elevation (MNE)} |
} |
Résumé :
Dans ce rapport, nous développons un modèle paramétrique pour la reconstruction automatique de bâtiments en 3D fondé sur une approche bayésienne à partir de simulations PLEIADES. Les images satellitaires haute résolution représentent un nouveau type de données permettant de traiter les problèmes de reconstruction 3D de bâtiments. Leur résolution ``relativement basse'' et leur faible rapport signal sur bruit pour ce type de problèmes ne permet pas l'utilisation des méthodes standard développées dans le cas des images aériennes. Nous proposons une approche paramétrique utilisant des Modèles Numériques d'Elévation (MNE) et les empreintes de bâtiments associées modélisées par rectangles. La méthode proposée est fondée sur une approche bayésienne. Une technique de type de Monte Carlo par Chaînes de Markov est utilisée afin d'optimiser le modèle énergétique. |
Abstract :
This report develops a parametric model for automatic 3D building reconstruction based on a Bayesian approach from PLEIADES simulations. High resolution satellite images are a new kind of data to deal with 3D building reconstruction problems. Their ``relatively low'' resolution and low signal noise ration do not allow to use standard methods developed for the aerial image case. We propose a parametric approach using Digital Elevation Models (DEM) and associated rectangular building footprints. The proposed method is based on a Bayesian approach. A Markov Chain Monte Carlo technique is used to optimize the energy model. |
|
31 - Hydrographic Network Extraction from Radar Satellite Imagesusing a Hierarchical Model within a Stochastic Geometry Framework. C. Lacoste et X. Descombes et J. Zerubia et N. Baghdadi. Rapport de Recherche 5697, INRIA, France, septembre 2005.
@TECHREPORT{rrHimne,
|
author |
= |
{Lacoste, C. and Descombes, X. and Zerubia, J. and Baghdadi, N.}, |
title |
= |
{Hydrographic Network Extraction from Radar Satellite Imagesusing a Hierarchical Model within a Stochastic Geometry Framework}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5697}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070318}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/03/18/PDF/RR-5697.pdf}, |
keyword |
= |
{} |
} |
Résumé :
Ce rapport présente un algorithme d'extraction non supervisée de réseaux hydrographiques à partir d'images satellitaires exploitant la structure arborescante de tels réseaux. L'extraction du surfacique (branches de largeur supérieure à trois pixels) est réalisée par un algorithme efficace fondé sur une modélisation par champ de Markov. Ensuite, l'extraction du linéique se fait par un algorithme récursif fondé sur un modèle hiérarchique dans lequel les affluents d'un fleuve donné sont modélisés par un processus ponctuel marqué défini dans le voisinage de ce fleuve. L'optimisation de chaque processus ponctuel est réalisée par un recuit simulé utilisant un algorithme de Monte Carlo par chaîne de Markov à sauts réversibles. Nous obtenons de bons résultats en terme d'omissions et de surdétections sur une image radar de type ERS. |
Abstract :
This report presents a two-step algorithm for unsupervised extraction of hydrographic networks from satellite images, that exploits the tree structures of such networks. First, the thick branches of the network are detected by an efficient algorithm based on a Markov random field. Second, the line branches are extracted using a recursive algorithm based on a hierarchical model of the hydrographic network, in which the tributaries of a given river are modeled by an object process (or a marked point process) defined within the neighborhood of this river. Optimization of each point process is done via simulated annealing using a reversible jump Markov chain Monte Carlo algorithm. We obtain encouraging results in terms of omissions and overdetections on a radar satellite image. |
|
32 - A Polyline Process for Unsupervised Line Network Extraction in Remote Sensing. C. Lacoste et X. Descombes et J. Zerubia. Rapport de Recherche 5698, INRIA, France, septembre 2005.
@TECHREPORT{rrCaroline,
|
author |
= |
{Lacoste, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Polyline Process for Unsupervised Line Network Extraction in Remote Sensing}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5698}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070317}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/03/17/PDF/RR-5698.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/03/17/PS/RR-5698.ps}, |
keyword |
= |
{} |
} |
Résumé :
Ce rapport présente un nouveau modèle issu de la géométrie stochastique pour l'extraction non supervisée de réseaux linéiques (routes, rivières, etc.) à partir d'images satellitaires ou aériennes. Le réseau linéique présent dans la scène observée est modélisé par un processus de lignes brisées, appelé CAROLINE. Le modèle a priori incorpore de fortes contraintes géométriques et topologiques au travers de potentiels sur la forme des lignes brisées et de potentiels d'interaction. Les propriétés radiométriques sont incorporées via la construction d'un terme d'attache aux données fondé sur des tests statistiques. Un recuit simulé sur un algorithme de type Monte Carlo par Chaîne de Markov (MCMC) à sauts réversibles permet une optimisation globale sur l'espace des configurations d'objets, indépendamment de l'initialisation. L'ajout de perturbations pertinentes permet une accélération de la convergence de l'algorithme. Des résultats expérimentaux obtenus sur des images satellitaires et aériennes sont présentés et comparés à ceux obtenus avec un précédent modèle fondé sur un processus de segments, appelé Quality Candy. |
Abstract :
This report presents a new stochastic geometry model for unsupervised extraction of line networks (roads, rivers, etc.) from remotely sensed images. The line network in the observed scene is modeled by a polyline process, named CAROLINE. The prior model incorporates strong geometrical and topological constraints through potentials on the polyline shape and interaction potentials. Data properties are taken into account through a data term based on statistical tests. Optimization is done via a simulated annealing scheme using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm, without any specific initialization. We accelerate the convergence of the algorithm by using appropriate proposal kernels. Experimental results are provided on aerial and satellite images and compared with the results obtained with a previous model, that is a segment process called Quality Candy. |
|
33 - Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5704, INRIA, France, septembre 2005. Mots-clés : Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Optimisation.
@TECHREPORT{rr_perrin_optim_05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5704}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070312}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70312/filename/RR-5704.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/12/PS/RR-5704.ps}, |
keyword |
= |
{Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Optimisation} |
} |
Résumé :
Dans ce rapport de recherche, nous utilisons les processus ponctuels marqués afin d'extraire un nombre inconnu d'objets dans des images aériennes. Ces processus sont définis par une énergie, qui contient un terme a priori formalisant les interactions entre objets ainsi qu'un terme d'attache aux données. Nous cherchons à minimiser cette énergie, afin d'obtenir la meilleure configuration d'objets, à l'aide d'un recuit simulé qui s'inscrit dans l'algorithme d'échantillonnage MCMC à sauts réversibles.
Nous comparons ici différents schémas de décroissance de température, et présentons certaines méthodes qui permettent d'améliorer la convergence de l'algorithme en un temps fini. |
Abstract :
We use marked point processes to detect an unknown number of trees from high resolution aerial images. This approach turns to be an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects onto the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.
We compare in this paper different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels. |
|
34 - Higher Order Active Contours. M. Rochery et I. H. Jermyn et J. Zerubia. Rapport de Recherche 5656, INRIA, France, août 2005. Mots-clés : Contour actif, Ordre superieur, Reseaux routiers, Forme, A priori.
@TECHREPORT{RR_5656,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours}, |
year |
= |
{2005}, |
month |
= |
{août}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5656}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070352}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70352/filename/RR-5656.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/52/PS/RR-5656.ps}, |
keyword |
= |
{Contour actif, Ordre superieur, Reseaux routiers, Forme, A priori} |
} |
Résumé :
Nous introduisons une nouvelle classe de contours actifs qui offre des perspectives intéressantes pour la modélisation des régions et des formes, et nous appliquons un cas particulier de ces modèles à l'extraction de réseaux linéiques dans des images satellitaires et aériennes. Les nouveaux modèles sont des fonctionnelles polynômiales arbitraires sur l'espace des contours, et généralisent ainsi les fonctionnelles linéaires utilisées dans les modèles classiques de contours actifs. Alors que les fonctionnelles classiques s'écrivent avec de simples intégrales sur le contour, les nouvelles énergies sont définies comme des intégrales multiples, décrivant ainsi des interactions de longue portée entre les différents ensembles de points du contour. Utilisées comme des termes d'a priori, les fonctionnelles décrivent des familles de contours aux propriétés géométriques complexes, sans faire référence à une forme spécifique et sans nécessiter l'estimation de la position. Utilisées comme des termes d'attache aux données, elles permettent de décrire des interactions multi-points entre le contour et les données. Afin de minimiser ces énergies, nous adoptons la méthodologie des courbes de niveau. Les forces dérivées des énergies sont cependant non locales, et nécessitent une extension des méthodes de courbes de niveau standard. Les réseaux sont une famille de formes d'une grande importance dans de nombreuses applications et en particulier en télédétection. Pour les modéliser, nous faisons un choix particulier d'énergie quadratique qui décrit des structures branchées et nous ajoutons un terme d'attache aux données qui lie les données et la géométrie du contour au niveau des paires de points du contour. Des résultats d'extraction prometteurs sont montrés sur des images réelles. |
Abstract :
We introduce a new class of active contour models that hold great promise for region and shape modelling, and we apply a special case of these models to the extraction of road networks from satellite and aerial imagery. The new models are arbitrary polynomial functionals on the space of boundaries, and thus greatly generalize the linear functionals used in classical contour energies. While classical energies are expressed as single integrals over the contour, the new energies incorporate multiple integrals, and thus describe long-range interactions between different sets of contour points. As prior terms, they describe families of contours that share complex geometric properties, without making reference to any particular shape, and they require no pose estimation. As likelihood terms, they can describe multi-point interactions between the contour and the data. To optimize the energies, we use a level set approach. The forces derived from the new energies are non-local however, thus necessitating an extension of standard level set methods. Networks are a shape family of great importance in a number of applications, including remote sensing imagery. To model them, we make a particular choice of prior quadratic energy that describes reticulated structures, and augment it with a likelihood term that couples the data at pairs of contour points to their joint geometry. Promising experimental results are shown on real images. |
|
35 - Point Processes in Forestry : an Application to Tree Crown Detection. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5544, INRIA, France, avril 2005. Mots-clés : Processus ponctuels marques, Extraction d'objets, RJMCMC, Extraction de Houppiers, Geometrie stochastique.
@TECHREPORT{5544,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Point Processes in Forestry : an Application to Tree Crown Detection}, |
year |
= |
{2005}, |
month |
= |
{avril}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5544}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070463}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70463/filename/RR-5544.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/04/63/PS/RR-5544.ps}, |
keyword |
= |
{Processus ponctuels marques, Extraction d'objets, RJMCMC, Extraction de Houppiers, Geometrie stochastique} |
} |
Résumé :
Dans ce rapport de recherche, notre but est d'extraire des houppiers à partir d'images aériennes de forêts à l'aide de processus ponctuels marqués de disques et d'ellipses. Notre approche consiste, en effet, à modéliser les données comme des réalisations de tels processus. Une fois l'objet géométrique de référence choisi, nous échantillonnons le processus objet défini par une densité grâce à un algorithme MCMC à sauts réversibles, optimisé par un recuit simulé afin d'extraire le maximum a posteriori de cette densité. Cette configuration optimale nous donnera l'extraction recherchée.
Dans une première partie, nous proposons de revenir quelque peu sur les processus ponctuels marqués et leur application dans la foresterie. Puis, nous présentons deux nouveaux modèles d'extraction de houppiers à base de disques et d'ellipses, et discutons de quelques améliorations au niveau de la simulation et de l'optimisation de notre algorithme.
Nous présentons des résultats obtenus sur des images aériennes très haute résolution fournies par l'Inventaire Forestier National (IFN), ainsi que sur des images synthétiques simulées avec le logiciel AMAP (Bionatics, projet Digiplante). |
Abstract :
In this research report, we aim at extracting tree crowns from remotely sensed images using marked point processes of discs and ellipses. Our approach is indeed to consider that the data are some realizations of a marked point process. Once a geometrical object is defined, we sample a marked point process defined by a density with a Reversible Jump Markov Chain Monte Carlo dynamics and simulated annealing to get the maximum a posteriori estimator of the tree crown distribution on the image.
In a first part, we propose to review the basis of marked point processes and some of their examples used in forestry statistic inference. Then, we present two new models, with discs and ellipses, and discuss some improvements made in the optimization or in the simulation.
Results are shown on high resolution aerial images of poplars provided by the French Forest Inventory (IFN), and synthetic images simulated with AMAP software (Bionatics, Digiplante project). |
|
36 - Restauration d'Images Biologiques 3D en Microscopie Confocale par Transformée en Ondelettes Complexes. G. Pons Bernad et L. Blanc-Féraud et J. Zerubia. Rapport de Recherche 5507, INRIA, France, février 2005. Mots-clés : Microscopie confocale, Transformee en ondelettes complexes 3D, Restauration, Debruitage, Deconvolution.
@TECHREPORT{5507,
|
author |
= |
{Pons Bernad, G. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Restauration d'Images Biologiques 3D en Microscopie Confocale par Transformée en Ondelettes Complexes}, |
year |
= |
{2005}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5507}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070500}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70500/filename/RR-5507.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/05/00/PS/RR-5507.ps}, |
keyword |
= |
{Microscopie confocale, Transformee en ondelettes complexes 3D, Restauration, Debruitage, Deconvolution} |
} |
Résumé :
La microscopie confocale est une méthode puissante pour l'imagerie 3D de spécimens biologiques. Néanmoins, les images acquises sont dégradées non seulement par du flou dû à la lumière provenant de zones non focalisées du spécimen, mais aussi par un bruit de Poisson dû à la détection. Plusieurs algorithmes de déconvolution ont été proposés pour réduire ces dégradations. Un des plus utilisés est l'algorithme itératif de Richardson-Lucy, qui calcule un maximum de vraisemblance adapté à une statistique poissonienne. Mais cet algorithme tend à amplifier le bruit. Une solution consiste alors à introduire une contrainte de régularisation (par exemple, fondée sur la Variation Totale). Ici, nous nous concentrons sur des méthodes fondées sur l'analyse par ondelettes, en particulier sur des méthodes de débruitage via la transformée en ondelettes, qui semblent être plus appropriées à la microscopie en fluorescence 3D. Nous développons dans ce rapport un algorithme de Transformation en Ondelettes Complexes 3D introduit par N. Kingsbury. Celui-ci permet une décomposition invariante par translation et rotation et une sélectivité directionnelle des coefficients en ondelettes. Nous montrons sur des images synthétiques et sur des images réelles les résultats de cet algorithme de débruitage. Ce dernier est ensuite inséré dans le processus de déconvolution. |
Abstract :
Confocal laser scanning microscopy is a powerful technique for 3D imaging of biological specimens. However the acquired images are degraded by blur from out-of-focus light and Poisson noise. Several deconvolution algorithms have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. Nevertheless, this algorithm tends to amplify noise. Other solutions exist which combine Richardson-Lucy algorithm and regularization (for example with a Total Variation constraint). In this report, we will concentrate on methods based on wavelet analysis, in particular on wavelet denoising methods, which turn out to be very effective in application to 3D confocal images. To obtain a translation and rotation invariant decomposition algorithm, we have developped the 3D Complex Wavelet Transform introduced by Nick Kingsbury. These wavelets allow moreover a directional selectivity of the wavelet coefficients. We show on simulated and real images the denoising results. This algorithm is then used for the deconvolution purpose. |
|
37 - SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model. A. Achim et E.E. Kuruoglu et J. Zerubia. Rapport de Recherche 5493, INRIA, France, février 2005. Mots-clés : Radar a Ouverture Synthetique (SAR), Estimation MAP, Distribution alpha-stable, Transformee de Mellin.
@TECHREPORT{5493,
|
author |
= |
{Achim, A. and Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model}, |
year |
= |
{2005}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5493}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070514}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70514/filename/RR-5493.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/05/14/PS/RR-5493.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), Estimation MAP, Distribution alpha-stable, Transformee de Mellin} |
} |
Résumé :
Les images issues d'un radar à synthèse d'ouverture (RSO) sont affectées de manière inhérente par un bruit dépendant du signal, généralement connu sous le nom de bruit de chatoiement et qui est dû à la cohérence de l'onde radar. Dans ce rapport, nous proposons un nouveau filtre adaptatif pour débruiter les images RSO et nous déduisons un estimateur du maximum a posteriori (MAP) pour la section efficace du diagramme de gain en radar. On utilise d'abord une transformée logarithmique afin de changer le bruit multiplicatif en bruit additif. Nous modélisons la section efficace à l'aide d'une densité de probabilité récemment introduite - la densité de Rayleigh à queue lourde, qui a été obtenue en supposant que les parties réelles et imaginaires du signal complexe reçu peuvent être mieux caractérisées à l'aide de la famille des distributions alpha-stables. Nous estimons les paramètres du modèle à partir d'observations bruitées en faisant appel à la théorie statistique de deuxième espèce qui est fondée sur la transformée de Mellin. Enfin, nous faisons la comparaison entre la méthode que nous proposons et d'autres filtres classiques pour le débruitage d'images RSO. Nos résultats expérimentaux démontrent que le filtre MAP homomorphique fondé sur le modèle de Rayleigh à queue lourde est parmi les meilleurs pour enlever le bruit de chatoiement. |
Abstract :
Synthetic aperture radar (SAR) images are inherently affected by a signal dependent noise known as speckle, which is due to the radar wave coherence. In this report, we propose a novel adaptive despeckling filter and derive a maximum a posteriori (MAP) estimator for the radar cross section (RCS). We first employ a logarithmic transformation to change the multiplicative speckle into additive noise. We model the RCS using the recently introduced heavy-tailed Rayleigh density function, which was derived based on the assumption that the real and imaginary parts of the received complex signal are best described using the alpha-stable family of distribution. We estimate model parameters from noisy observations by means of second-kind statistics theory, which relies on the Mellin transform. Finally, we compare our proposed algorithm with several classical speckle filters applied on actual SAR images. Experimental results show that the homomorphic MAP filter based on the heavy-tailed Rayleigh prior for the RCS is among the best for speckle removal. |
|
38 - Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires. F. Lafarge et X. Descombes et J. Zerubia. Rapport de Recherche 5369, INRIA, France, décembre 2004. Mots-clés : Feux de foret, Champs Gaussiens, Évenement rare.
@TECHREPORT{5369,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires}, |
year |
= |
{2004}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5369}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070634}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70634/filename/RR-5369.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/34/PS/RR-5369.ps}, |
keyword |
= |
{Feux de foret, Champs Gaussiens, Évenement rare} |
} |
Résumé :
Nous proposons, dans ce rapport, une méthode de détection des feux de forêt par imagerie satellitaire fondée sur la théorie des champs aléatoires. L'idée consiste à modéliser l'image par une réalisation d'un champ gaussien afin d'en extraire, par une analyse statistique, les éléments étrangers pouvant correspondre aux feux.
Le canal IRT (InfraRouge Thermique) contient des longueurs d'onde particulièrement sensibles à l'émission de chaleur. L'intensité d'un pixel d'une image IRT est donc d'autant plus forte que la température de la zone associée à ce pixel est élevée. Les feux de forêt peuvent alors être caractérisés par des pics d'intensité sur ce type d'images. Nous proposons une méthode de classification non supervisée et automatique fondée sur la théorie des champs gaussiens. Pour ce faire, nous modélisons dans un premier temps l'image par une réalisation d'un champ gaussien. Les zones de feux, minoritaires et de fortes intensités sont considérées comme des éléments étrangers à ce champ : ce sont des évènements rares. Ensuite, par une analyse statistique, nous déterminons un jeu de probabilités définissant, pour une zone donnée de l'image, un degré d'appartenance au champ gaussien, et par complémentarité aux zones potentiellement en feux. |
Abstract :
We present in this report a method for forest fire detection in satellite images based on random field theory. The idea is to model the image as a realization of a gaussian field in order to extract the rare events, which are potential fires, by a statistical analysis.
The TIR (Thermical InfraRed) channel has a wavelength sensitive to the emission of heat : the higher the heat of a area, the higher the intensity of the corresponding pixel of the image. Then a forest fire can be characterized by peak intensity in TIR images. We present an fully automatic unsupervised classification method based on Gaussian field theory. First we model the image as a realization of a Gaussian field. The fire areas, which have high intensity and are supposed to be a minority, are considered as foreign elements of that field : they are rare events. Then we determine by a statistical analysis a set of probabilities which characterizes the degree of belonging to the Gaussian field of a small area of the image. So, we estimate the probability that the area is a potential fire. |
|
39 - Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection. F. Lafarge et X. Descombes et J. Zerubia. Rapport de Recherche 5370, INRIA, France, décembre 2004. Mots-clés : Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov.
@TECHREPORT{5370,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection}, |
year |
= |
{2004}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5370}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70633/filename/RR-5370.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/33/PS/RR-5370.ps}, |
keyword |
= |
{Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov} |
} |
Résumé :
Nous détaillons dans ce rapport la construction de deux noyaux texturaux s'utilisant dans les problèmes de classification par «Support Vector Machines» en télédétection. Les SVM constituent une méthode de classification supervisée particulièrement bien adaptée pour traiter des données de grande dimension telles que les images satellitaires. Par cette méthode, nous souhaitons réaliser l'apprentissage de paramètres qui permettent la différenciation entre deux ensembles de pixels connexes non-identiques. Nous travaillons pour cela sur des fonctions noyaux, fonctions caractérisant une certaine similarité entre deux données. Dans notre cas, cette similarité sera fondée à la fois sur une notion radiométrique et sur une notion texturale. La principale difficulté rencontrée dans cette étude réside dans l'élaboration de paramètres texturaux pertinents qui modélisent au mieux l'homogénéité d'un ensemble de pixels connexes. Nous appliquons les noyaux proposés à deux problèmes de télédétection: la détection de feux de forêt et la détection de zones urbaines à partir d'images satellitaires haute résolusion. |
Abstract :
We present in this report two textural kernels for «Support Vector Machines» classification applied to remote sensing problems. SVMs constitute a method of supervised classification well adapted to deal with data of high dimension, such as images. We would like to learn parameters which allow the differentiation between two sets of connected pixels. We also introduce kernel functions which characterize a notion of similarity between two pieces of data. In our case this similarity is based on a radiometric charateristic and a textural characteristic. The main difficulty is to elaborate textural parameters which are pertinent and characterize as well as possible the homogeneity of a set of connected pixels. We apply this method to remote sensing problems : the detection of forest fires and the extraction of urban areas in high resolution satellite images. |
|
40 - Detecting Codimension-two Objects in an Image with Ginzburg-Landau Models. G. Aubert et J.F. Aujol et L. Blanc-Féraud. Rapport de Recherche 5254, INRIA, France, juillet 2004. Mots-clés : Modele de Ginzburg-Landau, Images biologiques, Segmentation, Equation aux derivees partielles.
@TECHREPORT{5254,
|
author |
= |
{Aubert, G. and Aujol, J.F. and Blanc-Féraud, L.}, |
title |
= |
{Detecting Codimension-two Objects in an Image with Ginzburg-Landau Models}, |
year |
= |
{2004}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5254}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070744}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70744/filename/RR-5254.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/07/44/PS/RR-5254.ps}, |
keyword |
= |
{Modele de Ginzburg-Landau, Images biologiques, Segmentation, Equation aux derivees partielles} |
} |
Résumé :
Dans cet article, nous proposons a nouveau modèle mathématique pour détecter dans une image les singularités de codimension supérieure ou égale à deux. Cela signifie que nous voulons détecter des points dans des images 2-D, ou des points et des courbes dans des images 3-D. Nous nous inspirons des modèles de Ginzburg-Landau (GL). Ces derniers se sont révélés efficace pour modéliser de nombreux phénomènes physiques. Nous introduisons le modèle, nous énonçons ses propriétés mathématiques, et nous donnons des résultats expérimentaux illustrant les performances du modèle. |
Abstract :
In this paper, we propose a new mathematical model for detecting in an image singularities of codimension greater than or equal to two. This means we want to detect points in a 2-D image or points and curves in a 3-D image. We drew one's inspiration from Ginzburg-Landau (G-L) models which have proved their efficiency for modeling many phenomena in physics. We introduce the model, state its mathematical properties and give some experimental results demonstrating its capability. |
|
41 - 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization. N. Dey et L. Blanc-Féraud et C. Zimmer et P. Roux et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Rapport de Recherche 5272, INRIA, France, juillet 2004. Mots-clés : Microscopie confocale, Deconvolution, Reponse impulsionnelle, Variation totale.
@TECHREPORT{5272,
|
author |
= |
{Dey, N. and Blanc-Féraud, L. and Zimmer, C. and Roux, P. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization}, |
year |
= |
{2004}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5272}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070726/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70726/filename/RR-5272.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/07/26/PS/RR-5272.ps}, |
keyword |
= |
{Microscopie confocale, Deconvolution, Reponse impulsionnelle, Variation totale} |
} |
Résumé :
La microscopie confocale (Confocal laser scanning microscopy ou microscopie confocale à balayage laser) est une méthode puissante de plus en plus populaire pour l'imagerie 3D de spécimens biologiques. Malheureusement, les images acquises sont dégradées non seulement par du flou dû à la lumière provenant de zones du spécimen non focalisées, mais aussi par un bruit de Poisson dû à la détection, qui se fait à faible flux de photons. Plusieurs méthodes de déconvolution ont été proposées pour réduire ces dégradations, avec en particulier l'algorithme itératif de Richardson-Lucy, qui calcule un maximum de vraisemblance adapté à une statistique poissonienne. Mais cet algorithme utilisé comme tel ne converge pas nécessairement vers une solution adaptée, car il tend à amplifier le bruit. Si par contre on l'utilise avec une contrainte de régularisation (connaissance a priori sur l'objet que l'on cherche à restaurer, par exemple), Richardson-Lucy régularisé converge toujours vers une solution adaptée, sans amplification du bruit. Nous proposons ici de combiner l'algorithme de Richardson-Lucy avec une contrainte de régularisation basée sur la Variation Totale, dont l'effet d'adoucissement permet d'éviter les oscillations d'intensité tout en préservant les bords des objets. Nous montrons sur des images synthétiques et sur des images réelles que cette contrainte de régularisation améliore les résultats de la déconvolution à la fois qualitativement et quantitativement. Nous comparons plusieurs méthodes de déconvolution bien connues à la méthode que nous proposons, comme Richardson-Lucy standard (pas de régularisation), Richardson-Lucy régularisé avec Tikhonov-Miller, et un algorithme basé sur la descente de gradients (sous l'hypothèse d'un bruit additif gaussien). |
Abstract :
Confocal laser scanning microscopy is a powerful and increasingly popular technique for 3D imaging of biological specimens. However the acquired images are degraded by blur from out-of-focus light and Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. However this algorithm does not necessarily converge to a suitable solution, as it tends to amplify noise. If it is used with a regularizing constraint (some prior knowledge on the data), Richardson-Lucy regularized with a well-chosen constraint, always converges to a suitable solution. Here, we propose to combine the Richardson-Lucy algorithm with a regularizing constraint based on Total Variation, whose smoothing avoids oscillations while preserving object edges. We show on simulated and real images that this constraint improves the deconvolution results both visually and using quantitative measures. We compare several well-known deconvolution methods to the proposed method, such as standard Richardson-Lucy (no regularization), Richardson-Lucy with Tikhonov-Miller regularization, and an additive gradient-based algorithm. |
|
42 - Dual Norms and Image Decomposition Models. J.F. Aujol et A. Chambolle. Rapport de Recherche 5130, INRIA, France, mars 2004. Mots-clés : Variation totale, Espace Variations Bornees, Decomposition d'images.
@TECHREPORT{5130,
|
author |
= |
{Aujol, J.F. and Chambolle, A.}, |
title |
= |
{Dual Norms and Image Decomposition Models}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5130}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071453}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71453/filename/RR-5130.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/53/PS/RR-5130.ps}, |
keyword |
= |
{Variation totale, Espace Variations Bornees, Decomposition d'images} |
} |
Résumé :
Inspiré par [16], de nombreux modèles de décomposition d'images en une composante géométrique et une composante texturée ont été proposés en traitement d'images. Dans de telles approches, les normes d'espaces de Sobolev d'exposant négatif ont paru intéressantes pour modéliser les éléments oscillants. Dans ce papier, nous comparons les propriétés de différentes normes qui sont duales de normes de Sobolev ou de Besov. Nous proposons ensuite un modèle de décomposition qui sépare une image en deux composantes, une première contenant les structures de l'image, une seconde les textures de l'image, et une troisième le bruit. Notre modèle de décomposition repose sur l'utilisation de trois semi-normes différentes: la variation totale pour la composante géométrique, une norme de Sobolev négative pour la texture, et une norme de Besov négative pour le bruit. Nous illustrons notre étude par des exemples numériques. |
Abstract :
Following [16], decomposition models into a geometrical component and a textured component have recently been proposed in image processing. In such approaches, negative Sobolev norms have seemed to be useful to modelize oscillating patterns. In this paper, we compare the properties of various norms that are dual of Sobolev or Besov norms. We then propose a decomposition model which splits an image into three components: a first one containing the structure of the image, a second one the texture of the image, and a third one the noise. Our decomposition model relies on the use of three different semi-norms: the total variation for the geometrical componant, a negative Sobolev norm for the texture, and a negative Besov norm for the noise. We illustrate our study with numerical examples. |
|
43 - SAR Amplitude Probability Density Function Estimation based on a Generalized Gaussian Scattering Model. G. Moser et J. Zerubia et S.B. Serpico. Rapport de Recherche 5153, INRIA, France, mars 2004. Mots-clés : Radar a Ouverture Synthetique (SAR), Gaussiennes generalisees.
@TECHREPORT{5153,
|
author |
= |
{Moser, G. and Zerubia, J. and Serpico, S.B.}, |
title |
= |
{SAR Amplitude Probability Density Function Estimation based on a Generalized Gaussian Scattering Model}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5153}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071430}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71430/filename/RR-5153.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/30/PS/RR-5153.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), Gaussiennes generalisees} |
} |
Résumé :
En télédetection, un problème important est celui de développer des modèles précis pour representer les statistiques des intensités des pixels. En ce qui concerne les données du type Radar à Synthèse d'Ouverture (RSO), cette modélisation constitue un point capital pour la classification ou le débruitage d'une image, par exemple. Dans ce rapport de recherche, une nouvelle méthode d'estimation paramétrique pour les amplitudes d'images RSO est proposée. Elle tient compte de la nature physique des phénomènes de diffusion qui générent une image RSO en adoptant une modèle de gaussiennes generalisées pour les phénomènes de rétrodiffusion. Une expression, sous forme explicite, de la densité de probabilité de l'amplitude est obtenue et un algorithme spécifique d'estimation des paramètres est proposé afin de pouvoir utiliser le modèle proposé. Une mèthode récente fondée sur les «logs-cumulants» est appliquée, dérivant de l'utilisation d'une transformée de Mellin (à la place de la transformée de Fourier usuelle) dans le calcul des fonctions caractéristiques et de la généralisation des concepts de moment et de cumulant correspondante. Les estimées obtenues par la mèthode des log-cumulants pour le modèle d'amplitude fondé sur des gaussiennes généralisées se révelent être calculables numériquement et également consistantes. Dans ce rapport de recherche, l'approche paramètrique proposée est validée sur diverses images radar RSO (ERS, XSAR, ESAR et des radar aéroportés). Les résultats expérimentaux montrent que la mèthode proposée modèlise mieux la densité de probabilité de l'amplitude que beaucoup de modèles paramétriques proposés précédemment pour les phénomènes de rétrodiffusion. |
Abstract :
In the context of remotely sensed data analysis, an important problem is the development of accurate models for the statistics of the pixel intensities. Focusing on Synthetic Aperture Radar (SAR) data, this modelling process turns out to be a crucial task, for instance, for classification or for denoising purposes. In the present report, an innovative parametric estimation methodology for SAR amplitude data is proposed, which takes into account the physical nature of the scattering phenomena generating a SAR image by adopting a generalized Gaussian (GG) model for the backscattering phenomena. A closed form expression for the corresponding amplitude probability density function (PDF) is derived and a specific parameter estimation algorithm is developed in order to deal with the proposed model. Specifically, the recently proposed «method-of-log-cumulants» (MoLC) is applied, which stems from the adoption of the Mellin transform (instead of the usual Fourier transform) in the computation of characteristic functions, and from the corresponding generalization of the concepts of moment and of cumulant. For the developed GG-based amplitude model, the resulting MoLC estimates turn out to be numerically feasible and are also proved to be consistent. The proposed parametric approach is validated using several real ERS-1, XSAR, ESAR and airborne SAR images and the experimental results prove that the method models the amplitude probability density function better than several previously proposed parametric models for the backscattering phenomena. |
|
44 - Dictionary-based Stochastic Expectation-Maximization for SAR amplitude probability density function estimation. G. Moser et J. Zerubia et S.B. Serpico. Rapport de Recherche 5154, INRIA, France, mars 2004. Mots-clés : Radar a Ouverture Synthetique (SAR), EM Stochastique (SEM), Modeles de melange fini.
@TECHREPORT{5154,
|
author |
= |
{Moser, G. and Zerubia, J. and Serpico, S.B.}, |
title |
= |
{Dictionary-based Stochastic Expectation-Maximization for SAR amplitude probability density function estimation}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5154}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071429}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71429/filename/RR-5154.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/29/PS/RR-5154.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), EM Stochastique (SEM), Modeles de melange fini} |
} |
Résumé :
En télédetection, un problème vital est le besoin de développer des modèles précis pour représenter les statistiques des intensités des images. Dans ce rapport de recherche, nous traitons le problème de l'estimation de la densité de probabilité de l'amplitude d'une image de type Radar à Synthèse d'Ouverture (RSO). Plusieurs modèles théoriques ou heuristiques, ultilisés pour représenter l'amplitude d'un signal du type RSO, ont été proposés dans la littérature et ce sont révelés être efficaces pour différentes types de classes dans le contexte des cartes d'occupation des sols, rendant ainsi difficile le choix d'une seule densité de probabilité paramétrique. Dans ce rapport de recherche, un algorithme d'estimation innovant est proposé, se fondant sur un modèle de mélange fini pour la densité de probabilité de l'amplitude, les diverses composantes du mélange appartenant à un dictionnaire specifique. La mèthode proposée dans ce rapport intégre, de fa on automatique, les procédures de sélection d'un modèle optimal pour chaque composante, d'estimation de paramètres et d'optimisation du nombre de composantes, en combinant un algorithme EM stochastique et la méthode des logs-cumulants pour l'estimation de la densité de probabilité paramètrique. Des resultats expérimentaux sur plusieurs images RSO réelles sont présentés, montrant ainsi que la mèthode proposée est suffisamment précise pour modéliser les statistiques du signal d'amplitude radar de type RSO. |
Abstract :
In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. In the current research report, we address the problem of parametric probability density function (PDF) estimation in the context of Synthetic Aperture Radar (SAR) amplitude data analysis. Specifically, several theoretical and heuristic models for the PDFs of SAR data have been proposed in the literature, and have been proved to be effective for different land-cover typologies, thus making the choice of a single optimal SAR parametric PDF a hard task. In thia report, an innovative estimation algorithm is proposed, which addresses this problem by adopting a finite mixture model (FMM) for the amplitude PDF, with mixture components belonging to a given dictionary of SAR-specific PDFs. The proposed method automatically integrates the procedures of selection of the optimal model for each component, of parameter estimation, and of optimization of the number of components, by combining the Stochastic Expectation Maximization (SEM) iterative methodology and the recently proposed «method-of-log-cumulants» (MoLC) for parametric PDF estimation for non-negative random variables. Experimental results on several real SAR images are presented, showing the proposed method is accurately modelling the statistics of SAR amplitude data. |
|
45 - Models of the Unimodal and Multimodal Statistics of Adaptive Wavelet Packet Coefficients. R. Cossu et I. H. Jermyn et K. Brady et J. Zerubia. Rapport de Recherche 5122, INRIA, France, février 2004. Mots-clés : Paquet d'ondelettes, Texture.
@TECHREPORT{5122,
|
author |
= |
{Cossu, R. and Jermyn, I. H. and Brady, K. and Zerubia, J.}, |
title |
= |
{Models of the Unimodal and Multimodal Statistics of Adaptive Wavelet Packet Coefficients}, |
year |
= |
{2004}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5122}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071461}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71461/filename/RR-5122.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/61/PS/RR-5122.ps}, |
keyword |
= |
{Paquet d'ondelettes, Texture} |
} |
Résumé :
De récents travaux ont montré que bien que les histogrammes de sous-bandes pour les coefficients d'ondelettes standards ont une forme de gaussienne généralisée, ce n'est plus vrai pour les bases de paquets d'ondelettes adaptés à une certaine texture. Trois types de statistiques sont alors observés pour les sous-bandes: gaussienne, gaussienne generalisée et dans certaines sous-bandes des histogrammes multimodaux sans mode en zéro. Dans ce rapport, nous démontrons que ces sous-bandes sont étroitement liées à la structure de la texture et sont ainsi primordiales dans les applications dans lesquelles la texture joue un rôle important. Fort de ces observations, nous étendons l'approche de modélisation de textures proposée par en incluant ces sous-bandes. Nous modifions l'hypothèse gaussienne pour inclure les gaussiennes généralisées et les mixtures de gaussiennes contraintes. Nous utilisons une méthodologie bayésienne, définissant des estimateurs MAP pour la base adaptative, pour la sélection du modèle de la sous-bande et pour les paramètres de ce modèle. Les résultats confirment l'efficacité de la méthode proposée et soulignent l'importance des sous-bandes multimodales pour la discrimination et la modélisation de textures. |
Abstract :
In recent work, it was noted that although the subband histograms for standard wavelet coefficients take on a generalized Gaussian form, this is no longer true for wavelet packet bases adapted to a given texture. Instead, three types of subband statistics are observed: Gaussian, generalized Gaussian, and most interestingly, in some subbands, multimodal histograms with no mode at zero. As will be demonstrated in this report, these latter subbands are closely linked to the structure of the texture, and are thus likely to be important for many applications in which texture plays a role. Motivated by these observations, we extend the approach to texture modelling proposed by to include these subbands. We relax the Gaussian assumption to include generalized Gaussians and constrained Gaussian mixtures. We use a Bayesian methodology, finding MAP estimates for the adaptive basis, for subband model selection, and for subband model parameters. Results confirm the effectiveness of the proposed approach, and highlight the importance of multimodal subbands for texture discrimination and modelling. |
|
46 - Structure and Texture Compression. J.F. Aujol et B. Matei. Rapport de Recherche 5076, INRIA, France, janvier 2004. Mots-clés : Espace Variations Bornees, Decomposition d'images, Texture, Structure.
@TECHREPORT{5076,
|
author |
= |
{Aujol, J.F. and Matei, B.}, |
title |
= |
{Structure and Texture Compression}, |
year |
= |
{2004}, |
month |
= |
{janvier}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5076}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071507}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71507/filename/RR-5076.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/07/PS/RR-5076.ps}, |
keyword |
= |
{Espace Variations Bornees, Decomposition d'images, Texture, Structure} |
} |
Résumé :
Dans ce papier, nous nous intéressons au problème de la compression d'image. Les ondelettes se sont révélées être un outil particulièremment efficace . Récemment, de nombreux algorithmes ont été proposés pour amméliorer la compression par ondelettes en essayant de prendre en compte les strucutres présentes dans l'image. De telles méthodes se révèlents très efficaces pour les images géométriques. Nous construisons un algorithme de compression d'images qui prend en compte la géométrie de l'image tout en étant capable d'être performant sur des images contenant à la fois des structures et des textures. Pour cela, nous utilisons un algorithme de décomposition d'image récemment introduit dans . Cet algorithme permet de séparer une image en deux composantes, une première composante contenant l'information géométrique de l'image, et une deuxième contenant les éléments oscillants de l'image. L'idée de notre méthode de compression est la suivante. Nous commen ons par décomposer l'image à compresser en sa partie géométrique et sa partie oscillante. Nous effectuons ensuite la compression de la partie géométrique à l'aide de l'algorithme introduit dans , ce dernier étant particulièrement bien adapté pour la compression des structures d'une image. Pour la partie oscillante de l'image, nous utilisons l'algorithme classique de compression par ondelettes biorthogonales. sur les zones régulières d'une image). l'image. Notre nouvel algorithme de compression s'avère plus performant que la méthode classique par ondelettes biorthogonales. meilleurs à la fois en PSNR, et aussi visuellement (les bords sont plus précis et les textures sont mieux conservées). |
Abstract :
In this paper, we tackle the problem of image compression. During the last past years, many algorithms have been proposed to take advantage of the geometry of the image. We intend here to propose a new compression algorithm which would take into account the structures in the image, and which would be powerful even when the original image has some textured areas. To this end, we first split our image into two components, a first one containing the structures of the image, and a second one the oscillating patterns. We then perform the compression of each component separately. Our final compressed image is the sum of these two compressed components. This new compression algorithm outperforms the standard biorthogonal wavelets compession. |
|
47 - Contours Actifs d'Ordre Supérieur Appliqués à la Détection de Linéiques dans des Images de Télédétection. M. Rochery et I. H. Jermyn et J. Zerubia. Rapport de Recherche 5063, INRIA, France, décembre 2003. Mots-clés : Reseaux lineiques, Contour actif, Modeles deformables, Extraction d'objets.
@TECHREPORT{RRRochery03,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Contours Actifs d'Ordre Supérieur Appliqués à la Détection de Linéiques dans des Images de Télédétection}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5063}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071521}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71521/filename/RR-5063.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/21/PS/RR-5063.ps}, |
keyword |
= |
{Reseaux lineiques, Contour actif, Modeles deformables, Extraction d'objets} |
} |
Résumé :
Dans ce rapport, nous présentons une nouvelle méthode pour l'incorporation d'une information sur la géométrie a priori dans le cadre des contours actifs. Nous introduisons une nouvelle classe de contours actifs d'ordre supérieur, qui sont des énergies quadratiques sur l'espace des 1-chaînes, contrairement aux énergies classiquement utilisées qui sont linéaires. Ces énergies permettent de définir des interactions non triviales entre les différents points du contour. Elles donnent naissance à des forces non locales, permettant ainsi d'introduire une information géométrique forte dans le modèle. D'un point de vue algorithmique, nous utilisons la méthodologie par courbes de niveau afin de trouver le minimum de l'énergie, la présence de forces non locales nécessitant une extension des méthodes standard utilisées pour l'évolution que nous décrivons. Nous utilisons ce nouveau modèle pour la détection de linéiques (routes, rivières, ...) dans les images de télédétection et nous montrons des résultats d'extraction sur des images réelles. |
Abstract :
In this report, we introduce a new class of active contour energies, quadratic on the space of 1-chains, as opposed to classical energies, which are linear. These energies define non trivial interactions between different points of the contour, and thus allow the incorporation of a priori shape information through the generation of non-local forces that carry geometric information. They also allow the definition of complex data terms linking the data at different points of the contour. To solve the models, we use the level set methodology, in the process extending the standard evolution methods to deal with the non-locality of the forces involved. We use this new approach in order to define models for the extraction of line networks (roads, rivers, ...) in satellite imagery. We show some results on real-world images. |
|
48 - A Multiresolution Approach for Shape from Shading Coupling Deterministic and Stochastic Optimization. A. Crouzil et X. Descombes et J.D. Durou. Rapport de Recherche 5006, INRIA, France, décembre 2003. Mots-clés : Shape from shading, Recuit Simule, Optimisation, Multiresolution.
@TECHREPORT{Crouzil03,
|
author |
= |
{Crouzil, A. and Descombes, X. and Durou, J.D.}, |
title |
= |
{A Multiresolution Approach for Shape from Shading Coupling Deterministic and Stochastic Optimization}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5006}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071578}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71578/filename/RR-5006.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/78/PS/RR-5006.ps}, |
keyword |
= |
{Shape from shading, Recuit Simule, Optimisation, Multiresolution} |
} |
Résumé :
Le Shape from shading est un problème inverse mal posé pour lequel aucune méthode de résolution complètement satisfaisante n'a encore été proposée. Dans ce rapport technique, nous ramenons le à un problème d'optimisation. Nous montrons d'abord que l'approche déterministe fournit des algorithmes efficaces en termes de temps de calcul, mais est d'un intérêt limité lorsque l'énergie comporte des minima locaux très profonds. Nous proposons comme alternative une approche stochastique utilisant le recuit simulé. Les résultats obtenus dépassent largement ceux de l'approche déterministe. La contrepartie est l'extrême lenteur du processus d'optimisation. Pour cette raison, nous proposons une approche hybride qui combine les approches déterministe et stochastique dans un cadre de multi-résolution. |
Abstract :
Shape from shading is an ill-posed inverse problem for which there is no completely satisfactory solution in the existing literature. In this technical report, we address shape from shading as an energy minimization problem. We first show that the deterministic approach provides efficient algorithms in terms of CPU time, but reaches its limits since the energy associated to shape from shading can contain multiple deep local minima. We derive an alternative stochastic approach using simulated annealing. The obtained results strongly outperform the results of the deterministic approach. The shortcoming is an extreme slowness of the optimization. Therefore, we propose an hybrid approach which combines the deterministic and stochastic approaches in a multiresolution framework. |
|
49 - A Binary Tree-Structured MRF Model for Multispectral Satellite Image Segmentation. G. Scarpa et G. Poggi et J. Zerubia. Rapport de Recherche 5062, INRIA, France, décembre 2003. Mots-clés : Estimation bayesienne, Classification, Champs de Markov, Modeles hierarchiques.
@TECHREPORT{Scarpa03,
|
author |
= |
{Scarpa, G. and Poggi, G. and Zerubia, J.}, |
title |
= |
{A Binary Tree-Structured MRF Model for Multispectral Satellite Image Segmentation}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5062}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071522}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71522/filename/RR-5062.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/22/PS/RR-5062.ps}, |
keyword |
= |
{Estimation bayesienne, Classification, Champs de Markov, Modeles hierarchiques} |
} |
Résumé :
Dans ce rapport, nous proposons un modèle markovien a priori structuré à arbre binaire (le TS-MRF) pour la segmentation d'images satellitaires multispectrales. Ce modèle permet de représenter un champ bidimensionnel par une séquence de champs de Markov binaires, chacun correspondant à un noeud de l'arbre. Pour avoir une bonne classification, on peut adapter le modèle TS-MRF à la structure intrinsèque des données, en définissant un MRF, à plusieurs paramètres, très flexible. Bien que l'on définisse le modèle global sur tout l'arbre, l'optimisation et l'estimation peuvent être poursuivis en considérant un noeud à la fois, à partir de la racine jusqu'aux feuilles, avec une réduction significative de la complexité. En effet, on a montré expérimentalement que l'algorithme global est beaucoup plus rapide qu'un algorithme conventionnel fondé sur le modèle markovien d'Ising, en particulier quand le nombre des bandes spectrales est très grand. Grâce à la procédure d'optimisation séquentielle, ce modèle permet aussi de déterminer le nombre des classes présentes dans l'image satellitaire, dans le cadre d'une classification non supervisée, à travers une condition d'arrêt définie localement pour chaque noeud. Nous avons effectué des expériences sur une image SPOT de la baie de Lannion, pour laquelle nous disposons d'une vérité terrain, et nous avons trouvé que le modèle proposé fournit de meilleurs résultats que certains autres modèles de Markov et que d'autres méthodes variationnelles. |
Abstract :
In this work we detail a tree-structured MRF (TS-MRF) prior model useful for segmentation of multispectral satellite images. This model allows a hierarchical representation of a 2-D field by the use of a sequence of binary MRFs, each corresponding to a node in the tree. In order to get good performances, one can fit the intrinsic structure of the data to the TS-MRF model, thereby defining a multi-parameter, flexible, MRF. Although a global MRF model is defined on the whole tree, optimization as well estimation can be carried out by working on a single node at a time, from the root down to the leaves, with a significant reduction in complexity. Indeed the overall algorithm is proved experimentally to be much faster than a comparable algorithm based on a conventional Ising MRF model, especially when the number of bands becomes very large. Thanks to the sequential optimization procedure, this model also addresses the cluster validation problem of unsupervised segmentation, through the use of a stopping condition local to each node. Experiments on a SPOT image of the Lannion Bay, a ground-truth of which is available, prove the superior performance of the algorithm w.r.t. some other MRF based algorithms for supervised segmentation, as well as w.r.t. some variational methods. |
|
50 - Flattening of 3D Data. R. Acar et B.W. Seales. Rapport de Recherche 5048, INRIA, France, décembre 2003. Mots-clés : Conservation numerique, Analyse de documents, Restauration.
@TECHREPORT{Acar03,
|
author |
= |
{Acar, R. and Seales, B.W.}, |
title |
= |
{Flattening of 3D Data}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5048}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071535}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71535/filename/RR-5048.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/35/PS/RR-5048.ps}, |
keyword |
= |
{Conservation numerique, Analyse de documents, Restauration} |
} |
Résumé :
Le but du projet de la bibliothèque numérique est de numériser les collections spéciales des bibliothèques; ceci consiste à transformer en données binaires des photographies du contenu de manuscripts rares ou anciens. L'objet, typiquement, n'est pas dans un plan. On enregistre, en même temps que des photographies de l'objet non plat et du texte déformé qui s'y trouve, la forme et la position de sa surface en utilisant un laseromètre. La manière de se servir de cette information pour enlever la distortion de la photographie avant d'enregistrer l'image numérique est alors un problème mathématique. Nous en examinons une formulation variationnelle et l'implantation correspondante. |
Abstract :
The digital library project strives to digitise special collections of libraries; this consists in storing as binary data, photographs of the content of ancient or rare manuscripts. The object is typically not in a flat plane. One collects, along with the photograph of the unflattened object (and the inevitably distorted text), a positional reading of its surface using laserometer. It is then a mathematical problem of how to use the latter information to undo the distortion of the photograph before storing the digitised image. |
|
haut de la page
Ces pages sont générées par
|