1 - Morphological road segmentation in urban areas from high resolution satellite images. R. Gaetano et J. Zerubia et G. Scarpa et G. Poggi. Dans International Conference on Digital Signal Processing, Corfu, Greece, juillet 2011. Mots-clés : Segmentation, Classification, skeletonization , pattern recognition, shape analysis.
@INPROCEEDINGS{GaetanoDSP,
|
author |
= |
{Gaetano, R. and Zerubia, J. and Scarpa, G. and Poggi, G.}, |
title |
= |
{Morphological road segmentation in urban areas from high resolution satellite images}, |
year |
= |
{2011}, |
month |
= |
{juillet}, |
booktitle |
= |
{International Conference on Digital Signal Processing}, |
address |
= |
{Corfu, Greece}, |
url |
= |
{http://hal.inria.fr/inria-00618222/fr/}, |
keyword |
= |
{Segmentation, Classification, skeletonization , pattern recognition, shape analysis} |
} |
Abstract :
High resolution satellite images provided by the last generation
sensors significantly increased the potential of almost
all the image information mining (IIM) applications related
to earth observation. This is especially true for the extraction
of road information, task of primary interest for many remote
sensing applications, which scope is more and more extended
to complex urban scenarios thanks to the availability of highly
detailed images. This context is particularly challenging due
to such factors as the variability of road visual appearence
and the occlusions from entities like trees, cars and shadows.
On the other hand, the peculiar geometry and morphology of
man-made structures, particularly relevant in urban areas, is
enhanced in high resolution images, making this kind of information
especially useful for road detection.
In this work, we provide a new insight on the use of morphological
image analysis for road extraction in complex urban
scenarios, and propose a technique for road segmentation
that only relies on this domain. The keypoint of the technique
is the use of skeletons as powerful descriptors for road objects:
the proposed method is based on an ad-hoc skeletonization
procedure that enhances the linear structure of road segments,
and extracts road objects by first detecting their skeletons
and then associating each of them with a region of the
image. Experimental results are presented on two different
high resolution satellite images of urban areas. |
|