1 - Lidar Waveform Modeling using a Marked Point Process. C. Mallet et F. Lafarge et F. Bretar et U. Soergel et C. Heipke. Dans Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, novembre 2009. Mots-clés : 3D point cloud, Lidar, Marked point process, RJMCMC.
@INPROCEEDINGS{mallet_icip09,
|
author |
= |
{Mallet, C. and Lafarge, F. and Bretar, F. and Soergel, U. and Heipke, C.}, |
title |
= |
{Lidar Waveform Modeling using a Marked Point Process}, |
year |
= |
{2009}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
url |
= |
{http://dx.doi.org/10.1109/ICIP.2009.5413380}, |
keyword |
= |
{3D point cloud, Lidar, Marked point process, RJMCMC} |
} |
Abstract :
Lidar waveforms are 1D signal consisting of a train of echoes where each of them correspond to a scattering target of the Earth surface. Modeling these echoes with the appropriate parametric function is necessary to retrieve physical information about these objects and characterize their properties. This paper presents a marked point process based model to reconstruct a lidar signal in terms of a set of parametric functions. The model takes into account both a data term which measures the coherence between the models and the waveforms, and a regularizing term which introduces physical knowledge on the reconstructed signal. We search for the best configuration of functions by performing a Reversible Jump Markov Chain Monte Carlo sampler coupled with a simulated annealing. Results are finally presented on different kinds of signals in urban areas. |
|