|
Publications sur Maximum likelihood estimation
Résultat de la recherche dans la liste des publications :
Article |
1 - Estimation of Markov Random Field prior parameters using Markov chain Monte Carlo Maximum Likelihood. X. Descombes et R. Morris et J. Zerubia et M. Berthod. IEEE Trans. Image Processing, 8(7): pages 954-963, juillet 1999. Mots-clés : Markov processes, Monte Carlo methods, Potts model, Image segmentation, Maximum likelihood estimation .
@ARTICLE{xd99c,
|
author |
= |
{Descombes, X. and Morris, R. and Zerubia, J. and Berthod, M.}, |
title |
= |
{Estimation of Markov Random Field prior parameters using Markov chain Monte Carlo Maximum Likelihood}, |
year |
= |
{1999}, |
month |
= |
{juillet}, |
journal |
= |
{IEEE Trans. Image Processing}, |
volume |
= |
{8}, |
number |
= |
{7}, |
pages |
= |
{954-963}, |
pdf |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=16772&arnumber=772239&count=14&index=6}, |
keyword |
= |
{Markov processes, Monte Carlo methods, Potts model, Image segmentation, Maximum likelihood estimation } |
} |
Abstract :
Developments in statistics now allow maximum likelihood estimators for the parameters of Markov random fields (MRFs) to be constructed. We detail the theory required, and present an algorithm that is easily implemented and practical in terms of computation time. We demonstrate this algorithm on three MRF models-the standard Potts model, an inhomogeneous variation of the Potts model, and a long-range interaction model, better adapted to modeling real-world images. We estimate the parameters from a synthetic and a real image, and then resynthesize the models to demonstrate which features of the image have been captured by the model. Segmentations are computed based on the estimated parameters and conclusions drawn. |
|
haut de la page
Thèse de Doctorat et Habilitation |
1 - Blind Deconvolution for Confocal Laser Scanning Microscopy. P. Pankajakshan. Thèse de Doctorat, Universite de Nice Sophia Antipolis, décembre 2009. Mots-clés : Confocal Laser Scanning Microscopy, Blind Deconvolution, point spread function, Maximum likelihood estimation , total variation regularization.
@PHDTHESIS{PankajakshanThesis09,
|
author |
= |
{Pankajakshan, P.}, |
title |
= |
{Blind Deconvolution for Confocal Laser Scanning Microscopy}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00474264/fr/}, |
keyword |
= |
{Confocal Laser Scanning Microscopy, Blind Deconvolution, point spread function, Maximum likelihood estimation , total variation regularization} |
} |
Résumé :
La microscopie confocale à balayage laser, est une technique puissante pour
étudier les spécimens biologiques en trois dimensions (3D) par sectionnement
optique. Elle permet d’avoir des images de spécimen vivants à une résolution de
l’ordre de quelques centaines de nanomètres. Bien que très utilisée, il persiste
des incertitudes dans le procédé d’observation. Comme la réponse du système à
une impulsion, ou fonction de flou (PSF), est dépendante à la fois du spécimen
et des conditions d’acquisition, elle devrait être estimée à partir des images
observées du spécimen. Ce problème est mal posé et sous déterminé. Pour
obtenir une solution, il faut injecter des connaisances, c’est à dire, a priori dans le
problème. Pour cela, nous adoptons une approche bayésienne. L’état de l’art des
algorithmes concernant la déconvolution et la déconvolution aveugle est exposé
dans le cadre d’un travail bayésien. Dans la première partie, nous constatons
que la diffraction due à l’objectif et au bruit intrinsèque à l’acquisition, sont les
distorsions principales qui affectent les images d’un spécimen. Une approche
de minimisation alternée (AM), restaure les fréquences manquantes au-delà de
la limite de diffraction, en utilisant une régularisation par la variation totale
sur l’objet, et une contrainte de forme sur la PSF. En outre, des méthodes
sont proposées pour assurer la positivité des intensités estimées, conserver le
flux de l’objet, et bien estimer le paramètre de la régularisation. Quand il
s’agit d’imager des spécimens épais, la phase de la fonction pupille, due aux
aberrations sphériques (SA) ne peut être ignorée. Dans la seconde partie, il est
montré qu’elle dépend de la difference à l’index de réfraction entre l’objet et
le milieu d’immersion de l’objectif, et de la profondeur sous la lamelle. Les
paramètres d’imagerie et la distribution de l’intensité originelle de l’objet sont
calculés en modifiant l’algorithme AM. Due à la nature de la lumière incohérente
en microscopie à fluorescence, il est possible d’estimer la phase à partir des
intensités observées en utilisant un modèle d’optique géométrique. Ceci a été
mis en évidence sur des données simulées. Cette méthode pourrait être étendue
pour restituer des spécimens affectés par les aberrations sphériques. Comme la
PSF varie dans l’espace, un modèle de convolution par morceau est proposé, et la
PSF est approchée. Ainsi, en plus de l’objet, il suffit d’estimer un seul paramétre libre. |
Abstract :
Confocal laser scanning microscopy is a powerful technique for studying
biological specimens in three dimensions (3D) by optical sectioning. It permits
to visualize images of live specimens non-invasively with a resolution of few
hundred nanometers. Although ubiquitous, there are uncertainties in the
observation process. As the system’s impulse response, or point-spread function
(PSF), is dependent on both the specimen and imaging conditions, it should be
estimated from the observed images in addition to the specimen. This problem is
ill-posed, under-determined. To obtain a solution, it is necessary to insert some
knowledge in the form of a priori and adopt a Bayesian approach. The state of
the art deconvolution and blind deconvolution algorithms are reviewed within a
Bayesian framework. In the first part, we recognize that the diffraction-limited
nature of the objective lens and the intrinsic noise are the primary distortions
that affect specimen images. An alternative minimization (AM) approach
restores the lost frequencies beyond the diffraction limit by using total variation
regularization on the object, and a spatial constraint on the PSF. Additionally,
some methods are proposed to ensure positivity of estimated intensities, to
conserve the object’s flux, and to well handle the regularization parameter.
When imaging thick specimens, the phase of the pupil function due to spherical
aberration (SA) cannot be ignored. It is shown to be dependent on the refractive
index mismatch between the object and the objective immersion medium, and
the depth under the cover slip. The imaging parameters and the object’s original
intensity distribution are recovered by modifying the AM algorithm. Due to
the incoherent nature of the light in fluorescence microscopy, it is possible to
retrieve the phase from the observed intensities by using a model derived from
geometrical optics. This was verified on the simulated data. This method could
also be extended to restore specimens affected by SA. As the PSF is space varying,
a piecewise convolution model is proposed, and the PSF approximated so that,
apart from the specimen, it is sufficient to estimated only one free parameter.
|
|
haut de la page
Ces pages sont générées par
|